Classical Robotics in Nutshell

Jan Peters
Gerhard Neumann

Purpose of this Lecture

=® \What you need to know about robotics!
=® |mportant robotics background in a nutshell!

=® |n order to understand robot learning, we have to understand the problems
first

\
&

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4. Control in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

What is a Robot?

A robot is a reprogrammable multifunctional manipulator
designed to move material, parts, tools, or specialized

devices through variable programmed motions for the
performance of a variety of tasks.

Robotics Institute of America

A computer is just amputee robot

G. Randlov

Modeling: What are the Degrees of Freedom??;

A\

)
d1/5. 7T\
&2 (X
| /e o N\
Y/ /4P A

2 types of joints:
=® revolute
= prismatic

Revolute Prismatic
[N

2D @ e
[Ve

3D I

. ‘:\\\\‘Tu.}.: 'ﬁ.\-‘ﬁ
Modeling: What are the Degrees ot Freedom® =
% 'N

Revolute joints

" f‘\\\om .,‘.: ﬁ‘ﬁ
Modeling: What are the Degrees of Freedom® = -
& ‘_4

Prismatic Joints

Workspace

he workspace Is the reachable space with the
end-effector

Basic Terminology

Joints: { [rad]

I
Task/Endeffector space: L[m]

State (robot and environment): S

9

Basic Terminology

Controls W/ @

» \elocities/Accelerations/Torques
Torques: T
Policy/Controller:

 Determinstic: u = 7m(s)

« Stochastic: u ~ W(U‘S)

Redundancy: #Joints > # Task Variables

10

Slock

Diagram of Complete System

11

xdaxd
4,4, Qa: qd Desired values
(I EJomt Angles
Control Dynamics | Kinematics
Motor Commands/

Torques

X, X
Task Space, End-effector

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4. Control in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

12

Kinematics
r

Little Dog
Balance Control Experiments
With Opertional Space Control

University of Southern California
March 2006

k
Where is my hand/endeffector Where is my center
& what is it’s orientation? of gravity?

=% What do we want to have?

=® Forward Kinematics: A mapping from joint space to task space

x = f(q)
13

—xXample 1;

Prismatic

Robot with 2 DoF

What are the forward kinematics X = f (Q) ?

—p

S

14

T =(q1 1+ g2

—xample 2: Rotary Robot with 2 DoF

What are the forward kinematics X = f (Q) ?

‘o
]
AL
r = xIo9=aicosl+ as COS(91 -+ 92)
15 Yy = Y2 = aiSIn 61 + a- sin(91 -+ 92)

What does a “Rotation” mean??

» A rotation is a transformation Can we write the transformation
of coordinate frames as matrix multiplication?

=» \Ne want a matrix such that

Yo i h) i ZT)
4 1 _ R(G) 0
o Y1 - Yo
= Which matrix fulfills this?
T » \\Ne know that:
o A 1| cosf | 0
5 el = | g | ~ RO
sin 0 :
1 —Sln9 L 0
\9 y o [cos 6] = R(0)e,
p gy T ® Hence, we have
Op, 01 - 0 . 0 -
9 R(0) = .
o (9) sinf cosf

10 - -

Rotations in 3D

Rotations in 3D require rotating about any axis:

1 0 0
0, 7 R.(0)= 0 cosf —sinf

0O sinf cosf6

cos@ 0 sinf
0 1 0
—sinf 0 cos@

cos@ —sinf 0O
sinf cosf O
0 0 1

It’s just like 2D, just add an identity for the axis around which you are rotating.

17

More about Rotations ...

Rotations can be stacked:

p° = Rp p° = R)p°=RIR
v = Rp* U R)=RR]
Other basic facts: Orthonomality!

R '=R" det{R} =1

18

Representation of Rotations

Euler Angles: Roll-Pitch-Yaw Representation
A <0

-

) Roll

(.

Yaw

19

U

Pitch

Yo

R;

}Z%¢}z%9}imw

i C¢ ——8¢ 0
S¢ C¢ 0
0 0 1

CopCoh
S$Co

—8¢Cqh T CpS9Syp
CoHCop T SpSeSy
CoSqy)

S0 1 0
0 0 C¢
Co 1 L 0 8¢

S¢Sy T CpSeCy
—CpSyy T SpSeCy
CoCy

0
Cep

Céy S¢... short form for sin(¢), cos(o)

Problems with Euler Angles:

Not Unique: Many angles result in the

same rotation

Hard to quantify differences between two

Euler Angles

Representation of Rotations

Rotation

axis
y AXis

Other Types of Representations:
* Angle-Axis
o Unit-Quaternion

Rotation

P1

X axis

(toward viewe

Solves the problems of singularities with the Euler Angles
« Easier to compute differences of orientations
 Important if we want to control the orientation of the end-effector

See Sicillano Textbook!

20

Homogeneous lransformations

=® Translations alone are easy

=® (Combining Translation and Rotation is a mess...

p0:60_|_p1

p’ =46"+ R)(6' + R,(6° + R;p’)))

=» ...but a trick solves this mess: Homogeneous Transformations!

p’ =46+ Rip’

» Hence, we have: p° = HH . .

21

p
1

R

0
1

=N

p

50' 'pl'
1 1

0
HYp
4x4 Transformationmatrix
n—1
H"

—xample 2 - revisited!

Ct —851 0 ai1Cy

; 0O ais

A _ 51 C1 151

L 0 0 1 0
0 O 0 1
i Co —859 0 a9C9 i

B so co 0 a9sy

7 "o A2 =g 0 1 o0
I L0001

Link a; 87 dz (9@
1 a1 0 x HO - A1A2

2 a9 0 0 ;

-
[

22

Differential Forward Kinematics

=» Sometimes, we are interested in the velocity X or accelerationX

=®» Remember chain rule from high school?

. d df (q) dq .
Velocity: = — — =J
» Velocity €T gy (CI) dq dt (Q)q
J(q) = %{;’) ... Jacobian
» Acceleration: X = J(q)q +J(q)q
\2+2=4

23

—xample 1 - revisited

24

g1 T g2
g1 + g2
11,1}

25

—xamples 2 - revisited

r = x9 = ajcosfi+ azcos(f; + 62)

Yo = a1 8in 0y + ag sin(f; + 02)

N4

= —@aqS8in 9191 — a9 Siﬂ(@l -+ 92)(91 -+ 02)
a1 COS 9191 + a9 COS(91 + 92)(91 + 92)

A4

- —a;sin(0y) — agsin(f; + 0,)
- ajcos(01) + azcos(0q + 63)

— a9 Sin(el T 92)

+ag cos(0y + 62) |l

Singularities

=® \What happens when | stretch out my arm?

T —(a1 + ag) sin(6;) —aqsin(6y) 01
Y (a1 + as)cos(fy) +ascos(6y) 0-

=® The colums of the Jacobian get linearly dependent

=» | loose a degree of freedom and

(o) detJ =0

=® These positions are called Singularities!

20

Computing the Jacobians

Two ways are common:

= Analytical Jacobians are easier to understand (as before) and can be
derived by symbolic differentiation. However, the representation of the
rotation matrix can cause “representational singularities”

=» Geometric Jacobians are derived from geometric insight (more

contrived), can be implemented easier and do not have “representational
singularities”.

=® Main difference: How the Jacobian for the orientation is represented

See the Siciliano Textbook...

27

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4. Control in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

28

Block Diagram of Complete System

Xy Xy Xg
qd:dd:iid q
— : N
Trajectory —_: Control p—| Dynamics Y Kinematics
q.9: 4 |
X, X, X

29

Dynamics

=® Forward dynamics model
q=/(q,q,u)
=® Essential equations:
» Forces F; (Kraft):

mass «@7 = ZFZ

=» Torques 7; (Drehmoment):

Inertia«@ — E T;
7

30

What forces are there?

=» Gravity: FgraV = mg

=® Friction

® Stiction: Fltiction = —cssgn(i)

» Damping (Viscous Friction): Fqampine = — DT
=» Springs:

=® Example: Spring-Damper System

mi = K(Teq —) — D2

31

What torques are there”

=® Gravity T gravity — mgl
=® Friction just as before.
=» Virtual Forces:

=» Centripetal

= Coriolis forces

32

.~ force ’

S ' d

Centripetal ,
4

/

General Form

Dynamics are usually denoted in this form:

u = M(q)q +c(q,q) +g(a)

* Motor commands: u
 Joint positions, velocities and accelerations: q, q, g
* Mass matrix: M(q)

» Coriolis forces and Centrifugal forces: ¢(q, q)

« Gravity: g(q) |

33

General Form

=® Dynamics are usually denoted in this form:
u = M(q)q + c(q,q) +g(a)

B Inverse dynamics model u = f(q,q, q)

=® From this equation we can already build a robot simulator
m) Forward dynamics model @ = f(q, q, u)

M (q)(u - c(q,d) — g(q))

t t
/ 8dr, o= / qdr
0 0

Compute accelerations 4

Integrate

34

—xample 1 - revisited

Actlng Force

miT; = Ul — U
2 mQCBQ — U9
~_ Joints Position
L1 = 41
T2 = (q11TG2
Dynamics
mi1 +mg Mg 91 U1

35 Mg mi1 || G2 | | u2

U1

36

—xample 2 - revisited

m1l2 + J1 +ma(IF + 12, + 21142 cos 02) + J2]6;

:mg(lgz + [1l5 cos 92) - J2]92

Inertial Forces

2mglilg060102sin60y Coriolis Forces

2migl1l 4202 sin O, Centripetal Forces

m19glg1 cos b1 + mag(li cos 1 + 142 cos(61 + 02)
[mg(lgz l1l42 cos 62) Jg]él Gravity
(m2l§2 + J2)6s Inertial Forces

mialil 4262 sin 65 Centripetal Forces

mgglgg COS(91 T 92)
Gravity

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4. Control in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

37

Block Diagram of Complete System

Trajectory: T = qq.1

» Specifies the joint positions for each time step t
« Used to specify the desired movement plan
* |nherently includes velocities and accelerations

Xy Xa; Xg Desired Joint Trajectory

q
Trajectory —_: Control f——»| Dynamics & Kinematics
— L *
9,9:9

38

Y X X

Movement Plans

How to represent
trajectories ?

= Representation with via-

poINts S ol
4
20
Initial A 15

configuration

Obstacle

B

SN
(&)

i
o
1

w
(43}
I

w
o
I

.
o
T

(&)
T

Typical Joint Space Trajectory
I I I

1 1 | 1 | 1
2.8 3 3.2 3.4 3.6 3.8 4
Time (sec)

1 I 1 L
2 2.2 2.4 2.6

Trajectory of a single s

inal
configuration
v

What do we need”?

Look once again at the mathematical model of a robot:

&

q

= M '(q)u

¢ ¢
/ qdr, q= / qdr
0 0

=® Our motor commands can only influence the acceleration!
=® The velocities and positions are just integrals of the

dCcCe

eration.

= Any tra]

ectory representation must be twice differentiable!

The positions and velocities cannot jump.
= We can use polynomials!

40

Cubic Splines

How do guarantee no jumps in pos. and vel.?

Typical Joint Space Trajectory
45 T T T

Angle (deg)
b N N W W e
[6)] o (6] o [6)] o
I I I i

—
o
T

(%)}
I

Time (sec)

q

4 free parameters

q(t) =Cag + art + ast® + ast

(t) = a1+ 2a9t + 3&3?52

Solve using Boundary Conditions

1 to t3 3 77T ag
0 1 2ty 3t al
2 3

qo
()

qaf

| Uf

Problems with Cubic Splines

Trajectory Built of Multiple Cubic Segments

90 T T ‘ '
80
70
Via
points
Initial A e 4
configuration /\X\ ., 60 -

T

Obstacle D g
o 50

D Obstacle ?C»

. <C

Via-points

B
o
T

Final
configuration 30

20

Time (sec)

42

Velocity (deg/sec)

-10

Problems with Cubic Splines

Velocity Profile for Multiple Cubic Segments Acceleration for Multiple Cubic Segments
T

50

100

Acceleration (deg/secz)

Time (sec)

We still get jJumps in the acceleration!
= Dangerous at high speed and damage the robot
= This requires higher order splines...

43

Angle (deg)

Quintic Splines

No jumps in the acceleration ™6 boundary conditions

Multiple Quintic Polynomial Segments

Replace Cubic Polynomials
by Quintic Polynomials

o free parameters

Use new boundary conditions

L %o f(")) ’L(;) f(4) f?) [ag | [qo]
0 1 2ty 3tz 4ty 5§ ai v0
0 0 2 6t 12t2 20t3 az || ag
Time (sec) 1 ff t? f} f}l‘ fr} as B qf
0 1 2ty 3t3 43 5t; a vy
|0 0 2 6ty 12t3 20t} | [as | | op

44

Quintic Splines

Smooth velocity and acceleration profiles with quintic splines

Velocity Profile for Multiple Quintic Segments

60 T T

50

40

30

Velocity (deg/sec)
N
o
I

wof / \

-10 L L \T/ L
0 1 2 3 4 6
Time (sec)

45

Acceleration (deg/secz)

Acceleration Profile for Multiple Quintic Segments

100 \ T T T

80 / \

60 -

N

N B
o o
I

o
|

-60
-80
_1 OO l | 1
1 2 3 4
Time (sec)

Alternatives to Splines

® Linear Segments with Parabolic Blends!
=® Trapezoidal Minimum Time Trajectories

» Potential Fields V(Q)

. dV(q)
1= 7
q

=® Nonlinear Dynamical Systems

d=f(a,q,0)

46

.

Blend Times for LSPB Trajectory
T T T

Angle (deg)
n
o

)

Velocity (deg/sec
n w
o o

—_
o
T

o

LSPB Velocity Profile
T T T

40

Ask questions...

47

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4. Control in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

48

Control

Why do we need control?

m) Given a desired trajectory T ¢ we still need

49

to find the controls w to follow this trajectory

qcia Q.da.d

Trajectory

Control

q.9. 9

Kinematics

*

X, X, X

Feedback Control: Generic |dea

Desired
Value

35°

50

Controller (*Regler”)

Error {

~

[45°

— 350

r 250

Sensor

How can we correct?

Turn hotter (not colder)!

Measured__,

[45°

— 350

Temperature
peratur r25o

Plant ("Regelstrecke”)

How hot is it?

Feedback Control: Generic |dea

Desired
Value

Tq =35

51

Controller (“Regler”)

Ut = f(Td7 yt)

Sensor / Measurement

yr = 1y + €

€ Measurement
errors

Plant (“Regelstrecke”)

Tiv1 = 1% +uy

Linear Feedback Control

Controller ("Regler’) Plant (“Regelstrecke”)
Desired U =
Tiv1 = 1% + wy
Value K(Td - yt) +
T, =35
Sensor / Measurement
yr = 1y + €
Gain: 1.00, Noise: 0.00
35 - -
30t
= 25}
20 - --desired
' é 110 ?r:zfsurement EO
20
510
52 0 5 110 115 20

timeSteps

Measurement Errors

What effect do measurement errors have?
Gain: 1.00, Noise: 5.00

==-desired
state -
——measurement

101

—10t

5 10 15 20
timeSteps

=® High Motor Commands, that’s not a comfortable way to shower

53

Proper Control with Measurement Errors

Lower our gains!!!

Gain: 0.20, Noise: 5.00

40t
— 301
201 --= desired
: : state —
5 10 ——measurement 20
2_
= 1
0_
1t . 1 1 .
5 10 15 20

timeSteps

54

What do High Gains do?

High gains are always problematic!!!! Check K= 2!

Gain: 2.00, Noise: 0.00

60

40N A UVAUEA LU UL AL AL ALE L AUV UL LA L

20

0 20 40 60 80 100

0 20 40 60 80 100
timeSteps

55

What happens if the sign is messed up”

Check K= -0.2.
Gain: -0.20, Noise: 0.00
oF : :
-200¢}
|_
-400¢
==-desired
- state N
S 10 ——measurement |20
~20¢
—40¢
-}
—60}
-80¢
=1 -~ . :
00 5 10 15
timeSteps

56

Linear Control in Robotics

57

Qd: Qd Control

@K
Trajectory 'S

q.9

Dynamics

o P-Controller
 PD-Controller
o PID-Controller

Linear Control: “P-Regler”
P-Controller:

based on position error

u; = Kp(q; — q;)

0
0.9
0
q; = 0.9 qd = 0
0
0
0

Oscillations

What happens for this »

control law?
58

Linear Control: “PD-Regler” N

PD-Controller:

based on position and
velocity errors

Uy = KP(Qd — ‘It) KD(Qd — Qt)

Less oscillations, but can

What happens for this -
control law"? not reach set-point

59

| ' ' : \\»r °,‘.: 4“’
Linear PD Control with Gravity Compensation’
; ‘_4

60

q,9

= [0 reach the set-point, we must compensate for gravity
= Most industrial rolbots employ this approach

J

79
/ \) \\7/"\]

Linear PD Control with Gravity Compensationgg;%\;&q;f

[

_
/C
\.
\r

/|

PD-Controller with gravity compensation

Uy = KP(Qd — (It) T KD(iId — Qt)
+9(q)

=® Requires a model

61

Note on PID Control

=® Alternatively to doing gravity compensation, we could try to
estimate the motor command to compensate for the error.

=® This can be done by integrating the error .

u = KP(qdes o q) T KD (Qdes o (.l) T KI / (qdes o q)dT'

— 00
=® For steady state systems, this can be reasonable (e.g., if our
shower thermostat has an offset)

=® good if model is not known!

=® For tracking control, it may create havoc and disaster!

62

Mechanical Equivalent

PD Control is equivalent to adding spring-dampers between the
desired values and the actuated robot parts.

Uy = KP(Qd — Qt) — K pq,

9P,
&

=,

D
(@]

63_

Ask questions...

64

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4. Control in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

65

Block Diagram of Complete System

PD with gravity compensation still can not track
a trajectory perfectly

= \We need an error to generate a control signal
= We do not know which accelerations we produce

Can we do better with a-model?
q(ia qd’ ad

q
Trajectory —_: Control f——»| Dynamics & Kinematics
— - '*’

9:9:9

66 X, %, %

Model-based Control: Key Insight

=® Forward and inverse dynamics model have a useful property:

Inverse u
adaibq _’M—l Dymcs | . ada(.laq

q.q
» Forward Model: q/z c(4,q) — g(q))
» Inverse Model: u= M(q)dq + ¢(4,q g(q)

= Thus, we set q = Qg

6/

Model-based Feedback Control

=® For errors, adapt only reference acceleration

rof = da + Kp(dges —) + Kp(Qges —a)
» ... and insert it into our model u = M(qQ)q,.; + ¢(q4,q) + g(q)
% As g = q,.; the system behaves as linear decoupled system

=® |.e. It Is a decoupled double integrator!

Model-based Control

68

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4. Control in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

69

Assume your plan is in a task space...

l.e., we want the end-effector to follow a specific trajectory x .1

= Typically given in Cartesian coordinates

= Eventually also orientation

70

Xy *d : id q
” I 4
Trajectory —_: Control f——»| Dynamics & Kinematics
T — - *’
9.9:. 9
X, X, X

Inverse Kinematics (1K)

Little Dog
Balance Control Experiments
With Opertional Space Control
University of Southern California
March 2006
k
How to move my joints in order to get |f | want my center of gravity in the

to a given hand configuration? middle what joint angles do | need?

=» What do we want to have?

= Inverse Kinematics: A mapping from task space to
configuration ,
q=f""(x)

/1

—xample 1 - revisited

/2

AS T =q1+q2

we have

g1 = h

g2 = x—h
forany h€eR

= \We have infinitely many
solutions!!! Yikes!

—xample 2 - revisited

We can solve for 67 and 05
A and get

2001 2
P 4 01 = tan 1 (g)
T

g _ a9 sin 92
— tan~ !
a1 + o cos s

= BUT: There is more than
one solution!

= T[his is not a function!

Problems with Inverse Kinematics

Multiple solutions even for non-redundant robots (Example 2)
Redundancy results in infinitely many solutions.
=® Often only numerical solutions are possible!

®» Note: Industrial robots are often built to have invertible
Kinematics!

74

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4. Control in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

75

Differential Inverse Kinematics

v Inverse kinematics:
q,=f"Hxg)

=® Not computable as we have an
iInfinite amount of solutions

Differential inverse kinematics:
q, = h(xq, q;)
=® Given current joint positions,

compute joint velocities that
minimizes the task space error

> Y

= Computable

/6

Differential Inverse Kinematics

(&4

> Y

Differential inverse kinematics:

q; = h(wda Qt)

How can we use this for control?

1. Integrate q, and directly use it
for joint space control

2. lterate differential IK algorithm to
find d,

dip+1 = qx + (T4, qy)
and plan trajectory to reach g4

Numerical Solution: Jacobian Transpose

/8

= Minimize the task-space error

1

E = §(x — f(@)" (x — f(q))

=® Gradient always points in the direction of
steepest ascent

dE
dq

- (e - fla)" L2

= —(xz— f(q))" J(q)

Jacobian Transpose

79

Minimize error per gradient descent

=® Follow negative gradient with a
certain step size ~

P (2—5) — 1 J(q) (= - f(a))
=~J(g)'e

=® Known as Jacobian Transpose Inverse
Kinematics

Jacoblan Pseudo Inverse

80

MY

®» Assume that we are not so far from our
solution manifold.

=® Take smallest step g that has a desired
task space velocity

x=n(zs— f(q)) =ne
=» Yields the following optimization problem

ming ¢’ g, s.t.x=J(q)g
=® Solution: (right) pseudo-inverse
q=J(q)" (J(q)J(q)") '@
=nJ(q)Te

Task-Prioritization with Null-Space Movements®
& ‘_4

Execute another task 9o simultaneously in the “Null-Space”

=® For example, “push” robot to a rest-posture

9o = Kp(Gresy — q)
=® Take step that has smallest distance to “base” task
ming (§ —qo)" (@ — qo), stoz=J(q)q

» Solution: ¢=J'&+ (I —J'J)q,

% Null-Space: (I — J'J)

= All movements q,,,;; that do not contradict the constraint

x=J(q)(q+ q,.m) or J(q)g,, =0
81

Task-Prioritization with Null-Space Movements

Similarly, we can also use a acceleration formulation
Solution: g =J (& —Jq)+ (I —J"J)g,
Problem: However, the inversion in the pseudo-inverse

J'=J"(JJ") ™ can be problematic

- In the case of singularities, J.J?! can not be inverted!

32

Damped Pseudo Inverse

Numerically more stable solution:

=® Find a tradeoff between minimizing the error and keeping
the joint movement small

ming (& — J(q)q)" (& — J(q)q) + \q" q

=» Regularization constant \

=® Damped Pseudo Inverse Solution
g=JN(JIJT A e =T Vg

=® \Works much better for singularities

83

Ask questions...

