Classical Robotics in Nutshell

Jan Peters Gerhard Neumann

Purpose of this Lecture

- What you need to know about robotics!
- ➡ Important robotics background in a nutshell!
- In order to understand robot learning, we have to understand the problems first

Content of this Lecture

1. What is a robot?

2. Modeling Robots Kinematics Dynamics

- 3. Representing Trajectories Splines
- 4. Control in Joint Space Linear Control Model-based Control
- 5. Control in Task Space Inverse Kinematics Differential Inverse Kinematics

A robot is a reprogrammable multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks.

Robotics Institute of America

A computer is just amputee robot

G. Randlov

Modeling: What are the Degrees of Freedom?

2 types of joints:

- ➡ revolute
- ➡ prismatic

Prismatic

Modeling: What are the Degrees of Freedom?

Revolute joints

Modeling: What are the Degrees of Freedom?

Prismatic Joints

The workspace is the reachable space with the end-effector

Basic Terminology

Task/Endeffector space: \boldsymbol{x} [m]

State (robot and environment): \boldsymbol{S}

Basic Terminology

Controls u / a

• Velocities/Accelerations/Torques

Torques: τ

Policy/Controller:

- **Determinstic:** \bullet
- Stochastic: \bullet

$$oldsymbol{u} = \pi(oldsymbol{s})$$

 $oldsymbol{u} \sim \pi(oldsymbol{u} | oldsymbol{s})$

1

Redundancy: #Joints > # Task Variables

Block Diagram of Complete System

Content of this Lecture

- 1. What is a robot?
- 2. Modeling Robots Kinematics Dynamics
- 3. Representing Trajectories Splines
- 4. Control in Joint Space Linear Control Model-based Control
- 5. Control in Task Space Inverse Kinematics Differential Inverse Kinematics

Kinematics

Little Dog Balance Control Experiments With Opertional Space Control

University of Southern California March 2006

Where is my hand/endeffector & what is it's orientation?

Where is my center of gravity?

- What do we want to have?
- ➡ Forward Kinematics: A mapping from joint space to task space

$$\mathbf{x} = f(\mathbf{q})$$

What are the forward kinematics $\mathbf{x} = f(\mathbf{q})$?

$$x = q_1 + q_2$$

What are the forward kinematics $\mathbf{x} = f(\mathbf{q})$?

15

What does a "Rotation" mean?

 A rotation is a transformation of coordinate frames

Can we write the transformation as matrix multiplication?

We want a matrix such that

$$\left[\begin{array}{c} x_1 \\ y_1 \end{array}\right] = \mathbf{R}(\theta) \left[\begin{array}{c} x_0 \\ y_0 \end{array}\right]$$

Which matrix fulfills this?

We know that:

$$\mathbf{e}_{x}^{1} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} = \mathbf{R}(\theta)\mathbf{e}_{x}^{0}$$

$$\mathbf{e}_{y}^{1} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} = \mathbf{R}(\theta)\mathbf{e}_{y}^{0}$$
Hence, we have
$$\mathbf{R}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Rotations in 3D

Rotations in 3D require rotating about any axis:

It's just like 2D, just add an identity for the axis around which you are rotating.

More about Rotations ...

Rotations can be stacked:

Other basic facts: Orthonomality!

$$R^{-1} = R^T \qquad \det\{R\} = 1$$

Euler Angles: Roll-Pitch-Yaw Representation

 $c_{\phi}, s_{\phi}...$ short form for $\sin(\phi), \cos(\phi)$

Problems with Euler Angles:

- Not Unique: Many angles result in the same rotation
- Hard to quantify differences between two Euler Angles

 x_0

Representation of Rotations

Other Types of Representations:

- Angle-Axis
- Unit-Quaternion

Solves the problems of singularities with the Euler Angles

- Easier to compute differences of orientations
- Important if we want to control the orientation of the end-effector

See Siciliano Textbook!

Homogeneous Transformations

- igstarrow Translations alone are easy $\mathbf{p}^0 = oldsymbol{\delta}^0 + \mathbf{p}^1$
- Combining Translation and Rotation is a mess...

$$p^0 = \delta^0 + R_1^0 (\delta^1 + R_2^1 (\delta^2 + R_3^2 p^3)))$$

...but a trick solves this mess: Homogeneous Transformations!

Example 2 - revisited!

	Link	a_i	α_i	d_i	$ heta_i $
	1	a_1	0	0	θ_1^*
	2	a_2	0	0	$ heta_2^*$
2	2	I	I	I	. – .

$$oldsymbol{H}_1^0 = oldsymbol{A}_1$$

 $oldsymbol{H}_2^0 = oldsymbol{A}_1 oldsymbol{A}_2$

- \blacklozenge Sometimes, we are interested in the velocity $\mathbf{\dot{x}}$ or acceleration $\mathbf{\ddot{x}}$
- Remember chain rule from high school?

→ Velocity:
$$\dot{\boldsymbol{x}} = \frac{d}{dt}f(\boldsymbol{q}) = \frac{df(\boldsymbol{q})}{d\boldsymbol{q}}\frac{d\boldsymbol{q}}{dt} = \boldsymbol{J}(\boldsymbol{q})\dot{\boldsymbol{q}}$$

$$\boldsymbol{J}(\boldsymbol{q}) = \frac{df(\boldsymbol{q})}{d\boldsymbol{q}} \dots \text{ Jacobian}$$

➡ Acceleration: $\ddot{\mathbf{x}} = \dot{\mathbf{J}}(\mathbf{q})\dot{\mathbf{q}} + \mathbf{J}(\mathbf{q})\ddot{\mathbf{q}}$

Example 1 - revisited

 $x = q_1 + q_2$ $\dot{x} = \dot{q}_1 + \dot{q}_2$ $= \begin{bmatrix} 1,1 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} = \mathbf{J}\mathbf{\dot{q}}$

Examples 2 - revisited

Singularities

➡ What happens when I stretch out my arm?

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -(a_1 + a_2)\sin(\theta_1) & -a_2\sin(\theta_1) \\ (a_1 + a_2)\cos(\theta_1) & +a_2\cos(\theta_1) \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$$

- The colums of the Jacobian get linearly dependent
- I loose a degree of freedom and

$$\det \mathbf{J} = 0$$

➡ These positions are called Singularities!

Two ways are common:

- Analytical Jacobians are easier to understand (as before) and can be derived by symbolic differentiation. However, the representation of the rotation matrix can cause "representational singularities"
- Geometric Jacobians are derived from geometric insight (more contrived), can be implemented easier and do not have "representational singularities".
- ➡ Main difference: How the Jacobian for the orientation is represented

See the Siciliano Textbook...

Content of this Lecture

- 1. What is a robot?
- 2. Modeling Robots Kinematics Dynamics
- 3. Representing Trajectories Splines
- 4. Control in Joint Space Linear Control Model-based Control
- 5. Control in Task Space Inverse Kinematics Differential Inverse Kinematics

Block Diagram of Complete System

Dynamics

Forward dynamics model

$$\ddot{\boldsymbol{q}} = f(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{u})$$

- ➡ Essential equations:
 - ➡ Forces F_i (Kraft):

mass
$$-m\ddot{r} = \sum_i F_i$$

→ Torques au_i (Drehmoment):

Inertia
$$\bullet Di = \sum_i \tau_i$$

What forces are there?

- → Gravity: $F_{\text{grav}} = mg$
- ➡ Friction
 - Stiction: $F_{\text{stiction}} = -c_s \text{sgn}(\dot{x})$
 - \blacktriangleright Damping (Viscous Friction): $F_{\rm damping} = -D\dot{x}$
- ➡ Springs:
- Example: Spring-Damper System

$$m\ddot{x} = K(x_{\rm eq} - x) - D\dot{x}$$

What torques are there?

- ightarrow Gravity $oldsymbol{ au}_{ ext{gravity}} = mgl$
- ➡ Friction just as before.
- ➡ Virtual Forces:
 - ➡ Centripetal
 - Coriolis forces

Dynamics are usually denoted in this form:

$$\mathbf{u} = \mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{c}(\mathbf{q},\dot{\mathbf{q}}) + \mathbf{g}(\mathbf{q})$$

- Motor commands: $oldsymbol{u}$
- Joint positions, velocities and accelerations: $m{q}, \dot{m{q}}, \ddot{m{q}}$
- Mass matrix: M(q)
- Coriolis forces and Centrifugal forces: $oldsymbol{c}(oldsymbol{q},\dot{oldsymbol{q}})$
- Gravity: $\boldsymbol{g}(\boldsymbol{q})$

General Form

Dynamics are usually denoted in this form: $\mathbf{u} = \mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{c}(\mathbf{q},\dot{\mathbf{q}}) + \mathbf{g}(\mathbf{q})$ Inverse dynamics model $\boldsymbol{u} = f(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}})$

From this equation we can already build a robot simulator Forward dynamics model $\ddot{\boldsymbol{q}} = f(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{u})$

Compute acc

celerations
$$\ddot{\mathbf{q}} = \mathbf{M}^{-1}(\mathbf{q})(\mathbf{u} - \mathbf{c}(\mathbf{q}, \dot{\mathbf{q}}) - \mathbf{g}(\mathbf{q}))$$

Integrate $\dot{\mathbf{q}} = \int_0^t \ddot{\mathbf{q}} d\tau$, $\mathbf{q} = \int_0^t \dot{\mathbf{q}} d\tau$

Example 1 - revisited

Example 2 - revisited

$$u_{1} = [m_{1}l_{g1}^{2} + J_{1} + m_{2}(l_{1}^{2} + l_{g2}^{2} + 2l_{1}l_{g2}\cos\theta_{2}) + J_{2}]\ddot{\theta}_{1} \\ + [m_{2}(l_{g2}^{2} + l_{1}l_{2}\cos\theta_{2}) + J_{2}]\ddot{\theta}_{2}$$
 Inertial Forces

$$- 2m_{2}l_{1}l_{g2}\dot{\theta}_{1}\dot{\theta}_{2}\sin\theta_{2}$$
 Coriolis Forces

$$- 2m_{2}l_{1}l_{g2}\dot{\theta}_{1}^{2}\sin\theta_{2}$$
 Centripetal Forces

$$+ m_{1}gl_{g1}\cos\theta_{1} + m_{2}g(l_{1}\cos\theta_{1} + l_{g2}\cos(\theta_{1} + \theta_{2}))$$

$$u_{2} = [m_{2}(l_{g2}^{2} + l_{1}l_{g2}\cos\theta_{2}) + J_{2}]\ddot{\theta}_{1}$$
 Gravity

$$+ (m_{2}l_{g2}^{2} + J_{2})\ddot{\theta}_{2}$$
 Inertial Forces

$$- m_{2}l_{1}l_{g2}\dot{\theta}_{1}^{2}\sin\theta_{2}$$
 Centripetal Forces

$$+ m_{2}gl_{g2}\cos(\theta_{1} + \theta_{2})$$
Gravity
36
Content of this Lecture

1. What is a robot?

2. Modeling Robots Kinematics Dynamics

3. Representing Trajectories Splines

- 4. Control in Joint Space Linear Control Model-based Control
- 5. Control in Task Space Inverse Kinematics Differential Inverse Kinematics

Trajectory: $\boldsymbol{\tau} = \boldsymbol{q}_{1:T}$

- Specifies the joint positions for each time step t
- Used to specify the desired movement plan
- Inherently includes velocities and accelerations

Movement Plans

Look once again at the mathematical model of a robot:

$$\ddot{\mathbf{q}} = \mathbf{M}^{-1}(\mathbf{q})\mathbf{u}$$
$$\dot{\mathbf{q}} = \int_0^t \ddot{\mathbf{q}} d\tau, \qquad \mathbf{q} = \int_0^t \dot{\mathbf{q}} d\tau$$

- Our motor commands can only influence the acceleration!
- The velocities and positions are just integrals of the acceleration.
- Any trajectory representation must be twice differentiable! The positions and velocities cannot jump.
- We can use **polynomials**!

4**1**

Cubic Splines

How do guarantee no jumps in pos. and vel.?

4 free parameters $q(t) = a_0 + a_1t + a_2t^2 + a_3t^3$ $\dot{q}(t) = a_1 + 2a_2t + 3a_3t^2$

Solve using Boundary Conditions

$$\begin{bmatrix} 1 & t_0 & t_0^2 & t_0^3 \\ 0 & 1 & 2t_0 & 3t_0^2 \\ 1 & t_f & t_f^2 & t_f^3 \\ 0 & 1 & 2t_f & 3t_f^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} q_0 \\ v_0 \\ q_f \\ v_f \end{bmatrix}$$

Problems with Cubic Splines

Problems with Cubic Splines

We still get jumps in the acceleration!

- Dangerous at high speed and damage the robot
- This requires higher order splines...

Quintic Splines

6 boundary conditions Replace Cubic Polynomials by Quintic Polynomials

$$q(t) = a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4 + a_5t^3$$

6 free parameters

Use new boundary conditions

1	t_0	t_0^2	t_0^3	t_0^4	$\begin{bmatrix} t_0^5 \\ 5 & 4 \end{bmatrix}$	$\begin{bmatrix} a_0 \end{bmatrix}$		q_0
0	$1 \\ 0$	$\frac{2t_0}{2}$	$5t_{\overline{0}}$ $6t_{0}$	$\frac{4t_0^3}{12t_0^2}$	$\begin{array}{c} 5t_{0}^{2}\\ 20t_{0}^{3}\end{array}$	$\begin{array}{c} a_1\\ a_2\end{array}$	=	$v_0 \\ \alpha_0$
1	t_f	t_f^2	t_f^3 $3t_f^2$	t_{f}^{4} $4t_{f}^{3}$	$\begin{array}{c c} t_{f}^{5} \\ 5t_{f}^{4} \end{array}$	a_3		q_f
0	0	$\frac{2v_f}{2}$	$6t_f$	$12t_f^2$	$\begin{bmatrix} 0t_f \\ 20t_f^3 \end{bmatrix}$	$\begin{bmatrix} a_4\\a_5\end{bmatrix}$		α_f

Quintic Splines

Smooth velocity and acceleration profiles with quintic splines

Alternatives to Splines

Linear Segments with Parabolic Blends! \Rightarrow 35 30 25 Trapezoidal Minimum Time Trajectories \Rightarrow Angle (deg) 20 15 ➡ Potential Fields $V(\mathbf{q})$ $\dot{\mathbf{q}} = \frac{dV(\mathbf{q})}{d\mathbf{q}}$ t_f-t_b 0.1 0.2 0.3 0.7 0.8 0.9 0.4 0.5 0.6 Time (sec) LSPB Velocity Profile Nonlinear Dynamical Systems 60 50 $\ddot{\mathbf{q}} = f(\mathbf{q}, \dot{\mathbf{q}}, \theta)$ Velocity (deg/sec) 20 10 46 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 Time (sec)

Ask questions...

Content of this Lecture

- 1. What is a robot?
- 2. Modeling Robots Kinematics Dynamics
- 3. Representing Trajectories Splines
- 4. Control in Joint Space Linear Control
 - Model-based Control
- 5. Control in Task Space Inverse Kinematics Differential Inverse Kinematics

Control

Why do we need control?

- \Rightarrow Given a desired trajectory τ_d we still need to find the controls u to follow this trajectory

Feedback Control: Generic Idea

Feedback Control: Generic Idea

Linear Feedback Control

Measurement Errors

What effect do measurement errors have?

➡ High Motor Commands, that's not a comfortable way to shower

Proper Control with Measurement Errors

Lower our gains!!!

What do High Gains do?

High gains are always problematic!!!! Check K = 2!

What happens if the sign is messed up?

Check K = -0.2.

Linear Control in Robotics

- P-Controller
- PD-Controller
- PID-Controller

Linear Control: "P-Regler"

P-Controller:

What happens for this control law?

Oscillations

Linear Control: "PD-Regler"

PD-Controller:

based on position and velocity errors

$$\boldsymbol{u}_t = \boldsymbol{K}_P(\boldsymbol{q}_d - \boldsymbol{q}_t) + \boldsymbol{K}_D(\dot{\boldsymbol{q}}_d - \dot{\boldsymbol{q}}_t)$$

What happens for this control law?

Less oscillations, but can not reach set-point

To reach the set-point, we must compensate for gravity

Most industrial robots employ this approach

Linear PD Control with Gravity Compensation

PD-Controller with gravity compensation

$$oldsymbol{u}_t = oldsymbol{K}_P(oldsymbol{q}_d - oldsymbol{q}_t) + oldsymbol{K}_D(\dot{oldsymbol{q}}_d - \dot{oldsymbol{q}}_t) + oldsymbol{g}(oldsymbol{q})$$

➡ Requires a model

nt.

- Alternatively to doing gravity compensation, we could try to estimate the motor command to compensate for the error.
- This can be done by integrating the error

$$\mathbf{u} = \mathbf{K}_P(\mathbf{q}_{\text{des}} - \mathbf{q}) + \mathbf{K}_D(\dot{\mathbf{q}}_{\text{des}} - \dot{\mathbf{q}}) + \mathbf{K}_I \int_{-\infty}^{\cdot} (\mathbf{q}_{\text{des}} - \mathbf{q}) d\tau.$$

- For steady state systems, this can be reasonable (e.g., if our shower thermostat has an offset)
 - good if model is not known!
- ➡ For tracking control, it may create havoc and disaster!

Mechanical Equivalent

PD Control is equivalent to adding spring-dampers between the desired values and the actuated robot parts.

Ask questions...

Content of this Lecture

- 1. What is a robot?
- 2. Modeling Robots Kinematics Dynamics
- 3. Representing Trajectories Splines
- 4. Control in Joint Space Linear Control Model-based Control
- 5. Control in Task Space Inverse Kinematics Differential Inverse Kinematics

Block Diagram of Complete System

PD with gravity compensation still can not track a trajectory perfectly

- We need an error to generate a control signal
- We do not know which accelerations we produce

66

Forward and inverse dynamics model have a useful property:

- ➡ Forward Model: $\ddot{\mathbf{q}} = \mathbf{M}^{-1}(\mathbf{q})(\mathbf{u} + \mathbf{c}(\dot{\mathbf{q}}, \mathbf{q}) \mathbf{g}(\mathbf{q}))$
- ➡ Inverse Model: $\mathbf{u} = \mathbf{M}(\mathbf{q})\ddot{\mathbf{q}}_{\mathbf{d}} + \mathbf{c}(\dot{\mathbf{q}}, \mathbf{q}) + \mathbf{g}(\mathbf{q})$

→ Thus, we set
$$\ddot{\mathbf{q}} = \ddot{\mathbf{q}}_{\mathbf{d}}$$

For errors, adapt only reference acceleration

$$\ddot{\mathbf{q}}_{\mathrm{ref}} = \ddot{\mathbf{q}}_{\mathbf{d}} + \mathbf{K}_D(\dot{\mathbf{q}}_{\mathrm{des}} - \dot{\mathbf{q}}) + \mathbf{K}_P(\mathbf{q}_{\mathrm{des}} - \mathbf{q})$$

- \blacklozenge ... and insert it into our model $\mathbf{u} = \mathbf{M}(q) \ddot{\mathbf{q}}_{\mathrm{ref}} + \mathbf{c}(\dot{\mathbf{q}},q) + \mathbf{g}(q)$
- ightarrow As $\ddot{q}=\ddot{q}_{
 m ref}$ the system behaves as linear decoupled system
 - ➡ I.e. it is a decoupled double integrator!

Content of this Lecture

- 1. What is a robot?
- 2. Modeling Robots Kinematics Dynamics
- 3. Representing Trajectories Splines
- 4. Control in Joint Space Linear Control Model-based Control
- 5. Control in Task Space Inverse Kinematics Differential Inverse Kinematics

I.e., we want the end-effector to follow a specific trajectory $x_{1:T}$

- Typically given in Cartesian coordinates
- Eventually also orientation

Inverse Kinematics (IK)

How to move my joints in order to get to a given hand configuration?

If I want my center of gravity in the middle what joint angles do I need?

Little Dog

Balance Control Experiments

With Opertional Space Control

University of Southern California March 2006

- What do we want to have?
- Inverse Kinematics: A mapping from task space to configuration

$$\mathbf{q} = f^{-1}(\mathbf{x})$$

Example 1 - revisited

As
$$x = q_1 + q_2$$

$$q_1 = h$$
$$q_2 = x - h$$

for any $h \in \mathbb{R}$

We have infinitely many solutions!!! Yikes!
Example 2 - revisited

We can solve for θ_1 and θ_2 and get

$$\theta_2 = \cos^{-1} \left(\frac{x^2 + y^2 - \alpha_1^2 - \alpha_2^2}{2\alpha_1 \alpha 2} \right)$$

$$\theta_1 = \tan^{-1} \left(\frac{y}{x} \right)$$

$$- \tan^{-1} \left(\frac{\alpha_2 \sin \theta_2}{\alpha_1 + \alpha_2 \cos \theta_2} \right)$$

BUT: There is more than one solution!

This is not a function!

Multiple solutions even for non-redundant robots (Example 2)

Redundancy results in infinitely many solutions.

- Often only numerical solutions are possible!
- Note: Industrial robots are often built to have invertible kinematics!

Content of this Lecture

- 1. What is a robot?
- 2. Modeling Robots Kinematics Dynamics
- 3. Representing Trajectories Splines
- 4. Control in Joint Space Linear Control Model-based Control
- 5. Control in Task Space Inverse Kinematics Differential Inverse Kinematics

Differential Inverse Kinematics

Inverse kinematics: $\boldsymbol{q}_d = f^{-1}(\boldsymbol{x}_d)$

Not computable as we have an infinite amount of solutions

Differential inverse kinematics:

$$\dot{\boldsymbol{q}}_t = \boldsymbol{h}(\boldsymbol{x}_d, \boldsymbol{q}_t)$$

 Given current joint positions, compute joint velocities that minimizes the task space error

Computable

Differential inverse kinematics:

$$\dot{\boldsymbol{q}}_t = \boldsymbol{h}(\boldsymbol{x}_d, \boldsymbol{q}_t)$$

How can we use this for control?

- 1. Integrate \dot{q}_t and directly use it for joint space control
- 2. Iterate differential IK algorithm to find ${m q}_d$

$$\boldsymbol{q}_{k+1} = \boldsymbol{q}_k + h(\boldsymbol{x}_d, \boldsymbol{q}_k)$$

and plan trajectory to reach ${m q}_d$

➡ Minimize the task-space error $E = \frac{1}{2} (\mathbf{x} - f(\mathbf{q}))^T (\mathbf{x} - f(\mathbf{q}))$

 Gradient always points in the direction of steepest ascent

$$\frac{dE}{d\boldsymbol{q}} = -(\boldsymbol{x} - f(\boldsymbol{q}))^T \frac{df(\boldsymbol{q})}{d\boldsymbol{q}}$$
$$= -(\boldsymbol{x} - f(\boldsymbol{q}))^T \boldsymbol{J}(\boldsymbol{q})$$

Jacobian Transpose

Minimize error per gradient descent

➡ Follow negative gradient with a certain step size γ

$$\begin{split} \dot{\boldsymbol{q}} &= -\gamma \left(\frac{dE}{d\boldsymbol{q}}\right)^T = \gamma \boldsymbol{J}(\boldsymbol{q})^T (\boldsymbol{x} - f(\boldsymbol{q})) \\ &= \gamma \boldsymbol{J}(\boldsymbol{q})^T \boldsymbol{e} \end{split}$$

Known as Jacobian Transpose Inverse Kinematics

- Assume that we are not so far from our solution manifold.
- Take smallest step q that has a desired task space velocity

$$\dot{\boldsymbol{x}} = \eta(\boldsymbol{x}_d - f(\boldsymbol{q})) = \eta \boldsymbol{e}$$

➡ Yields the following optimization problem $\min_{\dot{q}} \dot{q}^T \dot{q}, \quad \text{s.t.:} \ \dot{x} = J(q) \dot{q}$

Solution: (right) pseudo-inverse

$$\dot{\boldsymbol{q}} = \boldsymbol{J}(\boldsymbol{q})^T (\boldsymbol{J}(\boldsymbol{q})\boldsymbol{J}(\boldsymbol{q})^T)^{-1} \dot{\boldsymbol{x}}$$

= $\eta \boldsymbol{J}(\boldsymbol{q})^{\dagger} \boldsymbol{e}$

Execute another task \dot{q}_0 simultaneously in the "Null-Space"

For example, "push" robot to a rest-posture

$$\dot{\boldsymbol{q}}_0 = \boldsymbol{K}_P(\boldsymbol{q}_{\mathrm{rest}} - \boldsymbol{q})$$

- ➡ Take step that has smallest distance to "base" task $\min_{\dot{q}} (\dot{q} \dot{q}_0)^T (\dot{q} \dot{q}_0), \quad \text{s.t.:} \dot{x} = J(q)\dot{q}$
- → Solution: $\dot{q} = J^{\dagger}\dot{x} + (I J^{\dagger}J)\dot{q}_{0}$
 - ➡ Null-Space: $(I J^{\dagger}J)$
 - All movements \dot{q}_{null} that do not contradict the constraint $\dot{x} = J(q)(\dot{q} + \dot{q}_{null}) \text{ or } J(q)\dot{q}_{null} = 0$

Task-Prioritization with Null-Space Movements

Similarly, we can also use a acceleration formulation

Solution:
$$\dot{\boldsymbol{q}} = \boldsymbol{J}^{\dagger}(\ddot{\boldsymbol{x}} - \dot{\boldsymbol{J}}\dot{\boldsymbol{q}}) + (\boldsymbol{I} - \boldsymbol{J}^{\dagger}\boldsymbol{J})\ddot{\boldsymbol{q}}_{0}$$

Problem: However, the inversion in the pseudo-inverse

$$\boldsymbol{J}^{\dagger} = \boldsymbol{J}^T (\boldsymbol{J} \boldsymbol{J}^T)^{-1}$$
 can be problematic

 \Rightarrow In the case of singularities, JJ^T can not be inverted!

Numerically more stable solution:

Find a tradeoff between minimizing the error and keeping the joint movement small

$$\min_{\dot{\boldsymbol{q}}} (\dot{\boldsymbol{x}} - \boldsymbol{J}(\boldsymbol{q})\dot{\boldsymbol{q}})^T (\dot{\boldsymbol{x}} - \boldsymbol{J}(\boldsymbol{q})\dot{\boldsymbol{q}}) + \lambda \dot{\boldsymbol{q}}^T \dot{\boldsymbol{q}}$$

- ➡ Regularization constant λ
- Damped Pseudo Inverse Solution

$$\dot{\boldsymbol{q}} = \boldsymbol{J}^T (\boldsymbol{J}\boldsymbol{J}^T + \lambda \boldsymbol{I})^{-1} \dot{\boldsymbol{x}} = \boldsymbol{J}^{\dagger(\lambda)} \dot{\boldsymbol{x}}$$

Works much better for singularities

Ask questions...

