

Jan Peters
Gerhard Neumann

Purpose of this Lecture

\Rightarrow What you need to know about robotics!
\Rightarrow Important robotics background in a nutshell!
\Rightarrow In order to understand robot learning, we have to understand the problems first

2

Content of this Lecture

1. What is a robot?
2. Modeling Robots

Kinematics
Dynamics
3. Representing Trajectories

Splines
4. Control in Joint Space

Linear Control
Model-based Control
5. Control in Task Space

Inverse Kinematics
Differential Inverse Kinematics

What is a Robot?

A robot is a reprogrammable multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks.

Robotics Institute of America

A computer is just amputee robot
G. Randlov

Modeling: What are the Degrees of Freedom?

5

2 types of joints:
\Rightarrow revolute
\Rightarrow prismatic

Modeling: What are the Degrees of Freedom?

Revolute joints

6

Modeling: What are the Degrees of Freedom?

Prismatic Joints

Workspace

The workspace is the reachable space with the end-effector

Basic Terminology

Task/Endeffector space: $\boldsymbol{X}[m]$
State (robot and environment): \boldsymbol{S}

9

Basic Terminology

Controls u/ \boldsymbol{a}

- Velocities/Accelerations/Torques

Torques: τ

Policy/Controller:

- Determinstic: $\quad \boldsymbol{u}=\pi(\boldsymbol{s})$
- Stochastic:
$\boldsymbol{u} \sim \pi(\boldsymbol{u} \mid \boldsymbol{s})$

Redundancy: \#Joints > \# Task Variables

10

Block Diagram of Complete System

11

Content of this Lecture

1. What is a robot?
2. Modeling Robots

Kinematics
Dynamics
3. Representing Trajectories

Splines
4. Control in Joint Space

Linear Control
Model-based Control
5. Control in Task Space

Inverse Kinematics
Differential Inverse Kinematics

Kinematics

Where is my hand/endeffector \& what is it's orientation?

Where is my center of gravity?
\Rightarrow What do we want to have?
\Rightarrow Forward Kinematics: A mapping from joint space to task space

$$
\mathbf{x}=f(\mathbf{q})
$$

Example 1: Prismatic Robot with 2 DoF

What are the forward kinematics $\mathbf{x}=f(\mathbf{q})$?

$$
x=q_{1}+q_{2}
$$

Example 2: Rotary Robot with 2 DoF

What are the forward kinematics $\mathbf{x}=f(\mathbf{q})$?

15

$$
\begin{aligned}
& x=x_{2}=a_{1} \cos \theta_{1}+a_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& y=y_{2}=a_{1} \sin \theta_{1}+a_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

What does a "Rotation" mean?

\Rightarrow A rotation is a transformation of coordinate frames

Can we write the transformation as matrix multiplication?
\Rightarrow We want a matrix such that

$$
\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\mathbf{R}(\theta)\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

\Rightarrow Which matrix fulfills this?
\Rightarrow We know that:

$$
\mathbf{e}_{x}^{1}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]=\mathbf{R}(\theta) \mathbf{e}_{x}^{0}
$$

$$
\mathbf{e}_{y}^{1}=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]=\mathbf{R}(\theta) \mathbf{e}_{y}^{0}
$$

\Rightarrow Hence, we have

$$
\mathbf{R}(\theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Rotations in 3D

Rotations in 3D require rotating about any axis:

It's just like 2D, just add an identity for the axis around which you are rotating.
17

More about Rotations ...

Rotations can be stacked:

$$
\left.\begin{array}{l}
p^{0}=R_{1}^{0} p^{1} \square \\
p^{1}=R_{2}^{1} p^{2}
\end{array}\right\rangle \begin{aligned}
& p^{0}=R_{2}^{0} p^{2}=R_{1}^{0} R_{2}^{1} p^{2} \\
& R_{2}^{0}=R_{1}^{0} R_{2}^{1}
\end{aligned}
$$

Other basic facts: Orthonomality!

$$
R^{-1}=R^{T} \quad \operatorname{det}\{R\}=1
$$

Representation of Rotations

Euler Angles: Roll-Pitch-Yaw Representation

$$
\begin{aligned}
R_{1}^{0}= & R_{z, \phi} R_{y, \theta} R_{x, \psi} \\
= & {\left[\begin{array}{ccc}
c_{\phi} & -s_{\phi} & 0 \\
s_{\phi} & c_{\phi} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c_{\theta} & 0 & s_{\theta} \\
0 & 1 & 0 \\
-s_{\theta} & 0 & c_{\theta}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\psi} & -s_{\psi} \\
0 & s_{\psi} & c_{\psi}
\end{array}\right] } \\
= & {\left[\begin{array}{ccc}
c_{\phi} c_{\theta} & -s_{\phi} c_{\psi}+c_{\phi} s_{\theta} s_{\psi} & s_{\phi} s_{\psi}+c_{\phi} s_{\theta} c_{\psi} \\
s_{\phi} c_{\theta} & c_{\phi} c_{\psi}+s_{\phi} s_{\theta} s_{\psi} & -c_{\phi} s_{\psi}+s_{\phi} s_{\theta} c_{\psi} \\
-s_{\theta} & c_{\theta} s_{\psi} & c_{\theta} c_{\psi}
\end{array}\right] } \\
& c_{\phi}, s_{\phi} \ldots \text { short form for } \sin (\phi), \cos (\phi)
\end{aligned}
$$

Problems with Euler Angles:

- Not Unique: Many angles result in the same rotation
- Hard to quantify differences between two Euler Angles

Representation of Rotations

Other Types of Representations:

- Angle-Axis
- Unit-Quaternion

Solves the problems of singularities with the Euler Angles

- Easier to compute differences of orientations
- Important if we want to control the orientation of the end-effector

See Siciliano Textbook!
20

Homogeneous Transformations

\Rightarrow Translations alone are easy $\quad \mathbf{p}^{0}=\boldsymbol{\delta}^{0}+\mathbf{p}^{1}$
\Rightarrow Combining Translation and Rotation is a mess...

$$
\left.\boldsymbol{p}^{0}=\boldsymbol{\delta}^{0}+\boldsymbol{R}_{1}^{0}\left(\boldsymbol{\delta}^{1}+\boldsymbol{R}_{2}^{1}\left(\boldsymbol{\delta}^{2}+\boldsymbol{R}_{3}^{2} \boldsymbol{p}^{3}\right)\right)\right)
$$

\Rightarrow...but a trick solves this mess: Homogeneous Transformations!

\Rightarrow Hence, we have: $\tilde{\boldsymbol{p}}^{0}=\boldsymbol{H}_{1}^{0} \boldsymbol{H}_{2}^{1} \ldots \boldsymbol{H}_{n}^{n-1} \tilde{\boldsymbol{p}}^{n}$

Example 2 - revisited!

$$
\begin{aligned}
& \mathbf{A}_{1}=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & a_{1} c_{1} \\
s_{1} & c_{1} & 0 & a_{1} s_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathbf{A}_{2}=\left[\begin{array}{cccc}
c_{2} & -s_{2} & 0 & a_{2} c_{2} \\
s_{2} & c_{2} & 0 & a_{2} s_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

$\boldsymbol{H}_{1}^{0}=\boldsymbol{A}_{1}$
$\boldsymbol{H}_{2}^{0}=\boldsymbol{A}_{1} \boldsymbol{A}_{2}$

22

Differential Forward Kinematics

\Rightarrow Sometimes, we are interested in the velocity $\dot{\mathbf{x}}$ or acceleration $\ddot{\mathbf{X}}$
\Rightarrow Remember chain rule from high school?
\Rightarrow Velocity: $\quad \dot{\boldsymbol{x}}=\frac{d}{d t} f(\boldsymbol{q})=\frac{d f(\boldsymbol{q})}{d \boldsymbol{q}} \frac{d \boldsymbol{q}}{d t}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}$

$$
\boldsymbol{J}(\boldsymbol{q})=\frac{d f(\boldsymbol{q})}{d \boldsymbol{q}} \ldots \text { Jacobian }
$$

\Rightarrow Acceleration: $\ddot{\mathbf{x}}=\dot{\mathbf{J}}(\mathbf{q}) \dot{\mathbf{q}}+\mathbf{J}(\mathbf{q}) \ddot{\mathbf{q}}$

23

Example 1 - revisited

$$
\begin{aligned}
x & =q_{1}+q_{2} \\
\dot{x} & =\dot{q}_{1}+\dot{q}_{2} \\
& =[1,1]\left[\begin{array}{c}
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right]=\mathbf{J} \dot{\mathbf{q}}
\end{aligned}
$$

24

Examples 2 - revisited

$$
\begin{aligned}
& \text { 亿 } \\
& \dot{x}=-a_{1} \sin \theta_{1} \dot{\theta}_{1}-a_{2} \sin \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
& \dot{y}=a_{1} \cos \theta_{1} \dot{\theta}_{1}+a_{2} \cos \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
& y \\
& y=y_{1} \cos \theta_{1}+a_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& {\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{ll}
-a_{1} \sin \left(\theta_{1}\right)-a_{2} \sin \left(\theta_{1}+\theta_{2}\right) & -a_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
a_{1} \cos \left(\theta_{1}\right)+a_{2} \cos \left(\theta_{1}+\theta_{2}\right) & +a_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}} \\
& 25
\end{aligned}
$$

Singularities

\Rightarrow What happens when I stretch out my arm?

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{cc}
-\left(a_{1}+a_{2}\right) \sin \left(\theta_{1}\right) & -a_{2} \sin \left(\theta_{1}\right) \\
\left(a_{1}+a_{2}\right) \cos \left(\theta_{1}\right) & +a_{2} \cos \left(\theta_{1}\right)
\end{array}\right]\left[\begin{array}{c}
\dot{\theta_{1}} \\
\dot{\theta_{2}}
\end{array}\right]
$$

\Rightarrow The colums of the Jacobian get linearly dependent
\Rightarrow I loose a degree of freedom and

$$
\operatorname{det} \mathbf{J}=0
$$

\Rightarrow These positions are called Singularities!

Computing the Jacobians

Two ways are common:
\Rightarrow Analytical Jacobians are easier to understand (as before) and can be derived by symbolic differentiation. However, the representation of the rotation matrix can cause "representational singularities"
\Rightarrow Geometric Jacobians are derived from geometric insight (more contrived), can be implemented easier and do not have "representational singularities".
\Rightarrow Main difference: How the Jacobian for the orientation is represented

See the Siciliano Textbook...
27

Content of this Lecture

1. What is a robot?
2. Modeling Robots

Kinematics
Dynamics
3. Representing Trajectories

Splines
4. Control in Joint Space

Linear Control
Model-based Control
5. Control in Task Space

Inverse Kinematics
Differential Inverse Kinematics

Block Diagram of Complete System

29

Dynamics

\Rightarrow Forward dynamics model

$$
\ddot{\boldsymbol{q}}=f(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{u})
$$

\Rightarrow Essential equations:
\Rightarrow Forces F_{i} (Kraft):

$$
\text { mass }-m \ddot{i}=\sum_{i} F_{i}
$$

\Rightarrow Torques τ_{i} (Drehmoment):

$$
\text { Inertia }+I j=\sum_{i} \tau_{i}
$$

What forces are there?

\Rightarrow Gravity: $F_{\text {grav }}=m g$
\Rightarrow Friction
\Rightarrow Stiction: $F_{\text {stiction }}=-c_{s} \operatorname{sgn}(\dot{x})$
\Rightarrow Damping (Viscous Friction): $F_{\text {damping }}=-D \dot{x}$
\Rightarrow Springs:
\Rightarrow Example: Spring-Damper System

$$
m \ddot{x}=K\left(x_{\mathrm{eq}}-x\right)-D \dot{x}
$$

31

What torques are there?

\Rightarrow Gravity $\boldsymbol{\tau}_{\text {gravity }}=m g l$
\Rightarrow Friction just as before.
\Rightarrow Virtual Forces:
\Rightarrow Centripetal
\Rightarrow Coriolis forces

32

General Form

Dynamics are usually denoted in this form:

$$
\mathbf{u}=\mathbf{M}(\mathbf{q}) \ddot{\mathbf{q}}+\mathbf{c}(\mathbf{q}, \dot{\mathbf{q}})+\mathbf{g}(\mathbf{q})
$$

- Motor commands: u
- Joint positions, velocities and accelerations: $\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}}$
- Mass matrix: $\boldsymbol{M}(\boldsymbol{q})$
- Coriolis forces and Centrifugal forces: $\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})$
- Gravity: $\boldsymbol{g}(\boldsymbol{q})$

33

General Form

\Rightarrow Dynamics are usually denoted in this form:

$$
\mathbf{u}=\mathbf{M}(\mathbf{q}) \ddot{\mathbf{q}}+\mathbf{c}(\mathbf{q}, \dot{\mathbf{q}})+\mathbf{g}(\mathbf{q})
$$

Inverse dynamics model

$$
\boldsymbol{u}=f(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}})
$$

\Rightarrow From this equation we can already build a robot simulator \Rightarrow Forward dynamics model $\quad \ddot{\boldsymbol{q}}=f(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{u})$

Compute accelerations

$$
\ddot{\mathbf{q}}=\mathbf{M}^{-1}(\mathbf{q})(\mathbf{u}-\mathbf{c}(\mathbf{q}, \dot{\mathbf{q}})-\mathbf{g}(\mathbf{q}))
$$

$$
\text { Integrate } \quad \dot{\mathbf{q}}=\int_{0}^{t} \ddot{\mathbf{q}} d \tau, \quad \mathbf{q}=\int_{0}^{t} \dot{\mathbf{q}} d \tau
$$

Example 1 - revisited

$$
\left[\begin{array}{cc}
m_{1}+m_{2} & m_{2} \\
m_{2} & m_{1}
\end{array}\right]\left[\begin{array}{l}
\ddot{q}_{1} \\
\ddot{q}_{2}
\end{array}\right]=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Example 2 - revisited

\[

\]

Content of this Lecture

1. What is a robot?
2. Modeling Robots

Kinematics
Dynamics
3. Representing Trajectories

Splines
4. Control in Joint Space

Linear Control
Model-based Control
5. Control in Task Space

Inverse Kinematics
Differential Inverse Kinematics

Block Diagram of Complete System

$$
\text { Trajectory: } \quad \boldsymbol{\tau}=\boldsymbol{q}_{1: T}
$$

- Specifies the joint positions for each time step t
- Used to specify the desired movement plan
- Inherently includes velocities and accelerations

Movement Plans

How to represent trajectories?

\Rightarrow Representation with viapoints

What do we need?

Look once again at the mathematical model of a robot:

$$
\begin{aligned}
\ddot{\mathbf{q}} & =\mathbf{M}^{-1}(\mathbf{q}) \mathbf{u} \\
\dot{\mathbf{q}} & =\int_{0}^{t} \ddot{\mathbf{q}} d \tau, \quad \mathbf{q}=\int_{0}^{t} \dot{\mathbf{q}} d \tau
\end{aligned}
$$

\Rightarrow Our motor commands can only influence the acceleration!
\Rightarrow The velocities and positions are just integrals of the acceleration.
\Rightarrow Any trajectory representation must be twice differentiable! The positions and velocities cannot jump.
\Rightarrow We can use polynomials!

Cubic Splines

How do guarantee no jumps in pos. and vel.?

4 free parameters

Solve using Boundary Conditions

$$
\left[\begin{array}{cccc}
1 & t_{0} & t_{0}^{2} & t_{0}^{3} \\
0 & 1 & 2 t_{0} & 3 t_{0}^{2} \\
1 & t_{f} & t_{f}^{2} & t_{f}^{3} \\
0 & 1 & 2 t_{f} & 3 t_{f}^{2}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
q_{0} \\
v_{0} \\
q_{f} \\
v_{f}
\end{array}\right]
$$

41

Problems with Cubic Splines

42

Problems with Cubic Splines

We still get jumps in the acceleration!
\Rightarrow Dangerous at high speed and damage the robot
\Rightarrow This requires higher order splines...
43

Quintic Splines

No jumps in the acceleration

$\Rightarrow 6$ boundary conditions Replace Cubic Polynomials by Quintic Polynomials
$q(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{2}$
6 free parameters

Use new boundary conditions

$$
\left[\begin{array}{cccccc}
1 & t_{0} & t_{0}^{2} & t_{0}^{3} & t_{0}^{4} & t_{0}^{5} \\
0 & 1 & 2 t_{0} & 3 t_{0}^{2} & 4 t_{0}^{3} & 5 t_{0}^{4} \\
0 & 0 & 2 & 6 t_{0} & 12 t_{0}^{2} & 20 t_{0}^{3} \\
1 & t_{f} & t_{f}^{2} & t_{f}^{3} & t_{f}^{4} & t_{f}^{5} \\
0 & 1 & 2 t_{f} & 3 t_{f}^{2} & 4 t_{f}^{3} & 5 t_{f}^{4} \\
0 & 0 & 2 & 6 t_{f} & 12 t_{f}^{2} & 20 t_{f}^{3}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]=\left[\begin{array}{c}
q_{0} \\
v_{0} \\
\alpha_{0} \\
q_{f} \\
v_{f} \\
\alpha_{f}
\end{array}\right]
$$

44

Quintic Splines

Smooth velocity and acceleration profiles with quintic splines

45

Alternatives to Splines

\Rightarrow Linear Segments with Parabolic Blends!
\Rightarrow Trapezoidal Minimum Time Trajectories
\Rightarrow Potential Fields $V(\mathbf{q})$

$$
\dot{\mathbf{q}}=\frac{d V(\mathbf{q})}{d \mathbf{q}}
$$

\Rightarrow Nonlinear Dynamical Systems

$$
\ddot{\mathbf{q}}=f(\mathbf{q}, \dot{\mathbf{q}}, \theta)
$$

Ask questions...

47

Content of this Lecture

1. What is a robot?
2. Modeling Robots

Kinematics
Dynamics
3. Representing Trajectories

Splines
4. Control in Joint Space

Linear Control
Model-based Control
5. Control in Task Space

Inverse Kinematics
Differential Inverse Kinematics

Control

Why do we need control?

\Rightarrow Given a desired trajectory $\boldsymbol{\tau}_{d}$ we still need to find the controls \boldsymbol{u} to follow this trajectory

Feedback Control: Generic Idea

Feedback Control: Generic Idea

51

Linear Feedback Control

Measurement Errors

What effect do measurement errors have?

\Rightarrow High Motor Commands, that's not a comfortable way to shower

Proper Control with Measurement Errors

Lower our gains!!!

54

What do High Gains do?

High gains are always problematic!!!! Check K = 2 !

55

What happens if the sign is messed up?

Check K = -0.2.

56

Linear Control in Robotics

- P-Controller
- PD-Controller
- PID-Controller

57

Linear Control: "P-Regler"

P-Controller:

based on position error

$$
\begin{aligned}
\boldsymbol{u}_{t} & =\boldsymbol{K}_{P}\left(\boldsymbol{q}_{d}-\boldsymbol{q}_{t}\right) \\
\mathbf{q}_{d} & =\left[\begin{array}{c}
0 \\
0.9 \\
0 \\
0.9 \\
0 \\
0 \\
0
\end{array}\right] \quad \dot{\mathbf{q}}_{d}=0
\end{aligned}
$$

What happens for this control law?

Oscillations

Linear Control: "PD-Regler"

PD-Controller:

based on position and
velocity errors

$$
\boldsymbol{u}_{t}=\boldsymbol{K}_{P}\left(\boldsymbol{q}_{d}-\boldsymbol{q}_{t}\right)+\boldsymbol{K}_{D}\left(\dot{\boldsymbol{q}}_{d}-\dot{\boldsymbol{q}}_{t}\right)
$$

What happens for this control law?

Less oscillations, but can not reach set-point

Linear PD Control with Gravity Compensation

\Rightarrow To reach the set-point, we must compensate for gravity
\Rightarrow Most industrial robots employ this approach

Linear PD Control with Gravity Compensation

PD-Controller with gravity compensation

$$
\begin{aligned}
\boldsymbol{u}_{t}= & \boldsymbol{K}_{P}\left(\boldsymbol{q}_{d}-\boldsymbol{q}_{t}\right)+\boldsymbol{K}_{D}\left(\dot{\boldsymbol{q}}_{d}-\dot{\boldsymbol{q}}_{t}\right) \\
& +\boldsymbol{g}(\boldsymbol{q})
\end{aligned}
$$

\Rightarrow Requires a model

Note on PID Control

\Rightarrow Alternatively to doing gravity compensation, we could try to estimate the motor command to compensate for the error.
\Rightarrow This can be done by integrating the error

$$
\mathbf{u}=\mathbf{K}_{P}\left(\mathbf{q}_{\mathrm{des}}-\mathbf{q}\right)+\mathbf{K}_{D}\left(\dot{\mathbf{q}}_{\mathrm{des}}-\dot{\mathbf{q}}\right)+\mathbf{K}_{I} \int_{-\infty}^{t}\left(\mathbf{q}_{\mathrm{des}}-\mathbf{q}\right) d \tau
$$

\Rightarrow For steady state systems, this can be reasonable (e.g., if our shower thermostat has an offset)
\Rightarrow good if model is not known!
\Rightarrow For tracking control, it may create havoc and disaster!

62

Mechanical Equivalent

PD Control is equivalent to adding spring-dampers between the desired values and the actuated robot parts.

Ask questions...

64

Content of this Lecture

1. What is a robot?
2. Modeling Robots

Kinematics
Dynamics
3. Representing Trajectories

Splines
4. Control in Joint Space

Linear Control
Model-based Control
5. Control in Task Space

Inverse Kinematics
Differential Inverse Kinematics

Block Diagram of Complete System

PD with gravity compensation still can not track a trajectory perfectly
\Rightarrow We need an error to generate a control signal
$\Rightarrow \quad$ We do not know which accelerations we produce
Can we do better with a model?

Model-based Control: Key Insight

\Rightarrow Forward and inverse dynamics model have a useful property:

\Rightarrow Forward Model: $\left.\ddot{\mathbf{q}}=\mathbf{M}^{-1}(\mathbf{q}) \mathbf{u}(\dot{\mathbf{q}}, \mathbf{q})-\mathbf{g}(\mathbf{q})\right)$
\Rightarrow Inverse Model: $\mathbf{u}=\mathbf{M}(\mathbf{q}) \ddot{\mathbf{q}}_{\mathbf{d}}+\mathbf{c}(\dot{\mathbf{q}}, \mathbf{q})+\mathbf{g}(\mathbf{q})$
\Rightarrow Thus, we set $\ddot{\mathbf{q}}=\ddot{\mathbf{q}}_{\mathrm{d}}$

Model-based Feedback Control

\Rightarrow For errors, adapt only reference acceleration

$$
\ddot{\mathbf{q}}_{\mathrm{ref}}=\ddot{\mathbf{q}}_{\mathbf{d}}+\mathbf{K}_{D}\left(\dot{\mathbf{q}}_{\mathrm{des}}-\dot{\mathbf{q}}\right)+\mathbf{K}_{P}\left(\mathbf{q}_{\mathrm{des}}-\mathbf{q}\right)
$$

$\Rightarrow \quad .$. and insert it into our model $\mathbf{u}=\mathbf{M}(\mathbf{q}) \ddot{\mathbf{q}}_{\text {ref }}+\mathbf{c}(\dot{\mathbf{q}}, \mathbf{q})+\mathbf{g}(\mathbf{q})$
\Rightarrow As $\ddot{\boldsymbol{q}}=\ddot{\boldsymbol{q}}_{\text {ref }}$ the system behaves as linear decoupled system
\Rightarrow I.e. it is a decoupled double integrator!

Content of this Lecture

1. What is a robot?
2. Modeling Robots

Kinematics
Dynamics
3. Representing Trajectories

Splines
4. Control in Joint Space

Linear Control
Model-based Control
5. Control in Task Space

Inverse Kinematics
Differential Inverse Kinematics

Assume your plan is in a task space...

I.e., we want the end-effector to follow a specific trajectory $\boldsymbol{x}_{1: T}$
\Rightarrow Typically given in Cartesian coordinates
\Rightarrow Eventually also orientation

Inverse Kinematics (IK)

How to move my joints in order to get to a given hand configuration?

Little Dog
Balance Control Experiments With Opertional Space Control

University of Southern California March 2006

If I want my center of gravity in the middle what joint angles do I need?
\Rightarrow What do we want to have?
\Rightarrow Inverse Kinematics: A mapping from task space to configuration

$$
\mathbf{q}=f^{-1}(\mathbf{x})
$$

Example 1 - revisited

As $\quad x=q_{1}+q_{2}$
we have

$$
\begin{aligned}
& q_{1}=h \\
& q_{2}=x-h
\end{aligned}
$$

for any $\quad h \in \mathbb{R}$
\Rightarrow We have infinitely many solutions!!! Yikes!

Example 2 - revisited

We can solve for θ_{1} and θ_{2} and get

$$
\begin{aligned}
\theta_{2} & =\cos ^{-1}\left(\frac{x^{2}+y^{2}-\alpha_{1}^{2}-\alpha_{2}^{2}}{2 \alpha_{1} \alpha 2}\right) \\
\theta_{1} & =\tan ^{-1}\left(\frac{y}{x}\right) \\
& -\tan ^{-1}\left(\frac{\alpha_{2} \sin \theta_{2}}{\alpha_{1}+\alpha_{2} \cos \theta_{2}}\right)
\end{aligned}
$$

\Rightarrow BUT: There is more than one solution!
\Rightarrow This is not a function!

Problems with Inverse Kinematics

Multiple solutions even for non-redundant robots (Example 2)

Redundancy results in infinitely many solutions.
\Rightarrow Often only numerical solutions are possible!
\Rightarrow Note: Industrial robots are often built to have invertible kinematics!

74

Content of this Lecture

1. What is a robot?
2. Modeling Robots

Kinematics
Dynamics
3. Representing Trajectories

Splines
4. Control in Joint Space

Linear Control
Model-based Control
5. Control in Task Space

Inverse Kinematics
Differential Inverse Kinematics

Differential Inverse Kinematics

Inverse kinematics:

$$
\boldsymbol{q}_{d}=f^{-1}\left(\boldsymbol{x}_{d}\right)
$$

\Rightarrow Not computable as we have an infinite amount of solutions

Differential inverse kinematics:

$$
\dot{\boldsymbol{q}}_{t}=\boldsymbol{h}\left(\boldsymbol{x}_{d}, \boldsymbol{q}_{t}\right)
$$

\Rightarrow Given current joint positions, compute joint velocities that minimizes the task space error
\Rightarrow Computable

Differential Inverse Kinematics

Differential inverse kinematics:

$$
\dot{\boldsymbol{q}}_{t}=\boldsymbol{h}\left(\boldsymbol{x}_{d}, \boldsymbol{q}_{t}\right)
$$

How can we use this for control?

1. Integrate $\dot{\boldsymbol{q}}_{t}$ and directly use it for joint space control
2. Iterate differential IK algorithm to find \boldsymbol{q}_{d}
$\boldsymbol{q}_{k+1}=\boldsymbol{q}_{k}+h\left(\boldsymbol{x}_{d}, \boldsymbol{q}_{k}\right)$
and plan trajectory to reach \boldsymbol{q}_{d}

Numerical Solution: Jacobian Transpose

\Rightarrow Minimize the task-space error

$$
E=\frac{1}{2}(\mathbf{x}-f(\mathbf{q}))^{T}(\mathbf{x}-f(\mathbf{q}))
$$

\Rightarrow Gradient always points in the direction of steepest ascent

$$
\begin{aligned}
\frac{d E}{d \boldsymbol{q}} & =-(\boldsymbol{x}-f(\boldsymbol{q}))^{T} \frac{d f(\boldsymbol{q})}{d \boldsymbol{q}} \\
& =-(\boldsymbol{x}-f(\boldsymbol{q}))^{T} \boldsymbol{J}(\boldsymbol{q})
\end{aligned}
$$

Jacobian Transpose

Minimize error per gradient descent

\Rightarrow Follow negative gradient with a certain step size γ

$$
\begin{aligned}
\dot{\boldsymbol{q}} & =-\gamma\left(\frac{d E}{d \boldsymbol{q}}\right)^{T}=\gamma \boldsymbol{J}(\boldsymbol{q})^{T}(\boldsymbol{x}-f(\boldsymbol{q})) \\
& =\gamma \boldsymbol{J}(\boldsymbol{q})^{T} \boldsymbol{e}
\end{aligned}
$$

\Rightarrow Known as Jacobian Transpose Inverse Kinematics

Jacobian Pseudo Inverse

\Rightarrow Assume that we are not so far from our solution manifold.
\Rightarrow Take smallest step $\dot{\boldsymbol{q}}$ that has a desired task space velocity

$$
\dot{\boldsymbol{x}}=\eta\left(\boldsymbol{x}_{d}-f(\boldsymbol{q})\right)=\eta \boldsymbol{e}
$$

\Rightarrow Yields the following optimization problem

$$
\min _{\dot{\boldsymbol{q}}} \dot{\boldsymbol{q}}^{T} \dot{\boldsymbol{q}}, \quad \text { s.t.: } \dot{\boldsymbol{x}}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

\Rightarrow Solution: (right) pseudo-inverse

$$
\begin{aligned}
\dot{\boldsymbol{q}} & =\boldsymbol{J}(\boldsymbol{q})^{T}\left(\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{J}(\boldsymbol{q})^{T}\right)^{-1} \dot{\boldsymbol{x}} \\
& =\eta \boldsymbol{J}(\boldsymbol{q})^{\dagger} \boldsymbol{e}
\end{aligned}
$$

Task-Prioritization with Null-Space Movements

Execute another task $\dot{\boldsymbol{q}}_{0}$ simultaneously in the "Null-Space"
\Rightarrow For example, "push" robot to a rest-posture

$$
\dot{\boldsymbol{q}}_{0}=\boldsymbol{K}_{P}\left(\boldsymbol{q}_{\mathrm{rest}}-\boldsymbol{q}\right)
$$

\Rightarrow Take step that has smallest distance to "base" task

$$
\min _{\dot{\boldsymbol{q}}}\left(\dot{\boldsymbol{q}}-\dot{\boldsymbol{q}}_{0}\right)^{T}\left(\dot{\boldsymbol{q}}-\dot{\boldsymbol{q}}_{0}\right), \quad \text { s.t.: } \dot{\boldsymbol{x}}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

\Rightarrow Solution: $\dot{\boldsymbol{q}}=\boldsymbol{J}^{\dagger} \dot{\boldsymbol{x}}+\left(\boldsymbol{I}-\boldsymbol{J}^{\dagger} \boldsymbol{J}\right) \dot{\boldsymbol{q}}_{0}$
\Rightarrow Null-Space: $\left(\boldsymbol{I}-\boldsymbol{J}^{\dagger} \boldsymbol{J}\right)$
\Rightarrow All movements $\dot{\boldsymbol{q}}_{\text {null }}$ that do not contradict the constraint

$$
\dot{\boldsymbol{x}}=\boldsymbol{J}(\boldsymbol{q})\left(\dot{\boldsymbol{q}}+\dot{\boldsymbol{q}}_{\text {null }}\right) \text { or } \boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}_{\text {null }}=0
$$

81

Task-Prioritization with Null-Space Movements

Similarly, we can also use a acceleration formulation Solution: $\quad \dot{\boldsymbol{q}}=\boldsymbol{J}^{\dagger}(\ddot{\boldsymbol{x}}-\dot{\boldsymbol{J}} \dot{\boldsymbol{q}})+\left(\boldsymbol{I}-\boldsymbol{J}^{\dagger} \boldsymbol{J}\right) \ddot{\boldsymbol{q}}_{0}$

Problem: However, the inversion in the pseudo-inverse

$$
\boldsymbol{J}^{\dagger}=\boldsymbol{J}^{T}\left(\boldsymbol{J} \boldsymbol{J}^{T}\right)^{-1} \text { can be problematic }
$$

In the case of singularities, $\boldsymbol{J} \boldsymbol{J}^{T}$ can not be inverted!

Damped Pseudo Inverse

Numerically more stable solution:

\Rightarrow Find a tradeoff between minimizing the error and keeping the joint movement small

$$
\min _{\dot{\boldsymbol{q}}}(\dot{\boldsymbol{x}}-\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}})^{T}(\dot{\boldsymbol{x}}-\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}})+\lambda \dot{\boldsymbol{q}}^{T} \dot{\boldsymbol{q}}
$$

\Rightarrow Regularization constant λ
\Rightarrow Damped Pseudo Inverse Solution

$$
\dot{\boldsymbol{q}}=\boldsymbol{J}^{T}\left(\boldsymbol{J} \boldsymbol{J}^{T}+\lambda \boldsymbol{I}\right)^{-1} \dot{\boldsymbol{x}}=\boldsymbol{J}^{\dagger(\lambda)} \dot{\boldsymbol{x}}
$$

\Rightarrow Works much better for singularities

Ask questions...

84

