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Purpose of this Lecture

» Foundations of machine learning tools for robotics
* We focus on regression methods and general principles

« Often needed in robotics



Content of this Lecture

=2 Math and Statistics Refresher
=» \What is Machine Learning?
=» Model-Selection
=» Linear Regression
=» Frequentist Approach

=» Bayesian Approach



Statistics Refresher:
. . AN )7
Sweet memories from High School... jg\/m

What is a random variable X ?
X is a variable whose value x is subject to variations due to

chance
What is a distribution p(X = z) ?
Describes the probability that the random variable will be

equal to a certain value

What is an expectation?

Ey0lf ()] = [ pla)f(@)da



Statistics Refresher:
Sweet memories from High School...

- What is a joint, a conditional and a marginal distribution?
p(z,y) = p(y|z)p(z)
joint = conditional X marginal

- What is independence of random variables?

p(z,y) = p(x)p(y)

- What does marginalization mean?

plz) = / o, y)dy

- And finally... what is Bayes Theorem?

~ p(ylx)p(z)




Math Refresher:
Some more fancy math...

- From now on, matrices are your friends... derivatives too

] ) Codyr 0 dyn T
dy | dy dy dy |« o
dx d:ljlj.“’dgjn dr : ; .

) ) dy_m dym

_ dxq " dr, |
« Some more matrix calculus
da'x dxla dAx T
o :a,T :A d.ﬁB Am:a}T(A—FAT)

da da dx A

- Need more ? Wikipedia on Matrix Calculus




Math Refresher:
Inverse of matrices

How can we invert a matrix that is not a square matrix?
J E RnXm

Left-Pseudo Inverse: JIT=J'n'Jgtg=1,
N— —
left multiplied

works, if J has full column rank

Right Pseudo Inverse: JIT=gJt(JgshH -t =1,

N——— ———
right multiplied

works, if d has full row rank



Statistics Refresher:
Meet some old friends...

« Gaussian Distribution

1
N (x|p,X) = —exp (—0.5
(z|p, X) P p (—0.5(

- Covariance matrix X2 captures linear correlation
» Product: Gaussian stays Gaussian

N (z|la, A)N (x|b, B) = N (x|...)

 Mean is also the mode

p = argmax, N (z|p, 3)




Statistics Refresher:
Meet some old friends...

- Joint from Marginal and Conditional

T a A FT AT
N (@la, AN o+ Fa.B) =N (| 7] 5o || piar 5sparer |)

p(x)plylz) ==y p(,Y)

- Marginal and Conditional Gaussian from Joint

N([ 5 ] ) [ " ] | [ é‘T gD = N (z|a, A)N (y|b+CTA " (x —a),B—CTA'C)

plx,y) = px) p(y|z)



Statistics Refresher:
Meet some old friends...

» Bayes Theorem for Gaussians

p(z)p(yle) =) p(z|y)

p(x) = N (x]0, A) :> p(y (y|Fa,02I—|—FAFT)
plylz) = N (y|Fz,o*T) wly) N (z|SF y,0"%)
Y= (F'F+ aQS‘rl)—l

Damped Pseudo Inverse
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lt‘'s monoton a > b = log(a) > log(b)

... but not boring, as:

N N
+ Product is easy... log | [ ai =) loga,
1=1 1=1

1

» Division a piece of cake... log— = —1loga
a

» Exponents also... log (ab) = blog a



Content of this Lecture

=» \What is Machine Learning?
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=» Linear Regression

=» Frequentist Approach

=» Bayesian Approach
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Why Machine Learning

* We are drowning in information and starving for knowledge. —
John Naisbitt.

 Era of big data:
* In 2008 there are about 1 trillion web pages

» 20 hours of video are uploaded to YouTube every minute

- Walmart handles more than 1M transactions per hour and
has databases containing more than 2.5 petabytes (2.5 x

10"9) of information.

- No human being can deal with the data avalanche!
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Why

Machine Learning?

| keep saying the sexy job in the next ten years will be

ot
joking, but who would’ve guessed that computer

atisticians and machine learners. People think I'm

engineers would’ve been the sexy job of the 1990s"
The abillity to take data — to be able to understand i,

(6

14

process It, to extract value from it, to visualize it, to
communicate it — that’'s going to be a hugely

important skill in the next decades.
Hal Varian, 2009

Chief Engineer of Google



Types of Machine Learning

Machine Learning

. predictive descriptive
(supervised) (unsupervised)

15

Active
(reinforcement learning)
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Prediction Problem (=Supervised Learning)

What will be the CO? concentration in the future?
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What will be the CO? concentration in the future?

Different prediction models possible

= [ inear
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Prediction Problem (=Supervised Learning)

What will be the CO? concentration in the future?

Different prediction models possible

= Linear 420
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Formalization of

Predictive

Problems

In predictive problems. we have the following data-set
2 ={(x,y)|i=1,2,3,...,n}

x ...inputs, y...output / target

Two most prominent examples are:

1. Classification: Discrete outputs or labels. y, € {0, 1}

Most likely class: Yq = argmax,p(y|x =x,)

2. Regression: Continuous outputs or labels ¥, € R

Expected output: y,=E{ylx=x,}= /yp(ylx =X,)dy.

19



—xamples of Classification

- Document classification, e.g., Spam
Filtering

 Image classification: Classifying flowers,
face detection, face recognition,
handwriting recognition, ...



—xamples of Regression

 Predict tomorrow’s stock market price given current market
conditions and other possible side information.

 Predict the amount of prostate specific antigen (PSA) in the
body as a function of a number of different clinical
measurements.

* Predict the temperature at any location inside a building using
weather data, time, door sensors, etc.

* Predict the age of a viewer watching a given video on YouTube.

=® Many problems in robotics can be addressed by regression!

21



Types of Machine Learning

Machine Learning

predictive #~ descriptive Active
(supervised) _(unsupervised) /# (reinforcement learning)
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Formalization of Descriptive Problems
In descriptive problems, we have

9 ={x|i=1,2,3,...,n}
Three prominent examples are:

1. Clustering: Find groups of data which belong together.

2. Dimensionality Reduction: Find the latent dimension of
your data.

3. Density Estimation: Find the probability of your data...
23



Old Faithful
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This is called Clustering!
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Dimensionality Reduction
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2D Projection
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This is called Dimensionality Reduction!



Dimensionality Reduction Example: Eigenfaces® i
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How many faces do you need to characterize these”?
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—Xample:

—igenfaces

27
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—xample: density of glu (plasma glucose
concentration) for diabetes patients

Estimate relative occurance of a data point

04 06 08 1.0
|

estimated p(diabetes|glu)
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00
|
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28 This is called Density Estimation!



The bigger picture...

When we're learning to see, nobody’s telling us what the right
answers are — we just look. Every so often, your mother says 'that’s
a dog,’ but that’s very little information. You’d be lucky if you got a
few bits of information — even one bit per second — that way. The
orain’s visual system has 10'* neural connections. And you only live
for 109 seconds. So it's no use learning one bit per second. You
need more like 10° bits per second. And there’s only one place you
can get that much information: from the input itself.

— Geoffrey Hinton, 1996
29



Types of Machine Learning

predictive
(supervised)

30

Machine Learning

ACtive

descriptive .
(reinforcement learning

(unsupervised)

That will be the main topic of the lecture!



How to attack a machine learning problem?

Machine learning problems essentially always are about two
entities:

(i) data model assumptions:

- Understand your problem

- generate good features which make the problem easier
- determine the model class
* Pre-processing your data

(i) algorithms that can deal with (i):

- Estimating the parameters of your model.

We are gonna do this for regression...

31
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=» Frequentist Approach

=» Bayesian Approach
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Important Questions

How does the data look like?
» Are you really learning a function?
- What data types do our outputs have?

 QOutliers: Are there “data points in China”?

What is our model (relationship between inputs and outputs)?
- Do you have features?
- What type of noise / What distribution models our outputs?
« Number of parameters?

* |Is your model sufficiently rich?

* Is it robust to overfitting?

33



Important Questions

Requirements for the solution
e accurate
- efficient to obtain (computation/memory)

* Interpretable

34



—xample Problem: a data set

-
-
-
-
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P

-
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R
R
’

Task: Describe the outputs as a function of the inputs (regression)
35



Model Assumptions: Noise + Features

Additive Gaussian Noise:
Yy =f9(x)+(:‘ with € 7~ (/V(0,0'z)

Equivalent Probabilistic Model

1 (y — fo(x))?

p(ylz) = N (11fo(®), 0%) = = exp

Lets keep in simple: linear in Features
fo(x) = ¢(x)" 6

36
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Important Questions

How does the data look like?
- What data types do our outputs have? y, € R
« Qutliers: Are there “data points in China”? NO

* Are you really learning a function? YES

What is our model? y=¢(x)'0+e¢
- Do you have features? ¢(x)
- What type of noise / What distribution models our outputs? e ~ A4(0,0%)
« Number of parameters?

» |s your model sufficiently rich?

* |s it robust to overfitting?

37



L et us fit our model ...

Polynomial O degree

CJ— . ' ' | Ne need to answer:

» How many parameters?

b P - Is your model sufficiently
> rich?
0 P
T * Is it robust to overfitting?
Ap
2T 1 0 1 2

X

We assume a model class: polynomials of degree n

y=¢(x)'0+e=[1,x,x%x%...,x"]" 0 +¢
38



Fitting an

39

—asy Model: n=0

Polynomial O degree

-
R
R
R
#




Add a Feature: n=1

Polynomial 1 degree

40



More features...

Polynomial 2 degree Polynomial 3 degree

41
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More features: Nn=200 (zoomed in)

Polynomial 200 degree

overtitting and numerical problems
43



Prominent example of overfitting...
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Distinguish between Soviet (left) and US (right) tanks

DARPA Neural Network Study (1988-89), AFCEA International Press
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Test Error vs Training Error

—
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MSE

About Right

Degree

Does a small training error lead to a good model ?7
45 NO ! We need to do model selection



Occam’s Razor and Model Selection

Model Selection: How can we...
 choose number of features/parameters”?
 choose type of features”?

* prevent overfitting”? p(D)

/')

M,

\

Some insights:

Always choose the model
that fits the data and has
the smallest model complexity

m) called occam’s razor

46



Sias-Variance Tradeoff

Expected Total Error = Bias® +

Typically, you can not minimize both!

A

Total Error

- Bias / Structure Error:

Error because our model
can not do better

Variance

Optimum Model Complexity

Error

- Variance / Approximation Error: | « —
Model ;:omplexity g

Error because we estimate
parameters on a limited data set

47



How do choose the model?

Goal: Find a good model M (e.g., good set of features)

Training Validation  Test

- Training Set: Fit Parameters

Split the dataset into:

- Validation Set: Choose model class or single parameters

- Test Set: Estimate prediction error of trained model

* Error needs to be estimated on independent set!

48



Model Selection:
K-fold Cross Validation

» Partition data into K sets, use K-1 as training set and 1 set as
validation set

» For all possible ways of partitioning compute the validation
error J m computationally expensivel!

B o
R
— e

49 Choose model M, with smallest average validation error
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How to find the parameters 67

Frequentist:

Lets minimize the error of our prediction

N
0" = argming Z(fe(ivi) — i)’
1=1

Objective is defined by minimizing a certain cost function

51



Frequentist view: Least Squares

The classical cost function is the one of least-squares

1 N
J = ;(yi —£5(x))? y; = o(x;) 70+ €
Using ] :
¢ = i d)(xl): ¢(X2), ¢(X3), R ¢(xn) ] ’
Y = :yl, Y2, Y3, -+ Yn ]T'
we can rewrite itas  ; _ » Scalar Product
and solve it 0=("®) 1o’y

Least Squares solution contains left pseudo-inverse
52



2hysical Interpretation

Energy of springs ~ squared lengths
B minimize energy of system

53



Geometric Interpretation

true (unknown) function value

t
y = p1(x)0 + p2(x)0

¥1 y

Minimize projection error ®» orthogonal projection

54



Robotics

—xample:

Known Features

U1 =

-4

. +
(®)

U9 =

) +

-4

55

2m2l1l929192 sin 92

Rigid-

2m2l15929f Sin 92

BSody

Dynamics

ml2 + Ji +ma (I + 12 + 2112 cos 2) + Jo)6;
ma(l2y + lila cos 02) + Jo)6s Inertial Forces

Coriolis Forces

Centripetal Forces

mlglgl cos 01 + mgg(ll cos 61 + lgg COS(01 ~+ 92)

Mo (lgz

lllgz COS 02)

(m2l32 + J2)é2

mzlllggé% sin 92

J2] él Gravity

Inertial Forces

Centripetal Forces

mgglgg COS(91 T 92)
Gravity



Robotics Example: Rigid-Body Dynamics

We realize that rigid body dynamics is linear in the parameters

We can rewrite it as

u = ¢(0,0,0)

accelerations, velocities, sin and cos terms masses, lengths, inertia, ...

For finding the parameters we can apply even the first machine
learning method that comes to mind: Least-Squares Regression

56



Cost Function I
Ridge Regression

We punish the magnitude of the parameters

B Controls model complexity

Jrr = (y — @0)" (y — ®0) + 0" W6

This yields ridge regression 0 = (®7'® + W) 1Ty
with W = AI , where )\ Is called regularizer

Numerically, this is much more stable

57



Ridge regression: n=15

Lambda 1.00e-06 Lambda 1.00e+01 Lambda 1.00e+03

—/— o % o
,./'/o
y
X X 2 1 0 1
X

Influence of the regularization constant

58



MA

. Back to the Overfitting Problem

59

In A
We can also scale the model complexity

with the regularization parameter!

Smaller lambda :> higher model complexity
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Maximum-Likelihood (ML) estimate

Lets look at the problem from a probabilistic perspective...

Alternatively, we can maximize the likelihood of the

parameters: N

arg max p(y| X, 0) = arg max [ p(wilz:, 0) That's hard!
=1

Do the ‘log-trick’:

Ju, = argmax log p(y| X, 0) = arg maleogp (yilzi,0)  That's easy!
=1

= arg mm Z — fo(ax;))

0*. — B Least Squares Solution is equivalent to
= O =0y ML solution with Gaussian noisel!!




Maximum a posteriori (MAP) estimate

Put a prior on our parameters
+ E.g., @ should be small: p(8) =N (0, W™ 1)

Find parameters that maximize the posterior

_ p(yIX, 0)p(6)
p(6ly, X) = =2 =m0 (Yl X 0)p(0)

Do the ‘log trick’ again:

arg max p(6ly, X) = argmax p(y| X, 0)p(0) = arg maxlog p(y| X, 0) + log p(6)

= argmin —log p(y| X, 0) = log p(0)|=: Jmap




Maximum a posteriori (MAP) estimate

The prior is just additive costs...
Jvap = —logp(y| X, 0) — log p(0)

Lets put in our Model:
p(y|X,0) = || p(yilz:, 0) = | [N (:l6" ¢(x:),0%)  p(6) = N(O,W 1)

I (i — o' (2:)0)? | 1 1
JMAP = 5 ; — | 29 wWeé

1 1 1
@(9 —®(X)0)" (y — (X)) + §9TW9 = — JRR

o

- O%r = Oxrap Ridge Regression is equivalent
to MAP estimate with Gaussian prior
63



Predictions with the Model

We found an amazing parameter set 8™ (e.g., ML, MAP)

Let’s do predictions! parameter estimate

e
P(ys s, 07) = N (g (), 07 ()
~ '\
pred. function value test input
Predictive mean: wx,) = ¢ (x,)0"

Predictive variance: 02(33*) = 0°

64



Comparing different data sets...

... with same input data, but different output values (due to noise):

NumDataSet 1

65



Comparing different data sets...

... with same input data, but different output values (due to noise):

NumDataSet 2

66



Comparing different data sets...

... With same input data, but different output values (due to noise):

NumDataSet 5

-2

Our parameter estimate is also noisy!
6/ 't depends on the noise in the data



Comparing different data sets...

NumDataSet 5

Can we also estimate our
uncertainty in 8 ?

%
Compute probability of 6 ol \

given data o
= p0X,y)

68




How to find the parameters 67

Bayesian:

69

Lets compute the probabillity of the parameters

ikelihood ﬁrior
p(y| X, 0)p(0
p(0]X ) = PV DPO)
Vs p(X|y)
. N
posterlor evidence

Intuition: If you assign each parameter estimator a “probability of
being right”, the average of these parameter estimators will be
better than the single one



How to get the posterior?

Bayes Theorem for Gaussians

p(x) = N (0, A) p(xly) =N (z|ZFy,0°%)
pylz) =N (y|Fz,0°I) = :

For our model:
Prior over parameters:

p(0) = N (010, \"'I)

Posterior over parameters:

Data Likelihood > p(0ly, X) =N(O|uy,XN)
py =IN®'y

70



What to do with the posterior?

We could sample from it to estimate uncertainty
0, ~p(Oly, X) =N (6|py, Xn)

Lambda 1.00e-02

/1



What to do with the posterior?

We could sample from it to estimate uncertainty
0, ~p(Oly, X) =N (6|py, Xn)

Lambda 1.00e-02

/2



What to do with the posterior?

We could sample from it to estimate uncertainty
0, ~p(Oly, X) =N (6|py, Xn)

Lambda 1.00e-02
3 l

2r %

73



Full Bayesian Regression

We can also do that in closed form: integrate out all possible
parameters

P(Ua e, X, ) = / p(y. ., 0)p(6] X, y)dO

/ \ \/ likelihood parameter posterior

pred. function value test input training data

Predictive Distribution is again a Gaussian for Gaussion likelihood
and parameter posterior

p(yly, X, z.) = N(y,|u(z.), 0% (x.))
i(@.) = @7 () (BT + o \I) 1 BTy
o*(xy) =0’ (14 ¢ (x.)End(xy))

24 State Dependent Variance!




Integrating out the parameters

Bayesian Linear Regression

4 -2 0 2 4
X

Variance depends on the information in the datal!

/3



Quick Summary

Models that are linear in the parameters: Y = qb(ac)TG

Overfitting is bad

- Model selection (leave-one-out cross validation)

76

Parameter Estimation: Frequentist vs. Bayesian

- Least Squares ~ Maximum Likelihood estimation (ML)

- Ridge Regression ~ Maximum a Posteriori estimation (MAP)
Bayesian Regression integrates out the parameters when predicting

- State dependent uncertainty



