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Purpose of this Lecture

• How can we define such features for general machine learning 
problems?

• Can we avoid or automate the feature specification?

• Familiarize you with non-parametric models
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Content of this Lecture

Constructing Basis Functions
  Radial Basis Function Networks

Non-Parametric Approaches
  Locally Weighted Regression
  Kernel Methods
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What we did so far…
•  Models that are linear in the parameters: 

•  Parameter Estimation: Frequentist vs. Bayesian

•  Least Squares  ~  Maximum Likelihood estimation (ML)

•  Ridge Regression  ~  Maximum a Posteriori estimation (MAP)

•  Bayesian Regression integrates out the parameters when predicting

•  State dependent uncertainty

However, for most problems good features are not easy to find
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What to do when you don’t know !
the features?

•  In most real applications, we know some 
good features.

•  However, we almost certainly don’t know 
all features we need.

•  Example: Rigid body dynamics

•  Friction has no good features

•  Unknown dynamics causes huge 
problems (requires more state variables).

•  There may also be way too many features! 

Hand-crafted features are almost
 never enough...
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Can we avoid having to find good features?

Yes, we can!

We need to find machine learning approaches that generate the features 
automatically from data.

•  Type 1: Automatic Basis Function Construction constructs basis functions 
from data.

•  Type 2: Non-Parametric Regression look at data locally and interpolate with 
similar data. 

•  Type 3: Kernel Regression finds the features implicitly by going into function 
space using a kernel
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Type 1: Construct Basis Functions from Data

Classical idea behind “neural networks”

• Multi-Layer Perceptrons (see ML 1)

• Radial Basis Function Networks
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Assume a smoothness prior and obtain the cost function

This prior yields radial basis functions as features:  

Radial Basis Function Network
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Example: Radial Basis Function Features
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Let’s look again at 

•  How do I find the width l of the basis functions or the centers       ?

•  Linear regression? Nope: not linear in l or mu !

•  We need to optimize this width on the training set

•  We can do that by gradient descent: Write down a loss function, take the 
derivative w.r.t. l,  and use an algorithm for non-convex optimization

Radial Basis Functions Hyperparameters
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Example: Bandwidth too small
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Example: Bandwidth too large
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Content of this Lecture

Constructing Basis Functions
  Radial Basis Function Networks

Non-Parametric Approaches
  Locally Weighted Regression
  Kernel Methods
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Type 2: Non-Parametric Regression

•  If you choose to have one feature/basis function per sample, you have a 
“non-parametric method”              Don’t need to select the number of bases

•  Non-parametric means 

•  infinitely many parameters not no parameters

•  expressiveness of the model depends on the number of data points

•  No predetermined “parametric” form necessary 

•  (e.g., “5th-degree polynomial”)

•  One of them is locally-weighted linear regression...
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Example: Locally Linear Solutions

Locally all data is linear!
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so why don’t we take the neighboring data points to predict the solution?
•  Use higher importance or weighting of neighboring data points
•  For each query point    , weight training points       by

Locally all data is linear ... 
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Weighted cost function 



The function is linear in x



In matrix form with                                                  :

 


Weighted Linear Regression
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The solution to this problem: weighted pseudo inverse



 W can be large - don’t implement it like this...

 Dismiss data points with small weights / use bsxfun

Local Ridge Regression:

 


Weighted Linear Regression
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Solution with Locally-Weighted Regression



20

Solution with Locally-Weighted Regression
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Solution with Locally-Weighted Regression
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Locally Weighted Bayesian Linear Regression

Weighted Linear Regression
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Content of this Lecture

Constructing Basis Functions
  Radial Basis Function Networks

Non-Parametric Approaches
  Locally Weighted Regression
  Kernel Methods
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Type 3: Kernel Methods

Equivalent solution to ridge regression, but D<<N. 
Why is this useful??

Kernel methods rely on the ‘kernel trick’

It is sufficient to evaluate the scalar product between two 
samples in feature space, called kernel

 


Why is this useful?
•  Kernels are easier to design than features
•    The feature space can be possibly infinite dimensional. 
•  We just need to be able to compute the scalar product
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Type 3: Kernel Methods

Equivalent solution to ridge regression, but D<<N. 
Why is this useful??

Example: One RBF feature at every position c



 
Reduces to an RBF feature at each sample

General conditions for kernels
•   symmetric: 
•  positive definite… 
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Bayesian Linear Regression revisited

Equivalent solution to ridge regression, but D<<N. 
Why is this useful??

We have:

Data-Likelihood:

Prior:  

If we integrate out the weights, we get






Defines a multivariate Gaussian distribution over the samples

!
Samples are correlated as the marginalized weight vector
is the same for each sample
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•  Look at the predictions with the MAP/RR estimator (linear regression) again:

•  Even more general, the Woodbury identity for matrix inversion yields

•  This yields

Type 3: Kernel Methods

Equivalent solution to ridge regression, but D<<N. 
Why is this useful??

Equivalent solution to ridge regression!
Why is this potentially useful?
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Gaussian Processes

scalar products in feature space

This is called a Gaussian Process                     
with covariance function k



29

Sampling from the GP-Prior

The bandwidth is a prior on the smoothness on the function
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GP-Posterior

Now we observe a data set given by       and we want to 
predict      for   

•  We can write down the GP prior for the concatenated data

•  We get the GP-posterior by Gaussian conditioning (see 
refresher)
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GP-Posterior

Predictive mean

Predictive variance
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GP-Posterior
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GP-Posterior



Gaussian Processes

Optimization of Hyper-Parameters
• The parameters of the kernel are 

called hyper-parameters
• Cross validation or maximization of 

marginal log-likelihood
GPs vs. Bayesian Linear Regression:
• GPs are the kernelized version
• Kernels are easier to use than 

features!

34
GPs are currently the gold standard for regression!

… if you do not have too many data points! 
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Summary

•  You should have a really good overview of machine learning by now.

•  You should remember the following regression methods

•  Least-Squares Regression / Ridge Regression

•  Bayesian Regression

•  Radial-Basis Function Regression

•  Locally-Weighted Linear Regression

•  GPs

•  You should know how to choose the right method for a regression 
problem 



