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Purpose of this Lecture


• How can we define such features for general machine learning 
problems?


• Can we avoid or automate the feature specification?


• Familiarize you with non-parametric models
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Content of this Lecture


Constructing Basis Functions

  Radial Basis Function Networks


Non-Parametric Approaches

  Locally Weighted Regression

  Kernel Methods
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What we did so far…

•  Models that are linear in the parameters: 


•  Parameter Estimation: Frequentist vs. Bayesian


•  Least Squares  ~  Maximum Likelihood estimation (ML)


•  Ridge Regression  ~  Maximum a Posteriori estimation (MAP)


•  Bayesian Regression integrates out the parameters when predicting


•  State dependent uncertainty


However, for most problems good features are not easy to find
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What to do when you don’t know !
the features?


•  In most real applications, we know some 
good features.


•  However, we almost certainly don’t know 
all features we need.


•  Example: Rigid body dynamics


•  Friction has no good features


•  Unknown dynamics causes huge 
problems (requires more state variables).


•  There may also be way too many features! 


Hand-crafted features are almost

 never enough...
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Can we avoid having to find good features?


Yes, we can!


We need to find machine learning approaches that generate the features 
automatically from data.


•  Type 1: Automatic Basis Function Construction constructs basis functions 
from data.


•  Type 2: Non-Parametric Regression look at data locally and interpolate with 
similar data. 


•  Type 3: Kernel Regression finds the features implicitly by going into function 
space using a kernel
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Type 1: Construct Basis Functions from Data


Classical idea behind “neural networks”


• Multi-Layer Perceptrons (see ML 1)


• Radial Basis Function Networks
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Assume a smoothness prior and obtain the cost function


This prior yields radial basis functions as features:  


Radial Basis Function Network
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Example: Radial Basis Function Features
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Let’s look again at 


•  How do I find the width l of the basis functions or the centers       ?


•  Linear regression? Nope: not linear in l or mu !


•  We need to optimize this width on the training set


•  We can do that by gradient descent: Write down a loss function, take the 
derivative w.r.t. l,  and use an algorithm for non-convex optimization


Radial Basis Functions Hyperparameters
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Example: Bandwidth too small
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Example: Bandwidth too large
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Content of this Lecture


Constructing Basis Functions

  Radial Basis Function Networks


Non-Parametric Approaches

  Locally Weighted Regression

  Kernel Methods
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Type 2: Non-Parametric Regression


•  If you choose to have one feature/basis function per sample, you have a 
“non-parametric method”              Don’t need to select the number of bases


•  Non-parametric means 


•  infinitely many parameters not no parameters


•  expressiveness of the model depends on the number of data points


•  No predetermined “parametric” form necessary 


•  (e.g., “5th-degree polynomial”)


•  One of them is locally-weighted linear regression...
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Example: Locally Linear Solutions


Locally all data is linear!
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so why don’t we take the neighboring data points to predict the solution?

•  Use higher importance or weighting of neighboring data points

•  For each query point    , weight training points       by


Locally all data is linear ... 
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Weighted cost function 





The function is linear in x





In matrix form with                                                  :


 



Weighted Linear Regression
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The solution to this problem: weighted pseudo inverse





 W can be large - don’t implement it like this...


 Dismiss data points with small weights / use bsxfun


Local Ridge Regression:


 



Weighted Linear Regression
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Solution with Locally-Weighted Regression




20


Solution with Locally-Weighted Regression
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Solution with Locally-Weighted Regression
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Locally Weighted Bayesian Linear Regression


Weighted Linear Regression
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Content of this Lecture


Constructing Basis Functions

  Radial Basis Function Networks


Non-Parametric Approaches

  Locally Weighted Regression

  Kernel Methods




24


Type 3: Kernel Methods


Equivalent solution to ridge regression, but D<<N. 

Why is this useful??


Kernel methods rely on the ‘kernel trick’



It is sufficient to evaluate the scalar product between two 

samples in feature space, called kernel



 



Why is this useful?

•  
Kernels are easier to design than features

•    The feature space can be possibly infinite dimensional. 


•  
We just need to be able to compute the scalar product
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Type 3: Kernel Methods


Equivalent solution to ridge regression, but D<<N. 

Why is this useful??


Example: One RBF feature at every position c







 

Reduces to an RBF feature at each sample


General conditions for kernels

•  
 symmetric: 


•  
positive definite… 
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Bayesian Linear Regression revisited


Equivalent solution to ridge regression, but D<<N. 

Why is this useful??


We have:



Data-Likelihood:



Prior:  


If we integrate out the weights, we get










Defines a multivariate Gaussian distribution over the samples



!

Samples are correlated as the marginalized weight vector


is the same for each sample
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•  Look at the predictions with the MAP/RR estimator (linear regression) again:


•  Even more general, the Woodbury identity for matrix inversion yields


•  This yields


Type 3: Kernel Methods


Equivalent solution to ridge regression, but D<<N. 

Why is this useful??


Equivalent solution to ridge regression!
Why is this potentially useful?
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Gaussian Processes


scalar products in feature space


This is called a Gaussian Process                     

with covariance function k
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Sampling from the GP-Prior


The bandwidth is a prior on the smoothness on the function
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GP-Posterior


Now we observe a data set given by 
 
     and we want to 
predict      for   


•  
We can write down the GP prior for the concatenated data


•  
We get the GP-posterior by Gaussian conditioning (see 

refresher)
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GP-Posterior


Predictive mean


Predictive variance




32


GP-Posterior
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GP-Posterior




Gaussian Processes


Optimization of Hyper-Parameters

• The parameters of the kernel are 

called hyper-parameters

• Cross validation or maximization of 

marginal log-likelihood

GPs vs. Bayesian Linear Regression:

• GPs are the kernelized version

• Kernels are easier to use than 

features!
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GPs are currently the gold standard for regression!


… if you do not have too many data points! 
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Summary


•  You should have a really good overview of machine learning by now.


•  You should remember the following regression methods


•  Least-Squares Regression / Ridge Regression


•  Bayesian Regression


•  Radial-Basis Function Regression


•  Locally-Weighted Linear Regression


•  GPs


•  You should know how to choose the right method for a regression 
problem 




