

Purpose of this Lecture

« Show different applications of supervised learning in robot learning.

* We can observe a lot of information, and model learning directly allows
us to make use of it...

 Learning models can be easier than physical modeling as well as of
learning control policies.

- Model-based learning: Using learned models to obtain a new policy is
typically very data efficient!

Outline of the Lecture

1. An Example

2. Types of Models and Learning Architectures

3. Case Study A: Inverse Dynamics & Forward Kinematics

4. Case Study B: Model Learning for Operational Space Control

5. Final Remarks

—xample: Mars Rover

1.5 AU (1 AU = 8min)

away.

* Most intelligence
was still on earth.

* Key problems:

) getting stuck,

i) coping with
delays

4 Hence, we need good models...

Learning to Predict Slip

The Mars Exploration Rover Opportunity trapped in the Purgatory dune on
sol 447. A similar slip condition can lead to mission failure.

5

A Model Learning Architecture

3 > rereo magery
o T

-

Predicted
Geometry
P%G) = ZP%G)ZJ(S IT@@)/
Slip T Terrain Appearance

A. Angelova, L. Matthies, D. Helmick, P. Perona,
o) Slip Prediction Using Visual Information, Robotics: Science and Systems
(RSS), 2006

Underlying model:

B
Qm
:

'£D

INNER GIMBAL

MIDDLE GIMBAL

OUTER GIMBAL

REDUNDANT GIMBAL

Features

odA| urels|

2d0|S UreLs

Soil Grass Gravel Asphalt Woodchip

Sand

egena

3

A Model Learning Architecture

Underlying model: 0\9\) ‘
p(SIA,G) =Y p(T|A,G)p(SIT, A,G) XV T T —

/ nm Appearance
Simplification: T

p(S1A,G) = 2_p(TIAPSIT.) [om—

p(T|A) terram prediction from appearance A -
slip

p(S|T, G) slip prediction from slopes G for each terrain

Classification: Clustering + Nearest Neighbor

Regression: 2 slopes -> slip, locally weighted regression
A. Angelova, L. Matthies, D. Helmick, P. Perona,

O Slip Prediction Using Visual Information, Robotics: Science and Systems
(RSS), 2006

Outputs

Slip prediction: RMS=21.8% (If terrain classified OK: RMS=11.2%

I . I

|
| i 1 1 J“.ll‘l ! 1 1
0 200 400 600 800 1000 1200 1400 1600

——gnd truth
— predicted
—predicted (TT known)

-

100}

1800

Step number_
Terrain classification results: classif. error=18.5% | « soil
| | | | | | T e asphalt
i woodchip
sand
gravel
Predicto d——— s am oo S 0 S £
Gnd truth

1 1]] 1]] 1 1
0 200 400 600 800 1000 1200 1400 1600 1800
Step number

If terrain type is known, prediction is almost spot on!
10

Outline of the Lecture

1. An Example

2. Types of Models and Learning Architectures

3. Case Study A: Inverse Dynamics & Forward Kinematics

4. Case Study B: Model Learning for Operational Space Control

5. Final Remarks

11

Types of Models

Assume our system has the functional form

* Discrete time: Sk4+1 = fD(Sk, Uk) T €
- Continuous time: Sk = fC(Sk, Uk) T €

* Discrete time often easier to use jl> no integration needed

Four types of models become useful:
 Forward Models: Predict the future state.
* Inverse Models: Predict the action needed to reach a state.

» Mixed Models: Predict required task elements with a forward model
and use an inverse model for control.

- Multi-Step Models: Predict far in the future what will happen...
12

Forward Models

* Predict next state:

 Dataset:

Sk+1 = fD(Sk, Ur) + €

Sk Sk+1 X = {Ska uk}kZl...N

Q—'Q Y = {3k+1}k:1...N

- Can be used for direct action generation:

des H

m(s¢) = argming[[f(s:, @) — 5715

* Forward model is a simulator!
for long-term prediction!

q
q

Note: typically: S§ =
13

:> can be used

Inverse Models

* Predict the action needed to reach a desired
state or any other desired outcome:

u=m(s) = f(s¢,8,51)

- Dataset:
St Sk+1 X — {Sk, Sk—|—1}k:1...N
Q—’Q Y = {uk}r=1.n
a - Can be used directly in control, e.g., inverse

dynamics control:

-+ des

U = f(qtvqwq)f)
q;jes — KP(Q?GS _ Qt) + KD(Q?GS _ Qt)

Next desired state is represented by the desired

] . d
acceleration q;

14

Inverse Model Learning ...

As long as our system is an invertible function, inverse model
learning will be useful!

Input Space Qutput Space

| |

- O

<
L o

...but is that is not true for many problems!
Why? Redundancy!!

15

Mixed Model

16

« Assume that we can use our forward
model to predict quantity z.

- Based on z, our model can determine
the action a with an inverse model.

- Examples are:

) Systems with Hysteresis

ii)inverse Kinematics

Multi-Step Prediction Models

St Sk41 Sk+2 Sk+t

Example: Imagine you are controlling the Mars Rover. In that case, you
need to predict the effect of your actions many states ahead such that
you can cope with the delays in the system.

Multi-step prediction vs. iterative one step prediction?
* Multi-step: only for open loop control

- Single step: error accumulates!

17

Motivation for Model Learning in Robot Contrgl

Why learn (Inverse) Kinematics Models?
- Kinematics can be measured nearly perfectly
* but Inverse Kinematics are expensive.
Why learn Dynamics Models:
* Dynamics parameters are terrible to estimate for interesting systems.

* Rigid Body Dynamics are inherently incomplete.

18

—xample Problems in Robot Control

Forward Kinematics: X =1f (Q)

Inverse Kinematics:

19 Which one is not a regression model?

—xample Problems in Robot Control

Forward Dynamics:
Continuous Time: q=f(q,q,u)

Discrete Time:

[qt—l—la (..It—|—1] f(qt7 (..Itv u’)

Discrete time vs. continuous time forward models
+ Easier to learn, less noisy data
+ Model learns non-linear effects due to integration
- only works for constant control action and fixed time step

20

—xample Problems in Robot Control

Inverse Dynamics:

U — f((L (.L éjref)

Operational/Task Space Control:

u = f(qv q) i‘ref)

2 Which one is not a regression model?

Model Learning Architectures

Direct Modeling

ro——

—= o »| Feedback
—»>| Controller

Robot

=® |earning is directly
formulated as
regression problem

= \Works for well defined
iInput-output
relationship

v

P o o o e e e o o o = -

22

Model Learning Architectures

Indirect Modeling

b\
— Model
Feedback | ' +
Controller

Robot

23

= \Works also for ill-
defined problems (e.g.,
differential inverse
Kinematics)

=® |earning is modulated

by a the feedback error

= (Goal oriented, learns for

a specific task Sd

Model Learning Architectures

Distal Teacher Learning
= Designed for ill-defined

model

problem of learning
q------- .
jm Forward ! inverse models
y Model |e-- !
I I
: | | = |[earn unigque forward
> nverse | A ——— : and and inverse models
Model | |
I [
y : : ® Forward-model guides
| ' .
Sd A g learning of the inverse
¢

—= +»| Feedback +: |G
—» Controller Robot

24

Challenges in Model Learning

* High-dimensionality

» Smoothness

- Discontinuities (E.g., stiction, contacts)
* Noise/Outliers

* Missing Data

* Too large or too small datasets

* Online updates

* Incorporation of prior knowledge

* Robustness and Safety

25

Outline of the Lecture

1. An Example

2. Types of Models and Learning Architectures

3. Case Study A: Inverse Dynamics & Forward Kinematics

4. Case Study B: Model Learning for Operational Space Control

5. Final Remarks

260

Learning to Control with Models

Compliant, low-gain control of fast & accurate movements requires
precise models.

* A changing world requires adaption to altered dynamics.
* Control both directly in joint (here) and task space (next)

Analytical Rigid-Body

Model with CAD data Offline Trained Online Trained

—

27 Nguyen-Tuong, Peters, IROS 2008 (Finalist for Best Paper Award)

Function Approximation Problem

Joint Accelerations, Velocities, Positions Inverse Dynam’CS IS a glant
function roximation problem
Torques unction appro ation p
‘ ‘ & Robot arm

M q + C qa (q) « 3 X 7 =21 state dimensions,

« 7 action dimensions

Gravit -
Mass Matnx ravl y « Humanoid
Coriolis & Centripetal Forces « 3 x 30 = 90 state dimensions
47 training data ° 30 aCtion dimenSiOnS

true y

* Learning in real-time!

- Online Adaptation is needed for
unexplored areas

* Unlimited continuous stream of
data...

Function Approximation Problem

What methods can deal with this

Joint Accelerations, Velocities, Positions problem?

Torques x x ‘

- Kernel Regression? GPs?
M q)d +c(q,q (q)

 Neural networks?

- Computationally expensive: only in
offline settings

Grawty

Mass I\/Iatrlx Local methods can perform online:

Coriolis & Centripetal Forces - Locally Weighted PLS Regression

4 " taining data (LWPR) (Schaal, Atkeson &
Vijayakumar, 2002)

- Local Gaussian Processes (LGP)
(Nguyen-Tuong, Peters, 2008)

true y

L ocal Gaussian Processes

Gaussian Processes are typically slow: O(N 3)Compu’cing the inverse of
kernel matrix

Use Local GP Models:

- Use centers €k with activation functionwy(x) = exp (0.5 Z _ C@’f)

» Whenever wg (@) < Winresh, VA create new center at location @

Zk wk(w)ﬂk (:B)

- Output function: () =
2k W()

- Add data only to nearest center

30

| ocal Gaussian Processes

Computational Complexity: O(LZK)

L ... number of samples in local

models 0.07

0.06

K number of local models

BLGPoffine g a

GPR

BBLGPonline!§. . R .

0.05(
Fast rank-one updates of the é 0.04
covariance @ 0.03
Improved performance due to online
updates!
0

31

0.01 fa-

1 2

3

4

S

6

Degree of Freedom

7

Learning to Control: Inverse Dynamics

Outline of the Lecture

1. An Example

2. Types of Models and Learning Architectures

3. Case Study A: Inverse Dynamics & Forward Kinematics

4. Case Study B: Model Learning for Operational Space Control

5. Final Remarks

33

Motivation

End-effector Position

¢ Balance Control

and Orientation

™

Little Dog
Balance Control Experiments
With Opertional Space Control

University of Southern California
March 2006

Operational space control:
learn to control in task-space

S — (q* (.:la iref) — U

* It requires very precise
analytical models!

- Complex robots can often not
be modeled sufficiently
accurate using rigid-body
models.

- We need to learn the models

Peters & Schaal, R:SS 2005

A

Learning Operational Space Control

Why is learning the mapping s = (q, q, Xref) — u difficult ?

* It requires averaging over non-convex data!

Joint-Space gorward
Mapping

35

Task-Space P0OSSIble Solutions:

= Linearize learned forward

Kinematics model

= Bias training data to come
from only one mode

=® Additional Regularization term
to select desired solution

Peters & Schaal, ICML 2007

Compute Controllers: Basic |dea

Select one solution/mode with an additional reqularization

A
. Joint-Space porward Task-Space

Mapping

Select solution that minimizes effort
argmax,, 7(u), r(u)=—-ulHu

But still fulfills the control task

Tret = f(q,q,u
- = f()

Peters & Schaal, ICML 2007

Compute Controllers: Basic |dea

Formalize this selection of the solution as weighted regression

problem weighting — w; o exp (nr(u;))
Pk

0 = argmaxy Z@jog W(ui‘(b q, Tges)

The weighting is smaller for data from suboptimal modes

®» Only one mode remains

, Joint-Space Task-Space

Forward
Mapping

37

Compute Controllers: Weighted Regression

Use several local linear models m;

For each model, we use a local data-set

. T]T

_ T T _
L; = [17 qz 7qz' 7a3des,7j and yz = U;

... where we use a reward-weightingW; for each data point

w; = eXp(—Tu;-Fu,,;)

The solution for 8, of the local models is given by a weighted linear
regression

0, = (X'"WX +)" X"WY - -

1
The controls provided by the local model: w;; = 6} gt
t

i ides |

38

Results: Learning Operational Space Control

39

(a) 3 DoF Robot Arm (b) Tracking Performance
2~ 0.16

—
—
o

0.12
0.1
0.08
0.06
0.04

Hand coordinate

— |learned
- - desired

(d) Optimal vs Learned Motor Command

044 048 052 0.56
(c) SARCOS Master Hand coordinate x;,
Robot Arm

B

Taskspace motor

|
L - - optimal
0 . | | Time t
100705 1 15 2

Results: Learning Operational Space Control

Conclusion

* When directly learnable, learn the model!

* Learning inverse models often requires learning from multiple non-
convex solutions

* Inverse models are useful, if you can, learn them

- Learning good models can sometimes be very hard

41

