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Purpose of this Lecture


Learning From Demonstrations

• How can we teach a robot without 

programming?



Policy Representations

• Show you important characteristics of 

commonly used policies

• State space vs. trajectory space view


Introduce the concept of Movement Primitives:

• How can we incorporate modularity?

• Data-driven acquisition of movements
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Outline:


1.  Learning Policies from Demonstrations by Supervised Learning 


2.  Policy Representations


• State-space representations


• Trajectory-based representations


3.  Imitation Learning with Movement Primitives


• Dynamic Movement Primitives


• Probabilistic Movement Primitives


• Beyond a single primitive
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Why do we need imitation?


• Very successful strategy for humans


• Learning controllers from scratch by reinforcement learning is often very 
time consuming or even too difficult


• the search space may frequently be way too large for the agent to 
explore it in its lifetime


• an expert takes many years to optimize his policy and a robot could 
avoid his expensive training by cloning his policy
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Already rats can imitate! 


• Student rats observe companion actor 
rats  performing different spatial tasks 
differing according to the experimental 
requirements. 


• After the observational training, surgical 
ablation to block any further learning in 
the student rat.


• The observer rats displayed exploration 
abilities that closely matched the 
previously observed behaviors.


Legio et al, Brain Res. Protocols, 2003 
 Heyes, Trends in Cog. Sciences, 2001 
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... and dolphins...
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Infants have Imitation build in!


•  Infants as young as 42 minutes old copy several facial actions (e.g., 
Meltzoff & Moore, 1977).
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How to Demonstrate?


• Teleoperation: Use a joystick to train an RC car, a mouse for training a 
Quake III player, the steering wheel of the Navlab, data gloves, etc.


• Kinesthetic Teach-In: Take the robot by the hand like a tennis teacher 
teaches a tennis student.


• Vision: Video-based tracking of human beings.


• Marker-based Tracking: With markers and a basic skeleton, very 
precise human data can be obtained.


• Sensuits: Suits with encoders and accelerometers attached to human 
beings.
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Basic Idea of Behavioral Cloning


• Behavioral Cloning is the simplest form of learning from demonstration 


• An expert is available and supplies data traces:  



•  In our case, often 


• The student infers a policy from these data traces, i.e.,  



•  In principle, this can be treated as a supervised learning problem. 
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Direct Behavioral Cloning


Standard ML techniques can simply be applied to the data set



to extract a policy 



… the problem frequently boils down to a regression problem.



   The clean-up effect: due to regularization, the noise in the 
demonstration is no longer exhibited by the reproduction and, hence, the 
clone often surpasses the quality of the expert.
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Outline:


1.  Learning Policies from Demonstrations by Supervised Learning


2.  Policy Representations


• State-space representations


• Trajectory-based representations


3.  Imitation Learning with Movement Primitives


• Dynamic Movement Primitives


• Probabilistic Movement Primitives


• Beyond a single primitive
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Why do we use parametric policies?


A parametric policy is a conditional probability distribution  
that chooses the actions     depending on the state    of the robot


•  
Parametric policy naturally incorporates continuous actions


•  
Estimate from demonstration / imitation learning



 
Generalize to unseen situations


•  
Search for improved parameters / reinforcement learning



 
Autonomous self improvement!
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What are desirable properties? 


• Compactness: Low number of parameters


• Learn-ability: Easy to learn from demonstration and by reinforcement 
learning


• Stochasticity: Can encode exploration and variability


• Optimality: Can encode optimal behavior?


• Scalability: Can be used for a high number of DoFs?


• Modularity:



Adaptability: Reusable for new situations?



Co-activation and Blending of movements


• Useable for stroke-based and rhythmic movements








Why use a stochastic policy?



Used for exploration in reinforcement learning (later)



Can also capture variability of movements


Exploration models:



No exploration: 



Uncorrelated Exploration:



Correlated Exploration:
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Stochastic vs. deterministic policies


Exploration might also hurt


We also have to learn the variances 

of the linear models




State space representation: 


•  
Policy depends on the state and on the parameters


•  
Represents a globally valid policy


•  
Complex non-linear representations are needed


Examples:


•  
Neural Networks


•  
RBF Networks


•  
Gaussian Processes


•  
Locally Weighted Regression Models
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State space vs. trajectory space representations




Linear controllers:



Most simple case: linear PD controller






[-] Good feature representation needs to be known



[+] Very compact representation (low number of parameters)



[+] Easy to learn (linear regression)














16


State space representations




21


Pole Balancing


Widrow and Smith (1964) used supervised learning to acquire a 
pole balancing policy. 


State


Action
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Pole Balancing


Widrow and Smith (1964) used supervised learning to acquire a 
pole balancing policy. 


State


Action


Solved 
basically by 
linear 
regression!!
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Sammut’s Cessna Pilot


(Sammut et al., 1992)




Radial Basis Function (RBF) networks:









Normalized RBF: 






[-] A high number of parameters


[-] Non-convex optimization


[-] Hard to scale         curse of dimensionality


[+] Automatic feature construction 


Alternatives: Gaussian Mixture Models (GMM), Neural Networks
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Non-linear state space representations




23


ALVINN & Navlab in 1989-1995!


Pomerlau (1989-1995)
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No-Hands-Across-America


ALVINN allowed the Navlab vehicle of CMU’s robotics institute to 
drive 2796km autonomously as part of their ’No-Hands-Across-
America’ Tour in 1995.
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States and Actions


State:

Camera

Image


Action:

Steering 

Wheel,

Brakes, Gas
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Intelligence


Function Approximator:

A Two-Layered 

Neural Network
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Intelligence


Function Approximator:

A Two-Layered 

Neural Network


JUST 

(nonlinear)

REGRESSION!
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Video from ALVIN
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State space representations


Represent controller in a low-dimensional manifold





E.g. Eigenpostures 


for walking


(Grimes, Rashid, & Rao, NIPS 2007)
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Doubts on Direct Behavioral Cloning 


•  It becomes brittle for larger state-spaces unless you have a task-
appropriate representation.


• Frequently leads to catastrophic failures if the controller has not been 
trained in this area of the state-action space (Sammut, 2010) or if there 
have been small changes in the system (Camacho & Michie, 1995). 


• Reproduction of single human teachers always works best (Camacho 
& Michie, 1995).


• There is no guarantee that the reproduction is meaningful, nor an 
interpretation of behavior.


• The data is treated as if it was i.i.d.

• We do not know whether we can also reproduce the long-term 

behavior!

• Only learning of individual motions is „easy“.




Time-dependent representation:



Policy also depends on time, e.g., follow a specific trajectory



For the same time step, the robot is often in similar states



Simple local models are often sufficient! 
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State space vs. trajectory space representations




For example: Time-dependent linear feedback controllers






• Time dependent basis functions, e.g., normalized RBF functions


• Scales quadratically with # DoF D: 


• Equivalent to PD-trajectory tracking with time-varying controller gains


• Variable stiffness controllers


• Locally optimal representation (why we will see in the next lectures!)
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Time-dependend representations




Trajectory Generators:



Directly learn desired trajectory



Use feedback controller to follow trajectory






 
where typically          and          are hand tuned diagonal matrices


Possible Trajectory Representations: 


•  
Splines


•  
Linear basis function models (RBFs) 


•  
Dynamical Systems 
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Trajectory-based representations
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Outline:


1.  Learning Policies from Demonstrations by Supervised Learning


2.  Policy Representations


• State-space representations


• Trajectory-based representations


3.  Imitation Learning with Movement Primitives


• Dynamic Movement Primitives


• Probabilistic Movement Primitives


• Beyond a single primitive




What are movement primitives?


  Movement primitives are a compact representation of a movement


  Often represented as parametrized trajectory generator





Imitation Learning with trajectory generators


  By learning the desired trajectory, we also learn the desired long term     
  behavior!


  However, we still have to learn how to follow this trajectory


  If we do not have good trajectory tracking controllers, it does not work





Movement Primitives
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Dynamical systems as Trajectory Generators


Dynamical systems can be used to represent trajectories




  Integrating the dynamical system results in a trajectory





•  What movement can a !

differential equation encode?


•  Example: First order linear 

    dynamical system:
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What movements can a differential !
equation encode?


Linear differential equations:

•  well-defined behavior 

•  But: limited class of movements


Second order linear dynamical system:
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How can we make it more representative?


Use non-linear dynamical systems ?

•  Can represent more complex 


behavior


•  Can also get unstable! L
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Non-linear dynamical systems


Different behaviors might emerge…
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Movements as dynamical systems
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Dynamic Movement Primitives (DMPs)


We can encode desirable properties such as:


•  stability

•  perturbation robustness

•  periodic and point-to-point behaviors

•  Attractors that have rather complex shape

•  Easy to learn

•  Coupling of a high number of DoFs

•  Timing, temporal scaling

•  Generalization (structural equivalence for parameter changes)










 
 



DMPs: [Ijspeert, Nakanishi & Schaal, NIPS 2003, Schaal, Peters, Nakanishi, Ijspeert, ISRR 2003
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Point-to-Point Movements !
as Dynamic Systems


Time [s]

y dy/dt

goal g

T T

E.g., for a one degree-of-freedom movement, start with 
a simple damped spring model

(Ijspeert, Nakanishi & Schaal, NIPS 2003; Schaal, Peters, Nakanishi, Ijspeert, ISRR 2003)
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Dynamic Movement Primitives


How can we encode a desired behavior?



Add a forcing function to obtain a moving attractor



The forcing function encodes the desired additional


acceleration profile


       … learnable function














(Ijspeert, Nakanishi & Schaal, NIPS 2003; Schaal, Peters, Nakanishi, Ijspeert, ISRR 2003)
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Dynamic Movement Primitives


How can we encode a temporal scaling?


Add a phase variable       to replace time





 



Also uses dynamical system to model phase z


     … temporal scaling variable


 
 
 
 





(Ijspeert, Nakanishi & Schaal, NIPS 2003; Schaal, Peters, Nakanishi, Ijspeert, ISRR 2003)
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Adapting the temporal scaling…
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Representation of the forcing function


How to represent f ?

  Normalized RBF basis functions

  Matrix Form:

For                

A DMP is stable per construction as the forcing function 
vanishes       it is just a standard PD for 
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Representation of the forcing function


Integrating the dynamical system leads to the trajectory
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Dynamic Movement Primitives


For multi-DoF robots, we use an individual DMP per DoF

Phase variable z is shared          

Coupling between joints due to the shared phase

For periodic movements, we can use periodic phase variables

(Ijspeert, Nakanishi & Schaal, NIPS 2003; Schaal, Peters, Nakanishi, Ijspeert, ISRR 2003)


yd
d


zd



z
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Adapting the meta-parameters…


Adapting the goal attractor





Changes final position


Adapting the temporal scaling
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Imitation Learning with DMPs


Given:

•  A desired trajectory and its derivatives 

•  A goal attractor g (e.g. final position of trajectory)

•  Parameters:                 (typically fixed) 

•  Temporal Scaling    : Adjusted to movement duration


Algorithm:!



•  Compute target values for each time step


•  Compute shape parameters      by linear (ridge) regression


(Ijspeert, Nakanishi & Schaal, NIPS 2003; Schaal, Peters, Nakanishi, Ijspeert, ISRR 2003)
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Example: A Tennis Backhand




!
Rhythmic Motor Primitives


(Kober & Peters, ICRA 2009)
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Fast Coupling between System and Gait 




Important properties of movement primitive representations


Data-Driven: easily learnable from demonstrations


Generalization: easily adaptable to a new situation


Combination: Co-activate multiple primitives to solve a combination of 
tasks


Temporal Scaling: Modulate the execution speed of the movement


Coupling: Represent the coupling between a high number of joints


Variability: Reproduce the stochasticity in the demonstrations


Optimality: Can we represent optimal behavior?


Can be applied for rhythmic and stroke-based movements


Movement Primitives




What we have so far…


Data-Driven: Yes


Generalization: Only adapt final positions


Combination: No idea how…


Temporal Scaling: Yes


Coupling: Yes, but only the mean is coupled, no correlations


Variability: No


Optimality: Is following a single trajectory really optimal? No


Can be applied for rhythmic and stroke-based movements: Yes


Movement Primitives
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Probabilistic Movement Primitives 

Stochastic representation of trajectories:!


Use      to represent a single trajectory!


Learn a distribution              over the      vectors


Integrate out      to obtain 


Why is this useful?


We can also represent uncertainty

Uncertainty gives us information on !
importance of time points

We can apply probabilistic operations
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How to represent trajectory distributions?


Representation of a single trajectory 



Phase-dependent basis:



For example, normalized Gaussian basis functions


Probabilistic model:





Trajectory distribution: distribution over the parameters 




How to represent trajectory distributions?


You can always rely on old friends…



Lets use a Gaussian: 


Computing the trajectory distribution is now easy














Hence, we can easily evaluate mean and variance for any time point
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How to represent trajectory distributions?


Hence, we can easily evaluate mean and variance for any time point
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How to represent trajectory distributions?


How can we encode a distribution over multiple DoFs?


   Use a concatenated weight and trajectory vector and block-diagonal       
   basis matrix


   The same linear relation holds: 


   We use a distribution                           over the parameters of all DoFs                                     


For a single time step:



Covariance matrix encodes correlation between the joints
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from                       that exactly reproduces the given trajectory ���
distribution (mean and variances)
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Trajectory distribution tracking

How do we use a trajectory distribution for robot control?


  We can obtain a time-varying stochastic feedback-controller in closed form 








   Same structure as optimal controllers for linear(ized) systems


   But it needs an accurate model  

















DMPs ProMPsOptimal control
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Generalization via Conditioning 

Generalization: Change intermediate or end-point of the movement

We can condition            on reaching position       at time-step t

  New trajectory distribution 
 
         is obtained by Bayes 

theorem 


  Closed-form solution for Gaussian trajectory distributions






ProMPsDemonstration Dynamic MPs
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Combination of Movement Primitives 
!
Modularity: Combine primitives to solve a combination of tasks



Implemented as product of distributions:

  „Intersection“ of trajectory distributions

  Area, in which all distributions have !
high probability



 
  i-th movement primitive


 
  activation factors


  Computed in closed-form for !
Gaussian distributions












x 
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Experiments: Co-Activation


7-link planar robot arm, controlled by inverse dynamics


•  
Trained 2 movements for reaching different via-points at different 
time steps


•  
Combination of the movements reaches all 2 via-points
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Movement 1


Movement 2


Combination




Experiments: Blending and temporal scaling


7-link KUKA robot arm, playing maracas


•  
Record rhythmic movements to produce sounds


•  
Blend between different rhythmic movements
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Maracas                
       Temporal scaling       
 
     Blending
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Case Study: Robot Hockey 

7-link KUKA robot arm, playing hockey 
  Train 2 primitives with high variance in shooting angle or in distance 

 

 

 

  Product of the primitives:              
Combination of both tasks 

 

 

  Conditioning to select the  
shooting angle 

Demonstration 1 Demonstration 2 

Yes
Yes




What we have so far…


Data-Driven: Yes


Generalization: Yes 


Combination: Yes 


Temporal Scaling: Yes


Coupling: Yes


Variability: Yes


Optimality: Yes 


Can be applied for rhythmic and stroke-based movements: Yes


Movement Primitives
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Libraries of Primitives


One primitive is not enough…!!



What we want:
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Imagine the following situation...
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What about many primitives?


Forehand 1
 Forehand 2
 Smash
 Backhand 1


Incoming 

Ball?


Opponent’s 
Movement?


Own 

position?


+


Desired Behavior

Prior Opponent 
Game Play?


Gating 

Network
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What you can do with it...
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Core Open Questions in Imitation Learning


•   What to Imitate? The data traces will contain outliers, redundant data, 
data that is irrelevant to the task. How can the system extract the relevant 
components? Imitate on which level of abstraction?


•   How to Imitate?        body of the teacher         body of the student 


       „Correspondence Problem“.


•   When to Imitate? Not all behavior in a data stream may be suited for 
imitation. Untackled questions


• Whom to Imitate? If a scene with several actors is observed, the correct 
one needs to be extracted. Untackled questions




(Nehaniv & Dautenhan, 2001)
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Imitation Learning


Imitation


Problems of Imitation Learning 


•    Correspondence Problem ➜ requires reinforcement learning


•    Imperfect demonstrations ➜ require reinforcement learning


•    Intent identification ➜ requires inverse reinforcement learning




Summary…


What you should know…


•  
State-space representations versus trajectory-based policy 

representations


•  
What is imitation learning and when does it fail?


•  
What are the main ideas of using movement primitives?


•  
Why do use dynamical systems? Advantages/Disadvantages?


•  
Why do use a probabilistic representation?
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