Foundations for Optimal Decision Making

Jan Peters
Gerhard Neumann



Motivation for optimal decision making in robotics

Typically, imitation is not enough 1) \

Imperfect demonstrations

Correspondance problem

We can not demonstrate everything

Hence, we need self-improvment!

Exploration Reward
The robot explores by trial and error

We give evaluative feedback jl> reward

Today, we are going to look at the problem of how to take optimal
decision that maximize the reward

2



Outline of the Lecture

1. Introduction to MDPs
2. Value-Functions

 Policy Evaluation for a fixed policy
3. Computing an Optimal Policy

* Policy Improvement

» Value iteration

4. Infinite vs Finite Horizon



Markov Decision Processes (MDP)

A MDP is defined by:

» jtsstatespace s € S

its action space a € A
its transition dynamics P(S:11|S¢, at)
its reward function 7(s, a)

and its initial state probabilities /0 (S)

Markov property:
P(8t+1\8t, at,St—1,At—1, - - . ) — P(3t+1’3t7 at)

4 * TJransition dynamics depends on only of current time step



Optimality Objective

The goal of the agent is to find an optimal poIicy?T* that
maximizes its expected long term reward .J _

= argmax,Jr, Jr =Ly P D =0V (st a)]

- 0 <~ <1 ...discount factor
Discount Factor trades-off long term vs. immediate reward

« Time Horizon: Infinite



1 .2

States: s, s

—xample: Two State

Problem

Actions: red ( gl) and blue ( ¢3 edges

Transition:
P(st|st,al)
P(st|s?,at)

Rewards: r(s!)

1, P(s?|st,al) =0, P(s
1, P(s?|s?,a') =0, P(s!
1, r(s*) =0

Policy: What is the optimal policy?

6

~~~~~



How do we find an optimal policy?

Policy Evaluation:

Typica"y done iteratively: Estimate the Value Function V'™
Policy Improvement:
° PO“Cy EvaluatiOn: Update the Policy

Estimate quality of states (and actions) with current policy

* Policy Improvement:

Improve policy by taking actions with the highest quality

Such iterations are called Policy lteration

/



Outline of the Lecture

1. Introduction to MDPs
2. Value-Functions

 Policy Evaluation for a fixed policy
3. Computing an Optimal Policy

* Policy Improvement

» Value iteration

4. Infinite vs Finite Horizon



Value functions and State-Action Value Functions

Value function V™ (s):

Long-term reward for state s when following policyn(a|s)

V7(s) = Bpar | X050 7' (80 @)ls0 = s|

= Quality measure for state s

,How good® is it to be in state s under policyn(a|s) ?



Value functions

An lllustration...
Policy always goes directly to the star
Going through puddles is punished

10




Value functions and State-Action Value Functions

Q-function Q7 (s, a):

Long-term reward for taking actiong Iin state s and subsequently
following policy 7 (a|s)

Q" (s,a) =Ep [Z;ﬁo Y'r(st, ar)|so = s,a0 = a
=® Quality measure for taking action a in state S

,How good“ is it to take action a in state s under policy 7(al|s) ?

11



Value functions and State-Action Value Functions. -

... and can be easily computed from each other
Computing V-Function from Q-Function
VT(s) =Ex {QW(Sa a)|s} = /W(&\S)Q”(s, a)da

Computing Q-Function from V-Function

Q"(s,a) = r(s,a) + 1Ep |V7(s")

S, a}

=r(s,a) +7/P(s’]s,a)V”(s’)ds’

12




Value functions and State-Action Value Functions
.. both functions can also be estimated recursively
V7 (s) = Ex|r(s,a) + vEp [V7(s")] ||
= [ m(als) ( S,a) +7f73(s’]s,a)V”(s’)ds’>da

= r(s,a) +y/7?(s’\s,a)/W(a’\s’)Q”(s’,a’)da’ds’

Q™ (s,a) =r(s,a)+vEp . {QW(S/, a')

B If | know the value of the next state s’ , | can compute the value of the
current state

Ilterating these equations converges to the true V or Q function

13



L)
Y7 \ N {// f\”“h{w\f

Algorithmic Description of Policy Evaluation /25 52

W IO\t \ W //
5/ /48 / <A N 7
ol A—/
\ L—4/]

Simplification: For discrete states....
Init: V"(s) < 0,Vs and &k =0
Repeat
Compute Q-Function (for each state action pair)
ir1(s,0) =7(s,a) +v 2, P(s's,a)V,T(s)
Compute V-Function (for each state)
kﬁ+1(3) — Za m(als) Z+1(37 a)
k=k+1
until convergence

‘] 4 This algorithm is called Dynamic Programming!



1 .2

States: s, s

—xample: Two State

Problem

Actions: red ( gl) and blue ( ¢3 edges

Transition:
P(stlst, a

P(st|s?, a

Rewards: r(s!)

1, P(s%|s',al) =0, P(s
1, P(s?|s?,a') =0, P(s!
1, r(s*) =0

Policy Evaluation: What is the value function of the uniform

policy?

= HOMEWORK!

15

~~~~



Outline of the Lecture

1. Introduction to MDPs
2. Value-Functions

 Policy Evaluation for a fixed policy
3. Computing an Optimal Policy

* Policy Improvement

» Value iteration

4. Infinite vs Finite Horizon

16



How do we find an optimal policy?

Policy Evaluation:

Typica"y done iteratively: Estimate the Value Function V'™
Policy Improvement:
° POIicy Evaluation: Update the Policy

Estimate quality of states (and actions) with current policy
* Policy Improvement:

Improve policy by taking actions with the highest quality

For all states: 1, if @ = argmax_, Q™ (s,a’)
m(a|s) = .
0, otherwise

lterating Policy Evaluation and Policy Improvement converges to the
optimal policy and is called Policy lteration

17



Algorithmic Description of Policy lteration

Init: V"(s) < 0,7 < uniform
Repeat
Repeat £k =k + 1
Compute Q-Function (for each state action pair)
pr1(s,a) =7r(s,a) +v ), P(s']s,a)Vi7 (s')
Compute V-Function (for each state)
kw+1(5) — Za, m(als) Z+1(3> a)
until convergence of V
1, if @ = argmax_, Q" (s, a’)

m(als) = { 0, otherwise
until convergence of policy



Value iteration

Can we also stop policy evaluation before convergence and perform a
policy update?

Yes! We will still converge to the optimal policy !

,Extreme® case: Stop policy evaluation after 1 iteration

V*(8) = maxgq (’r(s, a)+ YEp [V*(s’)|s, a] )

This equation is called the Bellman Equation

lterating this equation computes the value functionV™ (8) of the
optimal policy

19



Value lteration

Alternatively we can also iterate Q-functions...
Q*(s,a) =r(s,a) +vEp \maxq Q*(s',a’)

S, a]

Small side note:

Computing optimal V-Function from optimal Q-Function
V*(s) = maxqg Q* (s, a)
Computing optimal Q-Function from optimal V-Function

Q*(s,a) =r(s,a) +yEp [V*(s')

S, a]

20



Algorithmic Description of Value lteration

Init: V" (s) < 0
Repeat kL =L + 1
Compute Q-Function (for each state action pair)
Qri1(s,a) =r(s,a) +v ), P(s']s,a) V()
Compute V-Function (for each state)

Vk*+1(3) — MaXg QZ+1(37 a)

until convergence of V

21



—xample: Value Iteration

- The Two state example.

=) HOMEWORK!

22



Wrap-Up: Dynamic Programming

To compute an optimal policy we can either do.. m
)

Policy Iteration: V7(s) =Ex [ (8,a) +~vEp [V7(s

Policy Evaluation: m A\\J
N

Policy Improvement:

r(als) = {

0, otherwise

lterate: V '(8) = max, (r(s,a) + yEp [V*(Sl)

N

Get optimal policy after convergence:

Value lteration:

. - | 1, if @ = argmax,, Q*(s,a’)
T (als) = { 0, otherwise

23

s

1, if a = argmax_, Q" (s,a’)

1)



Outline of the Lecture

1. Introduction to MDPs
2. Value-Functions

 Policy Evaluation for a fixed policy
3. Computing an Optimal Policy

* Policy Improvement

» Value iteration

4. Infinite vs Finite Horizon

24



Finite Horizon Objectives

The goal of the agent is to find a policy W(G\S) that maximizes its
expected return /. for a finite time horizon

Finite Horizon T: Accumulated expected reward for T steps

Jr =Epuo,por [Zt 1 Tt(8t,a) +rr(sT)

r7(ST) .. final reward

25



Sellman again...

"An optimal sequence of controls in a
multistage optimigation problem has the
property that whatever the initial stage,

state and controls are, the remaining

controls must constitute an optimal
wroblem with itage and state resulling
from prewious controls considered as

initial conditions.

Richard Bellman, Dynamic Programming, 1957



llustration of basic idea...

You have won
a Best-Paper
Award in
Madrid!

What is the
Optimal
Policy to

Collect it?

Hartlepaoaol

Praston's

Dublin -
) -~ -
Manchester

b

LOICES

Birmingham »

g Swansea S

- A A
Cardiffi®  Brist\

Eyatar e Cortsmaouth

[ 2ane

NEDG

Viao . Wee o b,l'.‘*.l.’
9o 2 '

Curanse

Leeds
-

N i
Za'ragoza

Hu
-

Rotherham

»

1= Nornwich = -
. /«.mstercam_

L

* Eahton

Le Havre
SEN e

- Ko

iCaen

Lae Man

J

Toulouse Mor‘tpélher

be
Marseille

Parpignan

™ -
b

Laidaptie Barcalar

e S T et
ey ete Bremen S Hamburz
. e

EMMmen g
Haoos

S !
elefeld S adta e/
Te! ; Bs I

« |Erankfurt
am|Main§
i* Manmheim

e Hellronn : )

-

Munche

e {

/ -
Stuttgart

4

Verona

TOriN0 N s i B0I0g

‘e

L)
Dragugnan

s Nurnbelly "

o

o oggla

o Bari

»

: Naaolw - e

>=efno

Palermo

b

-

Messn
-

e Catania




Let’s Try this Example!




SO what changes to the infinite horizon case?. w/\

29

/

\ ~,:"/;ﬁ/ .
WA s s
O & L=0)
) /7

~\ S & /|
U,, \  //
A \\ ~

In the finite horizon case, the time index becomes part of the state
= |t matters, how many time steps are left
= We can only visit each state (including time index) once!
= We get a layered / multi stage decision problem
=® optimal policy becomes time-dependent

i (als) = 7*(als; )

= Also the reward function and the transition model can be time-

dependent, i.e.,
Tt(S, a) and Pt(8t+1 ‘St, Cl,t)



Value lteration for Finite Horizon

So how does dynamic programming work now?

=» Start with last layer... (no transition)

Vi(s) =rr(s)

®» |terate backwards in time

Vi (s) = maxg (ry(sr.ae) + Ep [V (s041) 50, @)

= The optimal value function/policy for time step t is obtained after
T —t+ 1 iterations

Vi(sT)

30

:> Vi_1(s7-1)

—

:> Vi (s1)




Algorithmic Description of Value lteration

Init: V/(s) < rp(s),t=T
Repeat t =t — 1
Compute Q-Function for time step t (for each state action pair)
Qi (s,a) =7i(s,a) + 2, Pi(s']s,a)Vii 1 (s)
Compute V-Function for time step t (for each state)
Vi (s) = max, Q7 (s, a)
Until t =1

Return: Optimal policy for each time step
i (s) = argmax,Q; (s, a)

31



Wrap-Up: Dynamic Programming

We now know how to compute optimal policies for both objectives
(finite and infinite horizon)

Cool, thats all we need. Lets go home...

Wait, there is a catch!

Unfortunately, we can only do this in 2 cases
* Discrete Systems
Easy: integrals turn into sums
...but the world is not discrete!

- Linear Systems, Quadratic Reward, Gaussian Noise (LQR) (next
lecture)

... but the world is not linear!

32



Wrap-Up: Dynamic Programming

In all other cases, we have to use approximations!
Why?
1. Representation of the V-function:
How to represent V in continuous state spaces?
2. We need to solve:

maxq *(s,a)  :difficult in continuous action spaces

Lp [V* (s') |3> a] : difficult for arbitrary functions V and
models P

We will hear about that in the next lectures....!

33



The Bigger Picture: How to learn policies

experience data demonstration data
D ={si,ai,ri,8i};_q1. N D ={si.7i,a1.17i}i=1.. N
' /\\
earn mode learn value fct.  optimize policy learn policy  learn latent costs
P(s'|s, a) V(s) m(a|s) m(a|s) r(s,a)

r(s,a)

| l

dynamic prog. policy g dynamic prog.
V(s) _7(als) - = V(s)
' o+ S 3 '
Tals)| & S 2
T —
- 7y mﬂ(a\s )
T 2 o
g o Z
1. Next Lecture 2. 3. 4,



Optimal Decision Making: Summary

What you should know...

=» What is a MDP, a value function and a state-action value function...

= What is policy evaluation, policy improvement, policy iteration and
value iteration

=® The Bellman equation

= Differences of finite and infinite horizon objectives

= Why is it difficult?



