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The Bigger Picture: How to learn policies


2.
 3.
1. This Lecture
 4.
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Motivation


Today we want to use optimal decision making for a specific system



Linear system, Quadratic Reward, Gaussian Noise


  The optimal policy is called Linear Quadratic Regulator (LQR)


  
Optimal Decision making for continuous dynamical systems is also 

called Optimal Control


Why? Its the only continuous case where we can do it analytically…



If we do not know the model, we can learn it!



If the (learned) model is not linear, we can linearize it!
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Outline of the Lecture


1.  Optimal Control 


2.  Solving the Optimal Control for LQR systems


3.  Approximating Non-Linear Systems


4.  Optimal Control with Learned Models


5.  Final Remarks
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Optimal Decision Making in Continuous Systems


In continuous systems we call it Optimal Control

•  
continuous state space                 (note: will be called     )


•  
continuous action space                (note: same as     ) 


•  
 its transition dynamics as density


    We use the more common optimal control notation 



First question:


    How to define a reward for continuous systems?
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Illustration: Remember our “Showering Example”?


...but what would be a good reward?


How can we correct?


35°


Desired 

Value


45°


25°


35°
{
Error


Controller (“Regler”)


How hot is it?


Turn hotter (not colder)!

Action


State


The image cannot be displayed. Your computer may not have enough memory to open the image, 
or the image may have been corrupted. Restart your computer, and then open the file again. If 
the red x still appears, you may have to delete the image and then insert it again.

Plant (“Regelstrecke”)


Reward

Number of Meauws?
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Let’s Model the System


The system 








can be modeled as with





What kind of rewards induce which behavior? 


Plant
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Let us find a reward!


Only give rewards to good temperatures:


How does the controller look?     
Rather jerky controls
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Let us find a reward!


We could enlarge the region:


How does the controller look?     
Rather jerky controls
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Let us find a reward!


Punish if we need to turn the nob too much:


How does the controller look?     
Still complex value function and 

 
 
 
 
 
 
policy
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Let us find a reward!


Punish turning the nob and high deviations:



 
How does the controller look?  

•  
Linear optimal controller

•  
Quadratic Value Function   
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1.  Optimal Control 
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Finite Horizon Objectives


The goal of the agent is to find a policy               that maximizes its 
expected return        for a finite time horizon



Finite Horizon T: Accumulated expected reward for T steps






 
     
 

 
 
… final reward
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Linear Quadratic Gaussian systems


An LQR system is defined as 

•  
its state space                 (note: same as    )


•  
 its action space                (note: same as     ) 


•  
 its (possibly time-dependent) linear transition dynamics with 

Gaussian noise


•  
 its quadratic reward function





    


• and its initial state density
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Optimal Control for LQR systems


Linear systems with Gaussian Noise



 




    … system matrix,      … control matrix,     … drift term 



    … system noise 






Quadratic reward functions









    … desired state,         … state metric for reward



    … control metric for reward 
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Example


RewardFunction: Reach 2 Via-Points at t1 = 50 and t2 = 100
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Optimal Control for Finite Horizon Objectives


We will look at the simpler finite horizon case


Short refresher from last lecture: 




Start with last layer…
 
 




 

Iterate backwards in time



 




The optimal value function/policy for time step t is obtained after  

 
           iterations
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Optimal Control for LQR systems


We have to solve…


  
Expectation over the next value: 


 





Maximum operator in continuous action spaces:








When can we do that?



In continuous systems: only for LQR systems!
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Ok, lets solve the optimal control problem


For illustration, lets make it simpler (without any linear terms)…



 







For the derivation of the full problem including the drift and linear terms in the reward, see

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/soc.pdf
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Bellman’s Recipe


1.  At the last step, the value function is given as 
 
 



2.  To get from t+1 to t, first compute the Q-Function  
 



3.  then compute optimal policy 
 



4.  compute optimal value function for time step t
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Bellman’s Recipe


Step 2a:  compute expectation for value of the next state


  Lets assume for now a quadratic structure for V-function of next time 
step


  We need to compute: 





Yet another useful Gaussian identity: 2nd order expectation





  This identity yields





if                                 than




Step 2b: Compute Q-function









 

Also the Q-function is quadratic in state and action!
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Bellman’s Recipe


Not state or action dependent
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Bellman’s Recipe


Step 3:  compute optimal policy


 
Set derivation to zero…


 
Remember matrix calculus…?


 
 
And solve for u 



   The optimal policy a time-varying linear (PD) controller!
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Bellman’s Recipe


Step 4:  compute value function





 
We first set in the optimal action for


 
Now we can substitute


  















 
 






Note: this derivation works only if the matrices       

are positve definite (and hence symmetric), can always be garantueed    
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Bellman’s Recipe


Step 4:  compute value function


 The optimal value function        for time step t+1 is also quadratic 



 we ended up in a recursive update equation for 


 



 if                is in quadratic form,            also is


 since              is quadratic, all            are quadratic 
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Solving optimal control


So how does the full case look like?








The optimal value function has a quadratic and linear form





With the update rules:





 

with                       and






 






For the derivation of the full problem including the drift and linear terms in the reward, see

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/soc.pdf
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Solving optimal control


So how does the full case look like?








The optimal policy is given by









with



and 


I.e. the optimal policy is a time-dependent linear feedback controller 
with time dependent offset








 





 







For the derivation of the full problem including the drift and linear terms in the reward, see

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/soc.pdf
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Back to the Example:


System: 



Second order integrator (we directly set accelerations)
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Optimal Control for LQR systems


Illustration of the Value Function
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Optimal Control for LQR systems


Comparison of Value and Reward Function (log domain)




Valuefunction
Rewardfunction
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Optimal Control for LQR systems


Different Control Costs
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Outline of the Lecture


1.  Optimal Control 


2.  Solving the Optimal Control for LQR systems


3.  Approximating Non-Linear Systems


4.  Optimal Control with Learned Models


5.  Final Remarks
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Example for non-linear dynamics: Swing-Up


System


Reward




34


Example: Value Function of Inverted Pendulum


Value function for the expected costs (negative reward)


Highly non-linear function (certainly not quadratic)
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Possible: Learn Solutions only where needed!


If you know places 
where we start...




... we can just look 

ahead and 
approximate the 
solution locally 
around an initial 

trajectory
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Local Solutions by Linearizations


Every smooth function can be modeled with a Taylor expansion 



Hence, we can also approximate the (learned) forward dynamics by 
linearizing at the point 






 

with 

 
 
    and 



and 
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Local Solutions by Linearizations


Similarly, we can approximate the (learned) reward function by a second 
order approximation at the point                (only shown for states ) 






 





with 
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Local Solutions by Linearizations


So we are back to the full linear optimal control case with… 






that we know how to solve… 


Hence our algorithm for solving non-linear optimal control is…


1.  Backward Solution: Compute optimal control law (i.e. Gains        and 
offsets 


2.  Forward Propagation: Run simulator with optimal control law to 
obtain linearization points 


1. If not converged, go to 1. 
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Some interesting results (only in simulation)


Work by Emo Todorov 
and Yuval Tassa  
(They call basically the 
same algorithm 
incremential LQG, iLQG)




Application to the Swing-Up
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Some interesting results (only in simulation)


Work from Emo Todorov 
and Yuval Tassa  
(incremential LQG, iLQG)
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Model Learning…


Why does this work only in simulation?



The models we have for such complex robots are… crap



We need to learn the models !
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Example: Ball Paddling


What are the states x?

Racket 

Position


Ball 

Velocity


Racket 

Velocity


Ball 

Position
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Example: Ball Paddling


What are the actions u?

All motor torques?


If you do not have an inverse model ...


Joint Accelerations?

Perfect, if you have a good inverse 
model ...

Maybe identify the proper degrees of 
freedom? 


Accelerations in Task Space?

Ideally!

... but only if you have a good 
operational space control law!




Example: Ball Paddling


What are good rewards r?

Task knowledge or success/failure?


•  For some algorithms rewards in {1,0} are 
perfect ...


• Real problems often require reward 
shaping...


What’s a good reward for our 
problem?


• Height of the ball?

• Distance between ball and the paddle?

• Ball needs to move in a certain region?

• All of the above?

• Additional punishments?



All of these together do the job!
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Example: Real world application...
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Human Motor Cost Functions?


Does this relate to Human Learning?


• Maybe! Many models from cognitive science are cost function 
based...


• Reaching movements can be explained by


• Minimum jerk, Minimum torque change, Minimum end-point variance


• Locomotion can be explained by minimum                               
metabolic energy consumption. 


• Maslow’s Hierarchy of rewards                                               in 
psychology ...
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Model Learning with !
subsequent Policy Optimization
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Model Learning with subsequent Policy Optimization
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Challenges in model-based policy learning


This mainly works for balancing tasks where we live in a restricted 
state space


For more complex problems, using learned models becomes really 
hard


 The model is likely to be inaccurate


Inaccuracies could be exploited by optimizer such that the policy on 
the real system performs bad


 If we fully exploit an inaccurate model, we might jump into an area of 
the state space that we have not seen before 



inherently unstable
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2 recent approaches…


1. PILCO (probabilistic inference for learning control) 



Learn GP forward models



Use uncertainty of the GP-model for the long-term reward prediction



Policy Optimization with analytic gradient of expected reward


M. Deisenroth et. al.: “PILCO: A Model-Based and Data-Efficient Approach to Policy Search”, ICML 2011
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Policy Optimization with PILCO
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2 state of the art approaches…


2. Policy Search guided by trajectory optimization


Learn time dependent linear forward models


Trajectory Optimization: LQR like algorithm, additional constraint 
that new trajectory should stay close to the data      increase stability


Use optimized trajectories to learn a generalizing neural network 
policy


S. Levine et. al.: “Learning Neural Network Policies with Guided Policy Search 

under Unknown Dynamics.”, NIPS 2014
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Guided Policy Search
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Guided Policy Search
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Conclusions


 You have solved an (stochastic) optimal control problem today!


 Only two cased are solvable: linear & discrete!


 The optimal policy for a LQG system is a time-varying linear  
feedback controller


Linearizations can be problematic          lead to oscillations (but can be 
made more stable)


 Works well if the system is not too non-linear and model can be 
learned accurately!


 We will continue with Value Function and Policy Search Methods. 



