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Motivation

Today we want to use optimal decision making for a specific system
=® Linear system, Quadratic Reward, Gaussian Noise
= The optimal policy is called Linear Quadratic Regulator (LQR)

= Optimal Decision making for continuous dynamical systems is also
called Optimal Control
Why? Its the only continuous case where we can do it analytically...
If we do not know the model, we can learn it!

If the (learned) model is not linear, we can linearize it!
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Optimal

Decision Making in Continuous Systems

In continuous systems we call it Optimal Control

* continuous state space s € R™ (note: will be called T )

continuous action spacea € R™ (note: same as u)

its transition dynamics as density

Pi(8t41]8t, ar) = pe(@ir1|xe, Ur)

= We use the more common optimal control notation

First question:

®» How to define a reward for continuous systems?



llustration:

Remember our “Showering

Controller (“Regler”)

(450
ired / How can we correct?
Va Error { i Action
° Turn hotter (not colder)!
25°
State
How hot is it?
Reward

Number of Meauws?

...but what would be a good reward?



Let’s Model the System

The system

Plant
Tiv1 =1 +uy

can be modeled as with
p($t+1|$t> Ut) — p(Tt—|—1|Tt7 Ut) — N(Tt+1\Tt + U, 02)
withae =1,...,u=u

What kind of rewards induce which behavior?



Let us find a reward!

Only give rewards to good temperatures:

(1, i T = Thes
r(Tu) = { 0, otherwise

How does the controller look?
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Let us find a reward!

We could enlarge the region:
r(Tu) = { 0, otherwise
How does the controller look?
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Let us find a reward!

Punish if we need to turn the nob too much:

B 1, if ’T_Tdes’ <4
r(Tu) = { —0.1u%, otherwise

How does the controller look? = Still complex value function and
policy
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Let us find a reward!

Punish turning the nob and high deviations:
r(T,u) = —(T — Tyes)* — U’

How does the controller look?
* Linear optimal controller
Quadratic Value Function
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Finite Horizon Objectives

The goal of the agent is to find a policy W(G\S) that maximizes its
expected return /. for a finite time horizon

Finite Horizon T: Accumulated expected reward for T steps

Jr =Epuo,por [Zt 1 Tt(8t,a) +rr(sT)

r7(ST) .. final reward



Linear Quadratic Gaussian systems

An LQR system is defined as

* its state space x € R™ (nhote: same as S)
its action space u € R™ (note: same as u )

its (possibly time-dependent) linear transition dynamics with
Gaussian noise

pi(xiat|xe, ur) = N(xp1|Avey + Brug + by, 34)

its quadratic reward function
ri(z,u) = (£ — r) ! Ry(x — r¢) + ul Hyuy

rr(x) = (€ —rr) Re(x — rr)

- and its initial state density
14 po(x) = N(z|po, o)



Optimal Control for LQR systems

Linear systems with Gaussian Noise
pi(@iat|xy, uy) = N(xp 1| Avey + Brug + by, 34)

Ay ... system matrix, B: ... control matrix, b: ... drift term

2.¢... system noise

Quadratic reward functions
ri(x,u) = —(x —r) T Ry(x — ;) — ul Hyuy
rr(x) = —(x — rr) Rye(x — rr)
Tt ... desired state, R ... state metric for reward

H, ... control metric for reward



—xample

RewardFunction: Reach 2 Via-Points at t, =50 and t, = 100

4 ~
R; ¢, = [ 18 100_6 ] , for all other ¢, R; = [

10~° 0
0 10°°

100

time



Optimal Control for Finite Horizon Objectives

We will look at the simpler finite horizon case

Short refresher from last lecture:

Start with last layer...

Vi(x) =rr(x)
lterate backwards in time
V¥ () = max,, (rt(a:t, uy) +

| Viiq (@egr) e, we )

The optimal value function/policy for time step t is obtained after
T —t + 1 iterations

Vr(z)

_> Vi_i(x)

=

> Vi ()




Optimal Control for LQ

We have to solve...

R systems

=® EXxpectation over the next value:

tp(wt—u |+, ut) [V;;El—l (wt-l—l) ‘wh ut]

= Maximum operator in continuous action spaces:

1mMaxy, (Tt(ibt, Ut) —+

When can we do that?

In continuous systems:

Sy | Viiq (@eg1) e, we )

only for LQR systems!
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Ok, lets solve the optimal control problem

For illustration, lets make it simpler (without any linear terms)...
Pe(xiy1|Te, ur) = N(xpq1|Ary + Bruy ‘|‘th
ri(x, u) (x 24)" Ry(x 3re) — vy Hyug

ro(x ——33—>(T RT$>¢T

pe(xiat|xy, uy) = N(xp1|Avey + Brug, 3y)
- ri(z,u) = —x! Rz — ul Hyuy,

rr(z) = —x! Rrx

For the derivation of the full problem including the drift and linear terms in the reward, see
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/soc.pdf




Sellman’s Recipe

1. At the last step, the value function is given as

Vi(x) =rp(x) = — ' Rrx = —x'Vyx

—> Vi = Ry
2. To get from t+1 to t, first compute the Q-Function

Q7 (xy, wy) = r(g, ue) + By [V (Tog1)]| e, we)

3. then compute optimal policy 7;

i (x) = argmax,, Qf(z,u)

4. compute optimal value function for time step t

Vi(x) = Qf (¢, 7" (x))

20



Sellman’s Recipe

Step 2a: compute expectation for value of the next state

=» | ets assume for now a quadratic structure for V-function of next time

ste
P tj—l(w) — _$Tvt+1$

= \We need to compute:
Ep |Vii (g1 |, e ] = — /J\/(th\Atmt + By, Bp)w{ Vi@ 1de o
Yet another useful Gaussian identity: 2"9 order expectation
it p(x) = N(z|p,X) than E (2T Mz] = u" Mp + Tr(MX)

= This identity yields
2? t+1 (1) |2, Ut] = — (A + Btut)TVH—l(Atmt + Buy) + Tr(Vi413)



Sellman’s Recipe

Step 2b: Compute Q-function

227

Qi (T, up) =r(xe, ur) + Ky [ tj—l(mt-l-l)‘mtaut]

——a'Rix — u' H,u

_ (At.’IJt —+ Btut)TVt+1(Atmt -+ But) -+ Mt)

Not state or action dependent

m) Also the Q-function is quadratic in state and action!



Sellman’s Recipe

Step 3: compute optimal policy
T (x) = argmax,, Q;(x,u)

Set derivation to zero...

d
OT — % (-%?Rtwt — ’u,THtu — (Ata:t -+ BtU)TVt+1(At$t -+ Bt’l,l,))

Remember matrix calculus...?

0! = 2u"H, — 2(Aixy + Byu) TV, 1 By

0 = —uw'(H,+B/V,. B, —xFA"V,, B,
And solve for u

m(xy) =u" = —(H: + BZVtHBt)_lBZVHlAtCE‘t = Kix;

=® The optimal policy a time-varying linear (PD) controller!

23



Sellman’s Recipe

Step 4: compute value function
Vi(x) = —x! Rixy —u Houl — (A + Biul?)' Vi1 (A, + Boul)
= — a2l (R + AV, 1Az, —uw (H, + Bl V.1 B,)
— Qu;';TBtVtHAtmt
We first set in the optimal action for «, = —(H, + BV, .B,)"'B; V1 Az,
Vi) =—axl (R + Al Vi 1A xy —u Bl Vi1 Ay

Now we can substitute ©v; = K;x;
Vvt* (213) —_ — ZU;T(Rt -+ A;TVH_lAt -+ K?B?Vt_FlAt)iBt

Note: this derivation works only if the matrices Vit1, Hy and R,
2 4 are positve definite (and hence symmetric), can always be garantueed



Bellman’s

Recipe

Step 4: compute value function

®The optimal value functionV}

—a:thwt

Vi (@) =

=®we ended up in a recursive update equation for
V=R, + AV, 1A, + K! B!V, A,
=R, + (A + Bth)TVt—I—lAt

—(H; + B?%+1Bt)_1B?W+1At

»if V;11(8) is in quadratic form,V:(s) also is

»since V7 (s) is quadratic, all Vz(s) are quadratic

25

for time step t+17 is also quadratic



Solving optimal control

20

So how does the full case look like?
pt($t+1’$t, Ut) — N($t+1|At$t + B,u; + by, Zt)
re(x,u) = —(x — )TRt(a: — 1) — u:ngtut

The optimal value function has a quadratic and linear form

Vi(xy) = —xl' Vs + 201 x; + const

With the update rules:
Vt — Rt —+ (At -+ Bth)TVH_lAt (Same aS before)
v, =7+ (A + BJKy)! (01 — Vii1by)

with 7, =r!/ R, and K, = —(H,+ B!V ,..1B,) ‘B V1A,

For the derivation of the full problem including the drift and linear terms in the reward, see
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/soc.pdf




Solving optimal control

So how does the full case look like?

pi(xpa1|@e, uy) = N(xp1|Avey + Byug + by, 34)

re(x,u) = —(x — )TRt(a: — 1) — utTHtut
The optimal policy is given by

’U,* _ — (Ht —+ B?Vt+1Bt)_lB$ (Vt_|_1(AtCEt —+ bt) — vt—l—l)
=K ,x; + k;

with Kt = —(Ht -+ vat+1Bt)_1B?Vt+1At

and k;=—(H;+ B?Vt+1Bt)_1B;}r(Vt+1bt — Vi)
l.e. the optimal policy is a time-dependent linear feedback controller

with time dependent offset

For the derivation of the full problem including the drift and linear terms in the reward, see
2 7 http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/soc.pdf




Back to the Example:

System:
Second order integrator (we directly set accelerations)
1 dt 0 0 0
Tl = g 1 [Tt | g | T e~ N10, 0 0.5dt?

B 4
&
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20 40 60 80 100
time

time




Optimal Control for LQR systems

lllustration of the Value Function

value

29
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—xample for non-linear dynamics: Swing-Up

goal position

System
o —hp(t) +mglsin(p(t)) + u(?)
p(t) = -
ml
i : A? ..
Xiorq = [sffm] _ |on+ Augr + 5t
PEk+41 I Dk 4 Atsok:

Reward

r(s,a) = —s!diag(1,0.1)s — 0.2a°




—xample: Value Function of Inverted Pendulum

Valug function for the expected costs (negative reward)

8
2]
= 16
©
= ainly not quadratic)
O
> - 4
S
©

-3 2 1 0 1 2 3
angle in rad



Possible: Learn Solutions only where needed!

Bl =
.\\ . If you know places
- ~t ; where we start...
N —- A ... we can just look
f A ahead and
1 ‘TQ . approximate the
] . solution locally
— A | around an initial
- trajectory
S ‘-1/
\ K .

35



Local Solutions by Linearizations

Every smooth function can be modeled with a Taylor expansion

df 1 - d2f

X)=f(a X —a —(x—a)" —=
fo)=f@+ 30| x-a)+sx-aT o5
Hence, we can also approximate the (learned) forward dynamics by

linearizing at the point (z;, u;)

(x —a)

. d 5 d .
L1 = ft(mta Ut) ~ f(wtaut) d]; (mt — $t) di: (Ut — Ut)
— Atil?t -+ Btut -+ bt
W|th At — ﬁ and Bt p— ﬁ
L=z, u=u, d’LL =T, U—U

and b, = f(x¢,u:) — Ay — By

36



Local Solutions by Linearizations

Similarly, we can approximate the (learned) reward function by a second
order approximation at the point(st, at) (only shown for states)

L dr _ _ dr
ri(Se, ap) = (T, w) + — (¢ — ) + (2 — mt)wadaz

dx

(wt — it) — u?Htut

= —a'R,x + 2r! ¢ — u! H,u + const

dr dr dr
ith R; = d = 0.5— — 1
W t dxdx and T dr  dxdx vt

37



Local Solutions by Linearizations

So we are back to the full linear optimal control case with...
pe(Tigr|Te, uy) = N(xp11|Arey + Biug + by, 3y)

r(z,u) = -z’ Ryx + 2r! © — u’ H,u + const
that we know how to solve...
Hence our algorithm for solving non-linear optimal control is...

1. Backward Solution: Compute optimal control law (i.e. Gains K'; and
offsets Kk

2. Forward Propagation: Run simulator with optimal control law to
obtain linearization points (z.7, @1.1)

1.1f not converged, go to 1.

38



Some interesting results (only in simulation)

Work by Emo Todorov
and Yuval Tassa

(They call basically the
same algorithm

incremential LQG, iLQG)

39

Synthesis of Complex Behaviors
with
Online Trajectory Optimization

(under review)



Application to the Swing-Up




Some interesting results (only in simulation)
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Model Learning...

Why does this work only in simulation?
The models we have for such complex robots are... crap

We need to learn the models !

43



Position
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—xXample:

Sall Paddling

Ball

What are the states x?

Ball
I Velocity

Racket
xVeIocity
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What are the actions u?
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—xXample:

Sall

Paddling

All motor torques?

If you do not have an inverse model ...

Joint Accelerations?

Perfect, if you have a good inverse

model ...

Maybe identify the proper degrees of O

freedom?

Accelerations in Task Space?

Ideally!

... but only if you have a good
operational space control law!
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—xample: Ball Paddling

What are good rewards 7?

Task knowledge or success/failure?

- For some algorithms rewards in {1,0} are
perfect ...

- Real problems often require reward
shaping...

What’s a good reward for our
problem? o
 Height of the ball?
- Distance between ball and the paddle?
- Ball needs to move in a certain region?

« All of the above?

- Additional punishments? p *

:> All of these together do the job!




Example: Real world application...
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Human Motor Cost Functions?

Does this relate to Human Learning?

- Maybe! Many models from cognitive science are cost function

based...

* Reaching movements can be explained by

* Minimum jerk, Minimum torque change, Minimum end-point variance

» Locomotion can be explained by minimum
metabolic energy consumption.

- Maslow’s Hierarchy of rewards

Self-actualization

morality,
creativity,
spontaneity,
problem solving,
lack of prejudice,
acceptance of facts

psychology ...

Esteem

self-esteem, confidence,
achievement, respect of others,
respect by others

Love/belonging

Safety

Physiological

friendship, family, sexual intimacy

security of: body, employment, resources,
morality, the family, health, property




Model Learning with
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Model Learning with subsegquent Policy Opiti
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Challenges in model-based policy learning

This mainly works for balancing tasks where we live In a restricted
state space

For more complex problems, using learned models becomes really
hard

= [he model is likely to be inaccurate

=®|naccuracies could be exploited by optimizer such that the policy on
the real system performs bad

=|f we fully exploit an inaccurate model, we might jump into an area of
the state space that we have not seen before

=®inherently unstable



2 recent approaches...

1. PILCO (probabilistic inference for learning control)
Learn GP forward models
Use uncertainty of the GP-model for the long-term reward prediction

Policy Optimization with analytic gradient of expected reward

52 M. Deisenroth et. al.: “PILCO: A Model-Based and Data-Efficient Approach to Policy Search”, ICML 2011
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Policy Optimization with

PILCO

trial #1 (random actions)

Marc Peter Deisenroth, Carl Edward Rasmussen, Dieter Fox

Learning to Control a Low-Cost Manipulator
using Data-efficient Reinforcement Learning




2 state of the art approaches...

2. Policy Search guided by trajectory optimization
Learn time dependent linear forward models

Trajectory Optimization: LQR like algorithm, additional constraint
that new trajectory should stay close to the datamp increase stability

Use optimized trajectories to learn a generalizing neural network
policy

S. Levine et. al.: “Learning Neural Network Policies with Guided Policy Search
54 under Unknown Dynamics.”, NIPS 2014



Guided

Policy Search
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Learning Neural Network
Policies with Guided Policy Search

under Unknown Dynamics




Guided
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Policy Search



Conclusions

=®You have solved an (stochastic) optimal control problem today!
=0nly two cased are solvable: linear & discrete!

= The optimal policy for a LQG system is a time-varying linear
feedback controller

=®|_inearizations can be problematic |:> lead to oscillations (but can be
made more stable)

=»Works well if the system is not too non-linear and model can be
learned accurately!

=»We will continue with Value Function and Policy Search Methods.



