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The Bigger Picture: How to learn policies

2. 3.1. This Lecture 4.
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Motivation

Today we want to use optimal decision making for a specific system

Linear system, Quadratic Reward, Gaussian Noise

  The optimal policy is called Linear Quadratic Regulator (LQR)

  Optimal Decision making for continuous dynamical systems is also 
called Optimal Control

Why? Its the only continuous case where we can do it analytically…

If we do not know the model, we can learn it!

If the (learned) model is not linear, we can linearize it!
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Outline of the Lecture

1.  Optimal Control 

2.  Solving the Optimal Control for LQR systems

3.  Approximating Non-Linear Systems

4.  Optimal Control with Learned Models

5.  Final Remarks
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Optimal Decision Making in Continuous Systems

In continuous systems we call it Optimal Control
•  continuous state space                 (note: will be called     )

•  continuous action space                (note: same as     ) 

•   its transition dynamics as density

    We use the more common optimal control notation 

First question:

    How to define a reward for continuous systems?
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Illustration: Remember our “Showering Example”?

...but what would be a good reward?

How can we correct?

35°

Desired 
Value

45°

25°

35°{Error

Controller (“Regler”)

How hot is it?

Turn hotter (not colder)!
Action

State

The image cannot be displayed. Your computer may not have enough memory to open the image, 
or the image may have been corrupted. Restart your computer, and then open the file again. If 
the red x still appears, you may have to delete the image and then insert it again.

Plant (“Regelstrecke”)

Reward
Number of Meauws?
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Let’s Model the System

The system 





can be modeled as with



What kind of rewards induce which behavior? 

Plant
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Let us find a reward!

Only give rewards to good temperatures:

How does the controller look?     Rather jerky controls
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Let us find a reward!

We could enlarge the region:

How does the controller look?     Rather jerky controls
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Let us find a reward!

Punish if we need to turn the nob too much:

How does the controller look?     Still complex value function and 
      policy
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Let us find a reward!

Punish turning the nob and high deviations:

 
How does the controller look?  
•  Linear optimal controller
•  Quadratic Value Function   
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Outline of the Lecture

1.  Optimal Control 

2.  Solving the Optimal Control for LQR systems

3.  Approximating Non-Linear Systems

4.  Optimal Control with Learned Models

5.  Final Remarks
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Finite Horizon Objectives

The goal of the agent is to find a policy               that maximizes its 
expected return        for a finite time horizon

Finite Horizon T: Accumulated expected reward for T steps



       
  … final reward
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Linear Quadratic Gaussian systems

An LQR system is defined as 
•  its state space                 (note: same as    )

•   its action space                (note: same as     ) 

•   its (possibly time-dependent) linear transition dynamics with 
Gaussian noise

•   its quadratic reward function



    

• and its initial state density
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Optimal Control for LQR systems

Linear systems with Gaussian Noise

 

    … system matrix,      … control matrix,     … drift term 

    … system noise 



Quadratic reward functions





    … desired state,         … state metric for reward

    … control metric for reward 
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Example

RewardFunction: Reach 2 Via-Points at t1 = 50 and t2 = 100
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Optimal Control for Finite Horizon Objectives

We will look at the simpler finite horizon case

Short refresher from last lecture: 

Start with last layer…  

 
Iterate backwards in time

 

The optimal value function/policy for time step t is obtained after  
            iterations
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Optimal Control for LQR systems

We have to solve…

  Expectation over the next value: 

 


Maximum operator in continuous action spaces:





When can we do that?

In continuous systems: only for LQR systems!
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Ok, lets solve the optimal control problem

For illustration, lets make it simpler (without any linear terms)…

 



For the derivation of the full problem including the drift and linear terms in the reward, see
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/soc.pdf
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Bellman’s Recipe

1.  At the last step, the value function is given as 
 
 


2.  To get from t+1 to t, first compute the Q-Function  
 


3.  then compute optimal policy 
 


4.  compute optimal value function for time step t
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Bellman’s Recipe

Step 2a:  compute expectation for value of the next state

  Lets assume for now a quadratic structure for V-function of next time 
step

  We need to compute: 



Yet another useful Gaussian identity: 2nd order expectation



  This identity yields



if                                 than



Step 2b: Compute Q-function





 
Also the Q-function is quadratic in state and action!
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Bellman’s Recipe

Not state or action dependent
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Bellman’s Recipe

Step 3:  compute optimal policy

 
Set derivation to zero…

 
Remember matrix calculus…?

 
 
And solve for u 


   The optimal policy a time-varying linear (PD) controller!
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Bellman’s Recipe

Step 4:  compute value function



 
We first set in the optimal action for

 
Now we can substitute

  









 
 




Note: this derivation works only if the matrices       
are positve definite (and hence symmetric), can always be garantueed    
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Bellman’s Recipe

Step 4:  compute value function

 The optimal value function        for time step t+1 is also quadratic 


 we ended up in a recursive update equation for 

 


 if                is in quadratic form,            also is

 since              is quadratic, all            are quadratic 



 
 




26

Solving optimal control

So how does the full case look like?





The optimal value function has a quadratic and linear form



With the update rules:



 
with                       and



 


For the derivation of the full problem including the drift and linear terms in the reward, see
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/soc.pdf
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Solving optimal control

So how does the full case look like?





The optimal policy is given by





with

and 

I.e. the optimal policy is a time-dependent linear feedback controller 
with time dependent offset





 


 



For the derivation of the full problem including the drift and linear terms in the reward, see
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/soc.pdf
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Back to the Example:

System: 

Second order integrator (we directly set accelerations)
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Optimal Control for LQR systems

Illustration of the Value Function
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Optimal Control for LQR systems

Comparison of Value and Reward Function (log domain)


ValuefunctionRewardfunction
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Optimal Control for LQR systems

Different Control Costs
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Outline of the Lecture

1.  Optimal Control 

2.  Solving the Optimal Control for LQR systems

3.  Approximating Non-Linear Systems

4.  Optimal Control with Learned Models

5.  Final Remarks
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Example for non-linear dynamics: Swing-Up

System

Reward



34

Example: Value Function of Inverted Pendulum

Value function for the expected costs (negative reward)

Highly non-linear function (certainly not quadratic)
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Possible: Learn Solutions only where needed!

If you know places 
where we start...


... we can just look 

ahead and 
approximate the 
solution locally 
around an initial 

trajectory
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Local Solutions by Linearizations

Every smooth function can be modeled with a Taylor expansion 


Hence, we can also approximate the (learned) forward dynamics by 
linearizing at the point 



 
with       and 

and 
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Local Solutions by Linearizations

Similarly, we can approximate the (learned) reward function by a second 
order approximation at the point                (only shown for states ) 



 


with 
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Local Solutions by Linearizations

So we are back to the full linear optimal control case with… 



that we know how to solve… 

Hence our algorithm for solving non-linear optimal control is…

1.  Backward Solution: Compute optimal control law (i.e. Gains        and 
offsets 

2.  Forward Propagation: Run simulator with optimal control law to 
obtain linearization points 

1. If not converged, go to 1. 
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Some interesting results (only in simulation)

Work by Emo Todorov 
and Yuval Tassa  
(They call basically the 
same algorithm 
incremential LQG, iLQG)



Application to the Swing-Up

40
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Some interesting results (only in simulation)

Work from Emo Todorov 
and Yuval Tassa  
(incremential LQG, iLQG)
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Model Learning…

Why does this work only in simulation?

The models we have for such complex robots are… crap

We need to learn the models !
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Example: Ball Paddling

What are the states x?

Racket 
Position

Ball 
Velocity

Racket 
Velocity

Ball 
Position
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Example: Ball Paddling

What are the actions u?
All motor torques?

If you do not have an inverse model ...

Joint Accelerations?
Perfect, if you have a good inverse 
model ...
Maybe identify the proper degrees of 
freedom? 

Accelerations in Task Space?
Ideally!
... but only if you have a good 
operational space control law!



Example: Ball Paddling

What are good rewards r?
Task knowledge or success/failure?

•  For some algorithms rewards in {1,0} are 
perfect ...

• Real problems often require reward 
shaping...

What’s a good reward for our 
problem?

• Height of the ball?
• Distance between ball and the paddle?
• Ball needs to move in a certain region?
• All of the above?
• Additional punishments?

All of these together do the job!
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Example: Real world application...
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Human Motor Cost Functions?

Does this relate to Human Learning?

• Maybe! Many models from cognitive science are cost function 
based...

• Reaching movements can be explained by

• Minimum jerk, Minimum torque change, Minimum end-point variance

• Locomotion can be explained by minimum                               
metabolic energy consumption. 

• Maslow’s Hierarchy of rewards                                               in 
psychology ...
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Model Learning with !
subsequent Policy Optimization
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Model Learning with subsequent Policy Optimization
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Challenges in model-based policy learning

This mainly works for balancing tasks where we live in a restricted 
state space

For more complex problems, using learned models becomes really 
hard

 The model is likely to be inaccurate

Inaccuracies could be exploited by optimizer such that the policy on 
the real system performs bad

 If we fully exploit an inaccurate model, we might jump into an area of 
the state space that we have not seen before 

inherently unstable
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2 recent approaches…

1. PILCO (probabilistic inference for learning control) 

Learn GP forward models

Use uncertainty of the GP-model for the long-term reward prediction

Policy Optimization with analytic gradient of expected reward

M. Deisenroth et. al.: “PILCO: A Model-Based and Data-Efficient Approach to Policy Search”, ICML 2011
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Policy Optimization with PILCO
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2 state of the art approaches…

2. Policy Search guided by trajectory optimization

Learn time dependent linear forward models

Trajectory Optimization: LQR like algorithm, additional constraint 
that new trajectory should stay close to the data      increase stability

Use optimized trajectories to learn a generalizing neural network 
policy

S. Levine et. al.: “Learning Neural Network Policies with Guided Policy Search 
under Unknown Dynamics.”, NIPS 2014
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Guided Policy Search
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Guided Policy Search
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Conclusions

 You have solved an (stochastic) optimal control problem today!

 Only two cased are solvable: linear & discrete!

 The optimal policy for a LQG system is a time-varying linear  
feedback controller

Linearizations can be problematic          lead to oscillations (but can be 
made more stable)

 Works well if the system is not too non-linear and model can be 
learned accurately!

 We will continue with Value Function and Policy Search Methods. 


