
1

 !
Reinforcement Learning Part 2!

Value Function Methods

Jan Peters

Gerhard Neumann

The Bigger Picture: How to learn policies

2.
 3.
1.
 4.

3

Purpose of this Lecture

Often, learning a good model is too hard

 The optimization inherent in optimal control is prone to model errors,
as the controller may achieve the objective only because model errors
get exploited

 Optimal control methods based on linearization of the dynamics work
only for moderately non-linear tasks

Model-free approaches are needed that do not make any assumption
on the structure of the model

Classical Reinforcement Learning:

 Solve the optimal control problem by learning the value function, not
the model!

4

Outline of the Lecture

1. Quick recap of dynamic programming

2. Reinforcement Learning with Temporal Differences

3. Value Function Approximation

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks

5

Markov Decision Processes (MDP)

Classical reinforcement learning is typically formulated for the
infinite horizon objective

Infinite Horizon: maximize discounted accumulated reward

 

 

… discount factor

Trades-off long term vs. immediate reward

Value functions and State-Action Value Functions

Refresher: Value function and state-action value function can be
computed iteratively

6

Bellman Equation of optimality

Iterating the Bellman Equation converges to the optimal value

function and is called value iteration

Alternatively we can also iterate Q-functions…

 

7

Finding an optimal value function

8

Outline of the Lecture

1. Quick recap of dynamic programming

2. Reinforcement Learning with Temporal Differences

3. Value Function Approximation

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks

Classical Reinforcement Learning

Updates the value function based on samples

We do not have a model and we do not want to learn it

Use the samples to update Q-function (or V-function)

Lets start simple:

Discrete states/actions Tabular Q-function

9

Value-based Reinforcement Learning

Temporal difference learning

10

Given a transition , we want to update the V-function

• 
Estimate of the current value:

• 
1-step prediction of the current value:

• 
1-step prediction error (called temporal difference (TD) error)

 
Update current value with the temporal difference error

Temporal difference learning

11

The TD error

compares the one-time step lookahead prediction

 
with the current estimate of the value function

if
 than
 is increased 
 

if

 than
 is decreased

12

Dopamine as TD-error?

Monkey brains seem to have it...

Temporal difference error signals can be measured in
the brain of monkeys

Algorithmic Description of TD Learning

Init:

Repeat

Observe transition

Compute TD error

Update V-Function

until convergence of V

 Used to compute Value function of behavior policy

 Sample-based version of policy evaluation

 13

Temporal difference learning for control

14

So far: Policy evaluation with TD methods

Can we also do the policy improvement step with samples?

Yes, but we need to enforce exploration!

Epsilon-Greedy Policy:

 

Soft-Max Policy:

Do not always take greedy action

Temporal difference learning for control

15

Update equations for learning the Q-function

Two different methods to estimate

Q-learning:

Estimates Q-function of optimal policy

Off-policy samples:

SARSA:

 , where

Estimates Q-function of exploration policy

On-policy samples

Note: The policy for generating the actions depends on the Q-

function non-stationary policy

16

Outline of the Lecture

1. Quick recap of dynamic programming

2. Reinforcement Learning with Temporal Differences

3. Value Function Approximation

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks

17

Approximating the Value Function

In the continuous case, we need to approximate the V-function (except for
LQR)

Lets keep it simple, we use a linear model to represent the V-function

 

How can we find the parameters ?

Again with Temporal Difference Learning

TD-learning with Function Approximation

Derivation:

Use the recursive definition of V-function:

 

with

Bootstrapping (BS): Use the old approximation to get the target

values for a new approximation

How can we minimize this function ?  

 

Lets use stochastic gradient descent

18

Refresher: Stochastic Gradient Descent

Consider an expected error function,

We can find a local minimum of E by Gradient descent:

Stochastic Gradient Descent does the gradient update already after a
single sample

Converges under the stochastic approximation conditions

19

Temporal difference learning

Stochastic gradient descent on our error function MSEBS

Update rule (for current time step t,

)

 

with

Temporal difference learning

21

TD with function approximation

 
Difference to discrete algorithm:

 
TD-error is correlated with the feature vector

 
Equivalent if tabular feature coding is used, i.e.,

Similar update rules can be obtained for SARSA and Q-learning

where  

 

Temporal difference learning

22

Some remarks on temporal difference learning:

 
Its not a proper stochastic gradient descent!!

 
Why? Target values change after each parameter update!

We ignore the fact that

 also depends on

 
Side note: This „ignorance“ actually introduces a bias in our

optimization, such that we are optimizing a different objective

than the MSE

 
In certain cases, we also get divergence (e.g. off-policy samples)

 
TD-learning is very fast in terms of computation time O(#features),

but not data-efficient each sample is just used once!

Dann, Neumann, Peters: Policy Evaluation with Temporal Differences:

A survey and comparison, JMLR, in press

Sucessful examples

23

Linear function approximation

Tetris, Go

Non-linear function approximation

TD Gammon (Worldchampion level)

Atari Games (learning from raw pixel  
input)

 

 

24

Outline of the Lecture

1. Quick recap of dynamic programming

2. Value function approximation

3. Reinforcement Learning with Temporal Differences

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks

Batch-Mode Reinforcement Learning

Online methods are typically data-inefficient as they use each data point
only once

 
Can we re-use the whole „batch“ of data to increase data-efficiency?

• 
Least-Squares Temporal Difference (LSTD) Learning

• 
Fitted Q-Iteration

Computationally much more expensive then TD-learning!

25

Least-Squares Temporal Difference (LSTD)

 

26

Lets minimize the bootstrapped MSE objective (MSEBS)

 

 
Least-Squares Solution:

with

Least-Squares Temporal Difference (LSTD)

 

27

Least-Squares Solution:

 
Fixed Point: In case of convergence, we want to have

Least-Squares Temporal Difference (LSTD)

 

28

LSTD solution:

 

Same solution as convergence point of TD-learning

One shot! No iterations necessary for policy evaluation

LSQ: Adaptation for learning the Q-function

 
 
 

Used for Least-Squares Policy Iteration (LSPI) 
  
Lagoudakis and Parr, Least-Squares Policy Iteration, JMLR

 

State space: 

 angle of handlebar, vertical angle of bike, angle to goal 

Action space: 5 discrete actions (torque applied to handle, displacement

of rider) 

Feature space: 20 basis functions…

29

Learning to Ride a Bicycle

30

Fitted Q-iteration

In Batch-Mode RL it is also much easier to use non-linear function
approximators

• 
Many of them only exists in the batch setup, e.g. regression trees

• 
No catastrophic forgetting, e.g., for neural networks.

•  Strong divergence problems, fixed for Neural Networks by ensuring
that there is a goal state where the Q-Function value is always zero
(see Lange et al. below).

Fitted Q-iteration uses non-linear function approximators for approximate
value iteration.

Ernst, Geurts and Wehenkel, Tree-Based Batch Mode Reinforcement Learning, JMLR 2005

Lange, Gabel and Riedmiller. Batch Reinforcement Learning, Reinforcement Learning: State of the Art

31

Fitted Q-iteration

Given: Dataset

Algorithm:

Initialize

 , input data:

for k = 1 to L

Generate target values:

Learn new Q-function:

end

 Like Value-Iteration, but we use supervised learning methods to approximate  
 the Q-function at each iteration k

32

Fitted Q-iteration

Some Remarks:

  Regression does the expectation for us

  The max operator is still hard to solve for continous action spaces

For continuous actions, see: Neumann and Peters, Fitted Q-iteration by

Advantage weighted regression, NIPS, 2008

33

Case Study I: Learning Defense

34

Success

35

Dueling Behavior

36

Case Study II: Learning Motor Speeds

37

Case Study III: Learning to Dribble

38

Value Function Methods

  ... have been the driving reinforcement learning approach in the 1990s.

  You can do loads of cool things with them: Learn Chess at professional
level, learn Backgammon and Checkers at Grandmaster-Level ... and
winning the Robot Soccer Cup with a minimum of man power.

So, why are they not always the method of choice?

 You need to fill-up you state-action space up with sufficient samples.

 Another curse of dimensionality with an exponential explosion.

  Errors in the Value function approximation might have a catastrophic
effect on the policy, can be very hard to control

  However, it scales better as we only need samples at relevant
locations.

