Reinforcement Learning Part 2
Value Function Methods

Jan Peters
Gerhard Neumann

The Bigger Picture: How to learn policies

experience data demonstration data
N A ‘
D ={si,ai,ri,8i};_q1. N D ={si.7i,a1.17i}i=1.. N
Iearn/ model lgarn value f§t. optimize policy learn policy learn latent costs
P(s'|s, a) m(als) m(al|s) r(s,a)

r(s,a)

|

! o
_jdynamic prog. | = dynamic prog.
R I S 3 '
® polic 2 § - =1 policy
™ S
4) - 7 L7(als)
iV % : %
\ = >
= 2 o =

—
N
o
1N

Purpose of this Lecture

Often, learning a good model is too hard

= [he optimization inherent in optimal control is prone to model errors,
as the controller may achieve the objective only because model errors
get exploited

=Optimal control methods based on linearization of the dynamics work
only for moderately non-linear tasks

=Model-free approaches are needed that do not make any assumption
on the structure of the model

Classical Reinforcement Learning:

=®3Solve the optimal control problem by learning the value function, not
the model!

3

Outline of the Lecture

1. Quick recap of dynamic programming
2. Reinforcement Learning with Temporal Differences
3. Value Function Approximation

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-lteration
5. Robot Application: Robot Soccer

Final Remarks

Markov Decision Processes (MDP)

Classical reinforcement learning is typically formulated for the
iInfinite horizon objective

Infinite Horizon: maximize discounted accumulated reward

T = o por (02060 (51,)

0 <~ < 1...discount factor

Trades-off long term vs. immediate reward

Value functions and State-Action Value Functions

Refresher: Value function and state-action value function can be
computed iteratively

VT(s) =E, [7“(8, a) +vEp [V7(s') |S}

= [m(als) (s a)+7f73(s’]s,a)V“(s’)ds’>da

o

=r(s,a) —I—W/P(s’\s,a)/W(a’\s’)Q”(s’,a’)da'ds’

Q™ (s,a) =r(s,a)+vEp . [Q”(S’, a')

Finding an optimal value function

Bellman Equation of optimality

V*(s) = maxq (7“(8, a) +Ep [V*(s')]s,a])

:} lterating the Bellman Equation converges to the optimal value

function}/ ™ and is called value iteration

Alternatively we can also iterate Q-functions...

Q*(s,a) =r(s,a) +~

p [maxe Q*(s',a’) |s, al

Outline of the Lecture

1. Quick recap of dynamic programming

2. Reinforcement Learning with Temporal Differences
3. Value Function Approximation

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-Ilteration
5. Robot Application: Robot Soccer

Final Remarks

Value-based

—Reinforcement Learning

Classical Reinforcement Learning

Updates the value function based on samples

D ={s;,a;,r;, 8 }ic1.. N

We do not have a model and we do not want to learn it

Use the samples to update Q-function (or V-function)

Lets start simple:

Discrete states/actionsﬂ Tabular Q-function

Temporal difference learning

Given a transition (s¢, a:, ¢, 5¢+1), we want to update the V-function
Estimate of the current value: V (s;)
1-step prediction of the current value: V(s,) = r; + 4V (s141)

1-step prediction error (called temporal difference (TD) error)

575 — T'¢ —+ ’)/V(St_|_1) — V(St)

Update current value with the temporal difference error

Vaew(st) = V(sy) + ady = (1 — @)V (sy) + alry + vV (s¢11))
10

Temporal difference learning

The TD error

575 — T'¢ —+ ’)/V(St_|_1) — V(St)
compares the one-time step lookahead prediction

AN

V(se) =re + 7V (s¢41)
with the current estimate of the value function V' (s¢)

AN

> if V(sy) > V(s) than V (s;) is increased

> if V(s)) < V(s;) than V(s;)is decreased

11

Dopamine as TD-error?

Temporal difference error signals can be measured in
the brain of monkeys

Unpredicted liquid Reward-predicting sound

MM.L.M Lok gl o iilalia,

ST AR Ee R Al TP R

. . .ﬁ. ‘e .) o'.'

. ‘-. . . ’'.' .. . : ... » . : : .i’ l.'. . {I'..:. .u - :l ‘.;c. ' L
10 05 0O 05 10 -3;5 E 05 108

'y
Liquid sound Liquid
reward

19 Monkey brains seem to have it...

Algorithmic Description of TD Learning

Init: V" (s) < 0

Repeat { =t + 1
Observe transition (S¢» Gt, Tt St41)
Compute TD error 0 = 74 + YVi(ss1) — Vi(s¢)
Update V-Function V;11(s:) = Vi(s:) + ady

until convergence of V

=®Used to compute Value function of behavior policy

=»Sample-based version of policy evaluation

13

Temporal difference learning for control

So far: Policy evaluation with TD methods

Policy Evaluation:

Estimate the Value Function V™

Policy Improvement:

Update the Policy

Can we also do the policy improvement step with samples?

Yes, but we need to enforce exploration!

1 —e+e€/|A], if a=argmax, Q7 (s,a’)
e/| A, otherwise

_ __ exp(fQ(s,a))
Soft-Max Policy: m(als) = S exp(BQ(s, a))

Epsilon-Greedy Policy: 7 (a|s) = {

m) Do not always take greedy action

14

Temporal difference learning for control

Update equations for learning the Q-function (s, a)
Qir1(8t;a1) = Qu(5t,ar) + ady, 0y =1 +¥Qe(Se41,a7) — Qi(S¢, ay)
Two different methods to estimate a-
Q-learning: o, = argmax,Q¢(S¢11,a)
Estimates Q-function of optimal policy
Off-policy samples: a? 75 a¢11
SARSA: 47 = Qi1 ,where ai+1 ~ T(a|siy1)
Estimates Q-function of exploration policy
On-policy samples

‘] 5 Note: The policy for generating the actions depends on the Q-
function®m® non-stationarv policv

Outline of the Lecture

1. Quick recap of dynamic programming
2. Reinforcement Learning with Temporal Differences
3. Value Function Approximation

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-Ilteration
5. Robot Application: Robot Soccer

Final Remarks

16

Approximating the Value Function

In the continuous case, we need to approximate the V-function (except for
LQR)

Lets keep it simple, we use a linear model to represent the V-function

VT(s) m Vu(s) = @' (s)w

How can we find the parametersw ?

m) Again with Temporal Difference Learning

17

TD-learning with Function Approximation

Derivation:

Use the recursive definition of V-function:

MSE(w) ~ MSEgs(w) = 1/N 31| (f/”(si) — Vw(si)>2
with VW(S) = K, T(S, a) + Ep [Vwold (S/)‘S, a’]]

4> Bootstrapping (BS): Use the old approximation to get the target
values for a new approximation

How can we minimize this function ?

Lets use stochastic gradient descent

13

Refresher: Stochastic Gradient Descent

Consider an expected error function,
Ey=Bylew(@)] ~ /N, eo(®), @~ p(x)

We can find a local minimum of E by Gradient descent:

dE., N deg(x;)

We+1 — WE — Oékw — W — Ok Zz’zl dw

Stochastic Gradient Descent does the gradient update already after a
single sample

dey,(xr)
dw
Converges under the stochastic approximation conditions

©.@) 0.
g Q= OQ, E ai < o0

WEe4+1 — Wi — Ok

19

Temporal difference learning

Stochastic gradient descent on our error function MSEg

MSEpgs ¢ (w) = 1/NZ ((si))2

— 1/NZ (15 + YV, (85) — Vw(si))2

i=1
Update rule (for current time step t,V,,(s) = ¢! (s)w)
dMSEgRs
Wil = Wi + O
dw W=Wt¢

Wit1 = W T &(T(Sta at) + vV, (St41) — wt(st))ﬁbT(St)
= Wt -+ &5t¢T(St)

with 8 = (8¢, at) + Vi, (8¢41) — Vi, (8¢)

Temporal difference learning

TD with function approximation

Wt = Wy —+ @5t§bT(St)
Difference to discrete algorithm:

= [D-error is correlated with the feature vector

= Equivalent if tabular feature coding is used, i.e., ¢(s;) = e;
Similar update rules can be obtained for SARSA and Q-learning

Wiy] = Wt T &(T(St, a:) +7Qw, (8t+1,a7?) — Qu, (8¢, at))qu(st, a)

where Qw(sa a') ~ ¢T(87 a’)w

21

Temporal difference learning

Some remarks on temporal difference learning:
=® [ts not a proper stochastic gradient descent!!
» Why? Target values V™ (s) change after each parameter update!
We ignore the fact that V”(s) also depends on

=® Side note: This ,ignorance” actually introduces a bias in our
optimization, such that we are optimizing a different objective
than the MSE

=® |n certain cases, we also get divergence (e.g. off-policy samples)

= TD-learning is very fast in terms of computation time O(#features),
but not data-efficient |:> each sample is just used once!

22 Dann, Neumann, Peters: Policy Evaluation with Temporal Differences:
A survey and comparison, JMLR, in press

Sucessful examples

Linear function approximation
Tetris, Go

Non-linear function approximation
TD Gammon (Worldchampion level)

Atari Games (learning from raw pixel
input)

23

. TDGAMMOM.EXE
File Options Help

It's your turn.

Outline of the Lecture

1. Quick recap of dynamic programming

2. Value function approximation

3. Reinforcement Learning with Temporal Differences

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-lteration
5. Robot Application: Robot Soccer

Final Remarks

24

Batch-Mode Reinforcement Learning

Online methods are typically data-inefficient as they use each data point
only once
D = {8i7 a;, T, 3;}
1=1...N
Can we re-use the whole ,,batch” of data to increase data-efficiency?

- Least-Squares Temporal Difference (LSTD) Learning

 Fitted Q-Iteration

::) Computationally much more expensive then TD-learning!

25

Least-Squares Temporal Difference (LSTD)

Lets minimize the bootstrapped MSE objective (MSEg)

N
MSEs = 1/N 3 (rlsisa) +7Vis () — Vao(s:))
1=1

Least-Squares Solution:

W = ((I)T(I))_l(]:)T(R + ”Y(P,wold)

with & = [p(s1), P(s2), ..., d(sn)]”

B = [p(s)), p(sh), ..., d(sy)]"
26

Least-Squares Temporal Difference (LSTD)

Least-Squares Solution:
w=(®TP®)"1® (R + vP ' woq)

Fixed Point: In case of convergence, we want to have w, 4 = w

w=(®T®)" 1P (R +~P'w)
(I—~(®73)"'3T®)w = (®73)"'&TR
(P1P) P! (& — 7P)w=(P'P) PR
Pl (D —v®)w=d'R

27

Least-Squares Temporal Difference (LSTD)

LSTD solution:
w=(®T(®—~1®')) ®'R
Same solution as convergence point of TD-learning

One shot! No iterations necessary for policy evaluation

LSQ: Adaptation for learning the Q-function

Policy Evaluation:

@ — [¢(817 al)? ¢(827 a/2)7 c ooy QS(SN, a,N)]T Estimate the Value Function V'™

T
@/ — [¢(827 a2)7 ¢<837 a?))) * ¢(8N+17 a’N+1)] Policy Improvement:

Update the Policy

f‘> Used for Least-Squares Policy Iteration (LSPI)

Lagoudakis and Parr, Least-Squares Policy Iteration, JMLR

28

Learning to Ride a Bicycle

State space: s = [0, 0, w,w, @,]
6 angle of handlebar, w vertical angle of bike, (0 angle to goal

Action space: 5 discrete actions (torque applied to handle, displacement
of rider)

Feature space: 20 basis functlons |
(1, w., w, w=, &, ww. 6,0, 8%, 6%, 68, wﬁ wh*, w20, . V. DO, P, D2, PO)T

200 [6th iteration
; (crash) ———==
i i | Starting 5’\
| Position / a4 —_—
0.9} | N T — '
0 F v‘ \'\ ___-—' i
08 5 [AN 3rd iteration —
o 07 | 2nd iteration (crash) |
§ ; Goal
ER —200] 5th and 7th
0 : iteration
2 o5¢ |
E
g 04r : 4th and 8th
& -400 - iteration
0.3r |
02t
: ey
0.1 —600 P ’ /
0 // s
\, / " 1st iteration
| ! L I | 1 L ! 1 L ! e
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 |
' Number of training episodes -800 " ! ! . : .
-200 0 200 400 600 800 1000 1200

Fitted Q-iteration

In Batch-Mode RL it is also much easier to use non-linear function
approximators

- Many of them only exists in the batch setup, e.g. regression trees
* No catastrophic forgetting, e.g., for neural networks.

- Strong divergence problems, fixed for Neural Networks by ensuring
that there is a goal state where the Q-Function value is always zero
(see Lange et al. below).

Fitted Q-iteration uses non-linear function approximators for approximate
value iteration.

Ernst, Geurts and Wehenkel, Tree-Based Batch Mode Reinforcement Learning, JMLR 2005
Lange, Gabel and Riedmiller. Batch Reinforcement Learning, Reinforcement Learning: State of the Art

30

Fitted Q-iteration

Given: Dataset) = {SZ‘, a;,r;, 8;}
i=1...N
Algorithm: - T T

Initialize Q[O] (s,a) =0,inputdata: X = | :
T T
fork=1toL L SN AN

[k L
Generate target values: q,L[= r; + ymaxge Q1L (s, a)

Learn new Q-function: Q! (s,a) < Regress(X, q[kl)
end

=® |ike Value-lteration, but we use supervised learning methods to approximate
the Q-function at each iteration k

31

Fitted Q-iteration

Some Remarks:
= Regression does the expectation for us
Q"(s,a) ~ Ep [r(s, a) + ymaxg QF (s, a’)]
= The max operator is still hard to solve for continous action spaces

For continuous actions, see: Neumann and Peters, Fitted Q-iteration by
Advantage weighted regression, NIPS, 2008

32

Case Study |: Learning Defense

33

Within the RL framework, we model the ADB learning task
as a terminal state problem with both terminal goal S™ and
failure states S—. Intermediate steps are punished by con-
stant costs of ¢ = 0.05, whereas J(s) =0.0 for s € ST and
J(s) = 1.0 for s € S~ by definition (cf. Eq. 8).

Success

500 Hand-Coded Policy
o 52.9%
Stk 47.1%
O/ 400."6
90% Semi-
80°! Success Failure
& 20%1
70% Failure
0% +— :
60% - Successes Failures
50% A 100%
89.0% Learned
o Policy
40% 80% (after 30.000
. Success episodes)
30% — = Semi-Success ,
600."0
50% Semi-Failure
Failure |
10% T Sy 40%
D\ ST s S e e e P Sae ﬁ
0% ! ! ! ! 20
0 500 1000 1500 2000 | 11.0%
Training Episodes - Semi-Faure

34 Successes Failures

Dueling Behavior

0.1 - Equi—Cost Lines
02| - 0 l§ © Ball |
Player (with
03 oriéntation
- to the right)
0.4
0.5

>

-

Creedy Move
Direction

0.6}
0.7}

Costs=To-Go

—_— J s ® - . & W - ". g™ - °s
-~ o N . - . _— °
' . . T T LA - . ® . . l‘
. . L . _p- e ...". ',) .‘_ L
LA - . L . . . per . - '
.) A . \ L) — L
.x . - A »! he ." . . . -t
o ' e, S, bt s ~
.

I 4
N

) 208
.......

— |

Towards Own Goal

2 -
| |
(metres)

()
X Pos.\f\ on

35

Case Study ll: Learning Motor Speeds

20

Wheel Velocity | —
Wheel Velocity 2 —
15} Wheel Velocity 3 —

AWM. AR .Y
10f BARAN AN A

N
l i Y N’
S - AW

TR LAWY Y O OF VL
| rh
o ;
: D
v 1 &
]
—5 - .\ : .
“ '
]
01' T ":“:""::: :
MK .

-10}

151

0 if |y — w| <4,

36 c(s,a,) =c(s) = {0.0l else.

Case Study lll: Learning to Dribble

2000 -

1500+

1000 1

500+

-5()() T T T T 1
-500 0 500 1000 1500 2000

1.0, ifs'eS,
Q'8¢ (s, a) := { 0.01, ifs’e ST,
37/ 0.01 + miny, O(s', b), else

Value Function Methods

= ... have been the driving reinforcement learning approach in the 1990s.

= You can do loads of cool things with them: Learn Chess at professional
level, learn Backgammon and Checkers at Grandmaster-Level ... and
winning the Robot Soccer Cup with a minimum of man power.

So, why are they not always the method of choice?
=You need to fill-up you state-action space up with sufficient samples.
=® Another curse of dimensionality with an exponential explosion.

= Errors in the Value function approximation might have a catastrophic
effect on the policy, can be very hard to control

= However, it scales better as we only need samples at relevant

38 locations.

