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The Bigger Picture: How to learn policies
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Purpose of this Lecture


Often, learning a good model is too hard


 The optimization inherent in optimal control is prone to model errors, 
as the controller may achieve the objective only because model errors 
get exploited


 Optimal control methods based on linearization of the dynamics work 
only for moderately non-linear tasks


Model-free approaches are needed that do not make any assumption 
on the structure of the model


Classical Reinforcement Learning:


 Solve the optimal control problem by learning the value function, not 
the model!
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Outline of the Lecture


1. Quick recap of dynamic programming

2. Reinforcement Learning with Temporal Differences

3. Value Function Approximation

4. Batch Reinforcement Learning Methods


Least-Squares Temporal Difference Learning


Fitted Q-Iteration


5. Robot Application: Robot Soccer

Final Remarks
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Markov Decision Processes (MDP)


Classical reinforcement learning is typically formulated for the 
infinite horizon objective

Infinite Horizon: maximize discounted accumulated reward





 
 
 
 

 
 

 
 
 
… discount factor








Trades-off long term vs. immediate reward




Value functions and State-Action Value Functions


Refresher: Value function and state-action value function can be 
computed iteratively
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Bellman Equation of optimality






Iterating the Bellman Equation converges to the optimal value 

function       and is called value iteration


Alternatively we can also iterate Q-functions…
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Finding an optimal value function
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Outline of the Lecture


1. Quick recap of dynamic programming

2. Reinforcement Learning with Temporal Differences

3. Value Function Approximation

4. Batch Reinforcement Learning Methods


Least-Squares Temporal Difference Learning


Fitted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks




Classical Reinforcement Learning



Updates the value function based on samples







We do not have a model and we do not want to learn it



Use the samples to update Q-function (or V-function)


Lets start simple:



Discrete states/actions      Tabular Q-function
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Value-based Reinforcement Learning




Temporal difference learning
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Given a transition                       , we want to update the V-function


•  
Estimate of the current value:


•  
1-step prediction of the current value:


•  
1-step prediction error (called temporal difference (TD) error)


 
Update current value with the temporal difference error







Temporal difference learning
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The TD error 


compares the one-time step lookahead prediction 


 
with the current estimate of the value function



if 
                         than 
       is increased 
 


if 
 
 
       than 
       is decreased
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Dopamine as TD-error?


Monkey brains seem to have it...


Temporal difference error signals can be measured in 
the brain of monkeys




Algorithmic Description of TD Learning


Init: 


Repeat



Observe transition



Compute TD error



Update V-Function


until convergence of V


 Used to compute Value function of behavior policy


 Sample-based version of policy evaluation
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Temporal difference learning for control
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So far: Policy evaluation with TD methods











Can we also do the policy improvement step with samples?


Yes, but we need to enforce exploration!


      
Epsilon-Greedy Policy:



 

Soft-Max Policy:



Do not always take greedy action 











Temporal difference learning for control
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Update equations for learning the Q-function  





Two different methods to estimate 



Q-learning:



 
Estimates Q-function of optimal policy



 
Off-policy samples: 



SARSA: 
 
         , where  



 
Estimates Q-function of exploration policy



 
On-policy samples



Note: The policy for generating the actions depends on the Q-

function     non-stationary policy
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Outline of the Lecture


1. Quick recap of dynamic programming

2. Reinforcement Learning with Temporal Differences

3. Value Function Approximation

4. Batch Reinforcement Learning Methods


Least-Squares Temporal Difference Learning


Fitted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks
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Approximating the Value Function


In the continuous case, we need to approximate the V-function (except for 
LQR)


Lets keep it simple, we use a linear model to represent the V-function


 



How can we find the parameters      ?



Again with Temporal Difference Learning




TD-learning with Function Approximation 


Derivation:


Use the recursive definition of V-function:



 

with 



Bootstrapping (BS): Use the old approximation to get the target 

values for a new approximation


How can we minimize this function ?  

 

Lets use stochastic gradient descent
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Refresher: Stochastic Gradient Descent


Consider an expected error function, 





We can find a local minimum of E by Gradient descent:






Stochastic Gradient Descent does the gradient update already after a 
single sample





Converges under the stochastic approximation conditions 
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Temporal difference learning


Stochastic gradient descent on our error function MSEBS 








Update rule (for current time step t, 
 
 
    )





 



with                                          
 
 









Temporal difference learning
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TD with function approximation


 
Difference to discrete algorithm: 


  
TD-error is correlated with the feature vector


  
Equivalent if tabular feature coding is used, i.e., 


Similar update rules can be obtained for SARSA and Q-learning






where  




 
 










 




 
 









Temporal difference learning
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Some remarks on temporal difference learning:


  
Its not a proper stochastic gradient descent!!


  
Why? Target values              change after each parameter update!



 
We ignore the fact that
 
  also depends on


  
Side note: This „ignorance“ actually introduces a bias in our 


 
optimization, such that we are optimizing a different objective 

 
than the MSE


  
In certain cases, we also get divergence (e.g. off-policy samples)


  
TD-learning is very fast in terms of computation time O(#features), 

but not data-efficient          each sample is just used once!


Dann, Neumann, Peters: Policy Evaluation with Temporal Differences: 

A survey and comparison, JMLR, in press




Sucessful examples
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Linear function approximation


Tetris, Go


Non-linear function approximation


TD Gammon (Worldchampion level)


Atari Games (learning from raw pixel  
input)
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Outline of the Lecture


1. Quick recap of dynamic programming

2. Value function approximation

3. Reinforcement Learning with Temporal Differences

4. Batch Reinforcement Learning Methods


Least-Squares Temporal Difference Learning


Fitted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks




Batch-Mode Reinforcement Learning


Online methods are typically data-inefficient as they use each data point 
only once


 
Can we re-use the whole „batch“ of data to increase data-efficiency?


•  
Least-Squares Temporal Difference (LSTD)  Learning


•  
Fitted Q-Iteration



Computationally much more expensive then TD-learning!
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Least-Squares Temporal Difference (LSTD)
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Lets minimize the bootstrapped MSE objective (MSEBS)


 



 
Least-Squares Solution:






with




Least-Squares Temporal Difference (LSTD)
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Least-Squares Solution:


 
Fixed Point: In case of convergence, we want to have


 








Least-Squares Temporal Difference (LSTD)
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LSTD solution:



 

Same solution as convergence point of TD-learning



One shot! No iterations necessary for policy evaluation


LSQ: Adaptation for learning the Q-function



 
 
 


Used for Least-Squares Policy Iteration (LSPI) 
  
Lagoudakis and Parr, Least-Squares Policy Iteration, JMLR


 





State space: 

   angle of handlebar,     vertical angle of bike,    angle to goal 

Action space: 5 discrete actions (torque applied to handle, displacement 

of rider) 

Feature space: 20 basis functions…
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Learning to Ride a Bicycle 
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Fitted Q-iteration


In Batch-Mode RL it is also much easier to use non-linear function 
approximators


•  
Many of them only exists in the batch setup, e.g. regression trees


•  
No catastrophic forgetting, e.g., for neural networks.


•     Strong divergence problems, fixed for Neural Networks by ensuring 
that there is a goal state where the Q-Function value is always zero 
(see Lange et al. below).


Fitted Q-iteration uses non-linear function approximators for approximate 
value iteration.




Ernst, Geurts and Wehenkel, Tree-Based Batch Mode Reinforcement Learning, JMLR 2005

Lange, Gabel and Riedmiller. Batch Reinforcement Learning, Reinforcement Learning: State of the Art




31


Fitted Q-iteration


Given: Dataset 


Algorithm:



Initialize 
 
 
    , input data:  



for k = 1 to L



 
Generate target values:



 
Learn new Q-function:



end 


 Like Value-Iteration, but we use supervised learning methods to approximate       
 the Q-function at each iteration k
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Fitted Q-iteration


Some Remarks: 


   Regression does the expectation for us 


   The max operator is still hard to solve for continous action spaces



 
For continuous actions, see: Neumann and Peters, Fitted Q-iteration by 

 
 
Advantage weighted regression, NIPS, 2008
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Case Study I: Learning Defense
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Success
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Dueling Behavior
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Case Study II: Learning Motor Speeds
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Case Study III: Learning to Dribble
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Value Function Methods


  ... have been the driving reinforcement learning approach in the 1990s.


  You can do loads of cool things with them: Learn Chess at professional 
level, learn Backgammon and Checkers at Grandmaster-Level ... and 
winning the Robot Soccer Cup with a minimum of man power.


So, why are they not always the method of choice?


 You need to fill-up you state-action space up with sufficient samples.


 Another curse of dimensionality with an exponential explosion.


  Errors in the Value function approximation might have a catastrophic    
effect on the policy, can be very hard to control


  However, it scales better as we only need samples at relevant 
locations.



