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The Bigger Picture: How to learn policies
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Purpose of this Lecture

Often, learning a good model is too hard

= [he optimization inherent in optimal control is prone to model errors,
as the controller may achieve the objective only because model errors
get exploited

=Optimal control methods based on linearization of the dynamics work
only for moderately non-linear tasks

=Model-free approaches are needed that do not make any assumption
on the structure of the model

Classical Reinforcement Learning:

=®3Solve the optimal control problem by learning the value function, not
the model!
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Markov Decision Processes (MDP)

Classical reinforcement learning is typically formulated for the
iInfinite horizon objective

Infinite Horizon: maximize discounted accumulated reward

T = o por (02060 (51, )

0 <~ < 1...discount factor

Trades-off long term vs. immediate reward



Value functions and State-Action Value Functions

Refresher: Value function and state-action value function can be
computed iteratively

VT(s) =E, [7“(8, a) +vEp [V7(s') |S}

= [ m(als) ( s a)+7f73(s’]s,a)V“(s’)ds’>da

o

=r(s,a) —I—W/P(s’\s,a)/W(a’\s’)Q”(s’,a’)da'ds’

Q™ (s,a) =r(s,a)+vEp . [Q”(S’, a')



Finding an optimal value function

Bellman Equation of optimality

V*(s) = maxq (7“(8, a) +Ep [V*(s')]s,a] )

:} lterating the Bellman Equation converges to the optimal value

function}/ ™ and is called value iteration

Alternatively we can also iterate Q-functions...

Q*(s,a) =r(s,a) +~

p [maxe Q*(s',a’) |s, al
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Value-based

—Reinforcement Learning

Classical Reinforcement Learning

Updates the value function based on samples

D ={s;,a;,r;, 8 }ic1.. N

We do not have a model and we do not want to learn it

Use the samples to update Q-function (or V-function)

Lets start simple:

Discrete states/actionsﬂ Tabular Q-function



Temporal difference learning

Given a transition (s¢, a:, ¢, 5¢+1), we want to update the V-function
Estimate of the current value: V (s;)
1-step prediction of the current value: V(s,) = r; + 4V (s141)

1-step prediction error (called temporal difference (TD) error)

575 — T'¢ —+ ’)/V(St_|_1) — V(St)

Update current value with the temporal difference error

Vaew(st) = V(sy) + ady = (1 — @)V (sy) + alry + vV (s¢11))
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Temporal difference learning

The TD error

575 — T'¢ —+ ’)/V(St_|_1) — V(St)
compares the one-time step lookahead prediction

AN

V(se) =re + 7V (s¢41)
with the current estimate of the value function V' (s¢)

AN

> if V(sy) > V(s) than V (s;) is increased

> if V(s)) < V(s;) than V(s;)is decreased
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Dopamine as TD-error?

Temporal difference error signals can be measured in
the brain of monkeys
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19 Monkey brains seem to have it...




Algorithmic Description of TD Learning

Init: V" (s) < 0

Repeat { =t + 1
Observe transition (S¢» Gt, Tt St41)
Compute TD error 0 = 74 + YVi(ss1) — Vi(s¢)
Update V-Function V;11(s:) = Vi(s:) + ady

until convergence of V

=®Used to compute Value function of behavior policy

=»Sample-based version of policy evaluation
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Temporal difference learning for control

So far: Policy evaluation with TD methods

Policy Evaluation:

Estimate the Value Function V™

Policy Improvement:

Update the Policy

Can we also do the policy improvement step with samples?

Yes, but we need to enforce exploration!

1 —e+e€/|A], if a=argmax, Q7 (s,a’)
e/| A, otherwise

_ __ exp(fQ(s,a))
Soft-Max Policy: m(als) = S exp(BQ(s, a))

Epsilon-Greedy Policy: 7 (a|s) = {

m) Do not always take greedy action
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Temporal difference learning for control

Update equations for learning the Q-function (s, a)
Qir1(8t;a1) = Qu(5t,ar) + ady, 0y =1 +¥Qe(Se41,a7) — Qi(S¢, ay)
Two different methods to estimate a-
Q-learning: o, = argmax,Q¢(S¢11,a)
Estimates Q-function of optimal policy
Off-policy samples: a? 75 a¢11
SARSA: 47 = Qi1 ,where ai+1 ~ T(a|siy1)
Estimates Q-function of exploration policy
On-policy samples

‘] 5 Note: The policy for generating the actions depends on the Q-
function®m® non-stationarv policv
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Approximating the Value Function

In the continuous case, we need to approximate the V-function (except for
LQR)

Lets keep it simple, we use a linear model to represent the V-function

VT(s) m Vu(s) = @' (s)w

How can we find the parametersw ?

m) Again with Temporal Difference Learning
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TD-learning with Function Approximation

Derivation:

Use the recursive definition of V-function:

MSE(w) ~ MSEgs(w) = 1/N 31| (f/”(si) — Vw(si)>2
with VW(S) = K, T(S, a) + Ep [Vwold (S/)‘S, a’]]

4> Bootstrapping (BS): Use the old approximation to get the target
values for a new approximation

How can we minimize this function ?

Lets use stochastic gradient descent

13



Refresher: Stochastic Gradient Descent

Consider an expected error function,
Ey=Bylew(@)] ~ /N, eo(®), @~ p(x)

We can find a local minimum of E by Gradient descent:

dE., N deg(x;)

We+1 — WE — Oékw — W — Ok Zz’zl dw

Stochastic Gradient Descent does the gradient update already after a
single sample

dey,(xr)
dw
Converges under the stochastic approximation conditions

©.@) 0.
g Q= OQ, E ai < o0

WEe4+1 — Wi — Ok
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Temporal difference learning

Stochastic gradient descent on our error function MSEg

MSEpgs ¢ (w) = 1/NZ ( (si))2

— 1/NZ (15 + YV, (85) — Vw(si))2

i=1
Update rule (for current time step t,V,,(s) = ¢! (s)w )
dMSEgRs
Wil = Wi + O
dw W=Wt¢

Wit1 = W T &(T(Sta at) + vV, (St41) — wt(st))ﬁbT(St)
= Wt -+ &5t¢T(St)

with 8 = (8¢, at) + Vi, (8¢41) — Vi, (8¢)



Temporal difference learning

TD with function approximation

Wt = Wy —+ @5t§bT(St)
Difference to discrete algorithm:

= [D-error is correlated with the feature vector

= Equivalent if tabular feature coding is used, i.e., ¢(s;) = e;
Similar update rules can be obtained for SARSA and Q-learning

Wiy] = Wt T &(T(St, a:) +7Qw, (8t+1,a7?) — Qu, (8¢, at))qu(st, a)

where Qw(sa a') ~ ¢T(87 a’)w
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Temporal difference learning

Some remarks on temporal difference learning:
=® [ts not a proper stochastic gradient descent!!
» Why? Target values V™ (s) change after each parameter update!
We ignore the fact that V”(s) also depends on

=® Side note: This ,ignorance” actually introduces a bias in our
optimization, such that we are optimizing a different objective
than the MSE

=® |n certain cases, we also get divergence (e.g. off-policy samples)

= TD-learning is very fast in terms of computation time O(#features),
but not data-efficient |:> each sample is just used once!

22 Dann, Neumann, Peters: Policy Evaluation with Temporal Differences:
A survey and comparison, JMLR, in press



Sucessful examples

Linear function approximation
Tetris, Go

Non-linear function approximation
TD Gammon (Worldchampion level)

Atari Games (learning from raw pixel
input)

23
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File Options Help

It's your turn.
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Batch-Mode Reinforcement Learning

Online methods are typically data-inefficient as they use each data point
only once
D = {8i7 a;, T, 3;}
1=1...N
Can we re-use the whole ,,batch” of data to increase data-efficiency?

- Least-Squares Temporal Difference (LSTD) Learning

 Fitted Q-Iteration

::) Computationally much more expensive then TD-learning!

25



Least-Squares Temporal Difference (LSTD)

Lets minimize the bootstrapped MSE objective (MSEg)

N
MSEs = 1/N 3 (rlsisa) +7Vis () — Vao(s:))
1=1

Least-Squares Solution:

W = ((I)T(I))_l(]:)T(R + ”Y(P,wold)

with & = [p(s1), P(s2), ..., d(sn)]”

B = [p(s)), p(sh), ..., d(sy)]"
26



Least-Squares Temporal Difference (LSTD)

Least-Squares Solution:
w=(®TP®)"1® (R + vP ' woq)

Fixed Point: In case of convergence, we want to have w, 4 = w

w=(®T®)" 1P (R +~P'w)
(I—~(®73)"'3T®)w = (®73)"'&TR
(P1P) P! (& — 7P )w=(P'P) PR
Pl (D —v®)w=d'R

27



Least-Squares Temporal Difference (LSTD)

LSTD solution:
w=(®T(®—~1®'))  ®'R
Same solution as convergence point of TD-learning

One shot! No iterations necessary for policy evaluation

LSQ: Adaptation for learning the Q-function

Policy Evaluation:

@ — [¢(817 al)? ¢(827 a/2)7 c ooy QS(SN, a,N)]T Estimate the Value Function V'™

T
@/ — [¢(827 a2)7 ¢<837 a?))) * ¢(8N+17 a’N+1)] Policy Improvement:

Update the Policy

f‘> Used for Least-Squares Policy Iteration (LSPI)

Lagoudakis and Parr, Least-Squares Policy Iteration, JMLR
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Learning to Ride a Bicycle

State space: s = [0, 0, w,w, @, ]
6 angle of handlebar, w vertical angle of bike, (0 angle to goal

Action space: 5 discrete actions (torque applied to handle, displacement
of rider)

Feature space: 20 basis functlons |
(1, w., w, w=, &, ww. 6,0, 8%, 6%, 68, wﬁ wh*, w20, . V. DO, P, D2, PO )T
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Fitted Q-iteration

In Batch-Mode RL it is also much easier to use non-linear function
approximators

- Many of them only exists in the batch setup, e.g. regression trees
*  No catastrophic forgetting, e.g., for neural networks.

- Strong divergence problems, fixed for Neural Networks by ensuring
that there is a goal state where the Q-Function value is always zero
(see Lange et al. below).

Fitted Q-iteration uses non-linear function approximators for approximate
value iteration.

Ernst, Geurts and Wehenkel, Tree-Based Batch Mode Reinforcement Learning, JMLR 2005
Lange, Gabel and Riedmiller. Batch Reinforcement Learning, Reinforcement Learning: State of the Art
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Fitted Q-iteration

Given: Dataset ) = {SZ‘, a;,r;, 8;}
i=1...N
Algorithm: - T T

Initialize Q[O] (s,a) =0,inputdata: X = | :
T T
fork=1toL L SN AN

[k L
Generate target values: q,L[ = r; + ymaxge Q1L (s, a)

Learn new Q-function: Q! (s,a) < Regress(X, q[kl)
end

=® |ike Value-lteration, but we use supervised learning methods to approximate
the Q-function at each iteration k

31



Fitted Q-iteration

Some Remarks:
= Regression does the expectation for us
Q"(s,a) ~ Ep [r(s, a) + ymaxg QF (s, a’)]
= The max operator is still hard to solve for continous action spaces

For continuous actions, see: Neumann and Peters, Fitted Q-iteration by
Advantage weighted regression, NIPS, 2008
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Case Study |: Learning Defense

33

Within the RL framework, we model the ADB learning task
as a terminal state problem with both terminal goal S™ and
failure states S—. Intermediate steps are punished by con-
stant costs of ¢ = 0.05, whereas J(s) =0.0 for s € ST and
J(s) = 1.0 for s € S~ by definition (cf. Eq. 8).
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Dueling Behavior
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Case Study ll: Learning Motor Speeds
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0 if |y — w| <4,

36 c(s,a, ) =c(s) = {0.0l else.



Case Study lll: Learning to Dribble
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Value Function Methods

= ... have been the driving reinforcement learning approach in the 1990s.

= You can do loads of cool things with them: Learn Chess at professional
level, learn Backgammon and Checkers at Grandmaster-Level ... and
winning the Robot Soccer Cup with a minimum of man power.

So, why are they not always the method of choice?
=You need to fill-up you state-action space up with sufficient samples.
=® Another curse of dimensionality with an exponential explosion.

= Errors in the Value function approximation might have a catastrophic
effect on the policy, can be very hard to control

= However, it scales better as we only need samples at relevant

38 locations.



