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Abstract— This article provides a review of the Decision
Transformer, a new approach to framing reinforcement learning
as a sequence modeling problem. For modeling trajectories
as sequences, the representation is modified by adding the
return-to-go token. The modeling architecture is a decoder-only
variant of the Transformer architecture and uses masked self-
attention for autoregressive action prediction. Results of the
original paper show that the Decision Transformer provides
a valid alternative in offline reinforcement learning tasks but
leave space for future work in regards to the importance of the
size of the context window and effect of the return-to-go token.

I. INTRODUCTION

Learning by interaction with an environment is a foun-
dational idea underlying many theories of intelligence [15].
For humans, interaction plays a crucial role in learning
and represents an important source of knowledge about the
environment. A computational approach to learning from
interaction is called Reinforcement Learning (RL) [15]. The
field of RL focuses on the development of efficient methods
that enable an agent to learn goal-directed behavior from
interaction with an environment.

Formally, problems in RL are formulated with states,
actions, and rewards (see Figure 1). At time step t, an agent
situated in the state st takes an action at which transfers
the agent to a successor state st+1. The decision of what
action to take in which state is based on a policy, a set
of rules that determines the interaction of the agent with
the environment. A distinction is drawn between determinis-
tic policies a = π(s) and probabilistic policies a ∼ π(a|s),
where a state is mapped to a probability distribution over
actions instead of a single action.

For every choice of action, the agent receives a reward,
which serves as a basis for evaluating the quality of its
choice. Over the lifetime of an agent, the rewards of the
individual timesteps are accumulated, and the cumulative
reward is called return. The task of the agent is to change
and develop its policy in a way that maximizes cumulative
rewards (return) and, at each timestep, takes the optimal
decision for each state, which results in optimal behavior.

The conventional algorithms tackling the given problem
setting in RL are divided into two classes: model-free and
model-based [7]. Both have different approaches: model-free
methods directly learn policies based on evaluation of sam-
pled trajectories, whereas model-based methods first build a
model of a robot’s state dynamics and subsequently use this
model for policy improvement [7]. Although algorithms from
both classes are successfully trained and used on different RL
tasks, they also have their limitations and require additional

Fig. 1. The agent-environment cycle visualizes the main principles of
reinforcement learning: observing states, choosing actions, and receiving
rewards.

modifications to ensure stability and convergence. Model-
based approaches are strongly dependent on the quality of
the learned model. Due to modeling errors, they are often
brittle and need additional regulations and constraints to
prevent model exploitation. Model-free strategies require real
robot interactions to create data and therefore are more time-
consuming [7].

A new approach, framing RL as a sequence modeling
problem, is the Decision Transformer (DT). The DT is based
on the Transformer architecture [16], a network architecture
widely used in fields, such as Natural Language Process-
ing, or Computer Vision, due to its scalability and ability
to resolve long-range dependencies [5]. Transformers have
shown successes in a variety of applications [4, 13], which
resulted in several variants of the original framework due
to their modularity. The DT is also a modified version of
a Transformer and performs autoregressive action prediction
over trajectories. Reward assignment is done directly via self-
attention and therefore dispenses with components normally
used in conventional RL, e.g., value functions or policy
gradients [5].

This paper presents a review of the DT. First, we briefly
introduce how sequence modeling is applied to RL. Next, we
give an overview of the used Transformer architecture and
provide details about the changes that have been made for the
DT. After that, we cover the self-attention mechanism used
in Transformers and how it is used for RL. Furthermore, we
analyze the learning performance and other properties of DT
based on the experimental results [5].

II. RELATED WORK

A similar approach using the Transformer architecture
is the Trajectory Transformer [9]. The paper repurposes
beam search for sequence generation by biasing trajectory



samples according to cumulative reward. The flexibility of
this approach is demonstrated across long-horizon dynam-
ics prediction, imitation learning, goal-conditioned RL, and
offline RL.

III. REINFORCEMENT LEARNING AS A SEQUENCE
MODELLING PROBLEM

In this section, we focus on the formulation for RL as
a sequence modeling problem and describe how the regular
trajectory representation is modified for sequence modeling
with a Transformer architecture.

In sequence modeling, a trajectory is seen as a list of
tokens, τ = (s0, a0, r0, s1, a1, r1, s2, a2, r2, ..., sT , aT , rT ).
Three tokens (st, at, rt) correspond to one timestep, there-
fore a trajectory with k timesteps is represented by 3k tokens.
The DT trains on rollouts of fully completed trajectories and
should be able to generate actions based on future desired re-
turns. Because the DT is an autoregressive model, it can only
attend over past tokens and past rewards, which do not reflect
the future desired returns. Therefore the trajectory represen-
tation is adjusted and the reward tokens are replaced with a
return-to-go token R̂t =

∑T
t′=t rt′ . Modifying a trajectory

with the return-to-go leads to the following representation
τDT = (R̂0, s0, a0, R̂1, s1, a1, R̂2, s2, a2, ..., R̂T , sT , aT ). In
every timestep, when executing an action, the achieved
reward is subtracted from the return-to-go token and the
decremenation process is repeated until episode termination.
The trajectory representation as sequence should enable
learning the internal structure of the sequence and discover-
ing meaningful patterns, to be able to conditionally generate
actions at test time.

IV. DECISION TRANSFORMER

In this section, we provide an overview of the Decision
Transformer. First, we present the architectural details and
modifications due to the RL setting. Further, we explain the
self-attention mechanism used for the next token prediction
and show the training process with trajectories.

Fig. 2. Encoder-Decoder structure of a Transformer. An input sequence
is passed through a series of encoders sequentially, after which the final
encoder output is passed in parallel to a stack of decoders.

Fig. 3. GPT architecture used for the Decision Transformer. After an input
sequence is passed through the input embeddings and positional encodings
it is processed by N stacked identical decoders.

A. Architecture Foundations of the Decision Transformer

The Transformer was first presented as a neural net-
work architecture for efficient modeling of sequential data
[16]. Since then Transformers have significantly influenced
progress in machine learning fields such as Natural Language
Processing [6, 17] and Computer Vision [18, 8]. The original
architecture consists of stacked encoder and decoder blocks
(see Figure 2), but thanks to its popularity, several variations
of the architecture have emerged [10, 14, 1].

The foundation for the DT is the Generative Pre-trained
Transformer (GPT) model [12], an n-layer decoder-only
Transformer (see Figure 3). The GPT was presented for
pre-training a language model on unlabeled text corpora,
leveraging linguistic information to learn a general rep-
resentation, used further for task-specific fine-tuning. N -
layer stands for n stacked identical decoders. Each decoder
has two sublayers; first, a masked multi-head self-attention
mechanism, and second, a position-wise fully connected
feed-forward network. For further information, consult the
original papers [12, 16].

Due to the self-attention mask, the GPT model generates
tokens autoregressively, which means that at time step t,
the self-attention mask limits the transformer to attend over
tokens with a time-index of t − 1 or smaller and not use
the whole sequence. When seeing a trajectory as a sequence
of tokens, there are three tokens at each timestep with
different token types: return-to-go, state, and action. The
GPT architecture is designed for one token type and one



token at one timestep, so for the DT, the input embeddings
and the positional encodings of the GPT architecture are
modified. To obtain token embeddings, a linear layer is
learned for each token type, projecting raw inputs to the
embedding dimensions [5]. For the positional encoding, an
additional linear layer is learned for each time step. Since
in RL one timestep responds to three tokens (Rt, st, at), the
DT differs to the standard positional encoding of the GPT,
and learns a new linear layer for every three tokens.

B. Self-Attention Mechanism

Self-attention is an attention mechanism relating different
positions of a single sequence to compute a representation of
the sequence [16]. The computational process is a reweighing
of the mathematical token representation with a key, query,
value concept to add information about individual token
dependencies and therefore produce a context richer math-
ematical substitution of the sequence. To get an intuition,
consider the example ”Bank of the river”. Depending on the
context, the word ”bank” can have several meanings. The
goal is, by using self-attention, to mathematically leverage
the interdependencies of the individual words and add con-
text to indicate that ”Bank” refers to ”river” and therefore
is not a bank in the park to sit on. Figure 3 visualizes one
self-attention function. The vectors (v1, v2, v3, v4) represent
the individual tokens of ”Bank of the river”. To capture
the dependencies of all tokens concerning the token ”river”
(v4) we use v4 as the query. The keys are the original
vectors (v1, v2, v3, v4) and the normalized dot product be-
tween keys and query results in the individual weights
(w41, w42, w43, w44) for the values. The values are also the
original vectors (v1, v2, v3, v4) and are multiplied by the
weights, which results in a context richer representation of
each token in relation to the token ”river”.

A distinction is made between additive and multiplicative
attention (dot product), but due to the speed and space-
efficiency in Transformers, dot product attention is used [16].

With multi-head attention instead of performing a single
attention function, the Transformer performs multiple atten-
tion functions in parallel. The inputs are linearly projected
versions of the keys, queries, and values. Using several
functions enables the model to jointly attend to information
from different representation subspaces at different positions,
which permits for a result richer in context. The output values
of the individual functions are concatenated and projected,
resulting in the final values.

Self-attention is limited to a context window of size k,
allowing the Transformer to only attend over k tokens.

C. Training Process with the Decision Transformer

For training, the DT uses sampled minibatches of sequence
length N from a dataset of offline trajectories. With a context
window of size w, the DT attends over w earlier tokens for
predicting the next action token at at the timestep t.

The loss between the newly generated token at
new and

the original token at from the sequence is measured using
the mean squared error, and the parameters of the DT

Fig. 4. Single self-attention operation. The keys, queries and values concept
outputs a weighted version of the input with more context added.

are optimized via gradient descent. Executing the generated
token at results in feedback in the form of a new state st+1

and return-to-go token Rt+1 = Rt − r(st, at). The new
tokens at, st+1, and Rt+1 are appended to the sequence and
the process is repeated until episode termination. For a visual
representation, see Figure 5.

V. EVALUATION OF THE DECISION TRANSFORMER IN
OFFLINE REINFORCEMENT LEARNING

In this section, we give an overview of the performance
of the DT. We first provide definitions for the terms offline
reinforcement learning, Markov Decision Process, and Tem-
poral Difference learning. Afterward, we present the learning
performance of the DT and further properties based on the
experimental results [5].

A. Offline Reinforcement Learning

In offline reinforcement learning, only a limited amount of
data stands available. The given dataset consists of trajectory

Fig. 5. Next-token generation of the Decision Transformer. At timestep t,
for predicting at, the DT attends over w preceding tokens, including st.



rollouts of arbitrary policies and the goal is to learn a good
policy based on these trajectories. An offline RL setting is
harder because an agent cannot collect additional feedback
(data) by exploring the environment, as it is possible in online
reinforcement learning.

B. Markov Decision Process

A Markov decision process (MDP) is a mathematical
model of decision-making under uncertainty defined by

• state space S,
• action space A,
• transition dynamics p(st+1|st, at),
• reward function r(s, a),
• initial state distribution µ0(s),

constituting the tuple (S,A, p, r, µ0). The MDP leverages
the Markov property. The conditional probability distribu-
tion of future states of the process only depends upon the
present state and not the past. In the context of RL the
Markov property means that the state st+1 only depends
upon the state st and the action at resulting from the policy,
p(st+1|st, at, st−1, at−1, ...) = p(st+1|st, at) [11].

C. Temporal Difference Learning

Temporal Difference Learning (TD-Learning) algorithms
update a value function based on a one-step lookahead
prediction. The prediction value is computed with a one-step
prediction error, called temporal difference error or TD-error.
Algorithmic Description of TD-Learning with discount factor
γ and step-size parameter α:

1) Observe transition (st, at, rt, st+1)
2) Compute TD error δt = rt + γVt(st+1)− Vt(st)
3) Update V-function Vt+1(st) = Vt(st) + αδt

Instead of using the V-function, TD-Learning can also be
done for the Q-function. For a detailed explanation see [15].
A state-of-the-art model-free TD-learning algorithm is Con-
servative Q-Learning (CQL) [5], which was also used as a
comparison to the performance of the DT.

D. Test Setting

The DT was evaluated alongside model-free offline RL
and imitation learning algorithms, all trained in a MDP in an
offline RL setting. The main points of comparison are CQL
for TD-learning and Behavior Cloning (BC) for imitation
learning. The performance was measured in different discrete
tasks from Atari [2] and continuous control tasks from
OpenAIGym [3]. In Atari, the DT performs comparably to
CQL on 3 out of 4 games and better than BC in 3 out
of 4 games. Whereas in the OpenAiGym tasks, the DT
outperforms both CQL and BC in nearly all tasks. For more
detailed results, see the original tables [5].

E. Further Experiments

The authors documented further experiments, which are
summarized in this subsection.

1) Decision Transformer in Comparison to Behavior
Cloning: To evaluate characteristics of the DT concerning
BC, Percentile Behavior Cloning (%BC) was introduced
as a new learning method. %BC is defined by perform-
ing BC on only the X best percent of all trajectories
available in the dataset (e.g. 10%BC, use the best 10%
of available trajectories for behavior cloning). Tested were
different percentages (10%, 25%, 40%, 100%) in a low and
high data setting. When data is plentiful 10%BC achieves the
best performance, closely followed by the DT. In contrast,
when using low amounts of data %BC performs better with
increasing percentage, but still is outperformed by the DT.

2) Specifying the Return-To-Go Token at Test Time: At
test time the DT is handed the first return-to-go token R0,
indicating the desirable return to reach in the task. In this
experiment for different tasks, R0 was chosen in a high
variation, to test how well the DT can model the distribution
of returns. The results show a high correlation between
desired target return and true observed return.

3) Using a Longer Context Length: The context length K
specifies how many tokens the DT can attend for predicting
the next token. In this experiment a DT with context length
K = 30 (or K = 50 for Pong) and another DT with
K = 1 were compared on the same Atari games, resulting
in superior performance when using a larger context length.

4) Performing Effective Long-Term Credit Assignment:
The Key-to-Door environment task consists of 3 phases:

1) agent is placed in a room with a key
2) agent is placed in an empty room
3) agent is placed in a room with a door

where an agent first receives reward when reaching the door,
but only if it picked up the key in the first phase. To complete
the task successfully, reward must be propagated through the
whole episode. The authors compared the DT, CQL, BC, and
%BC with using 1K and 10K random trajectories for training
(%BC was only trained on the successful trajectories). While
DT and %BC performed equally well, CQL and normal BC
both performed poorly.

5) DT as Accurate Critic in Sparse Reward Settings: Here
the DT was modified to output return tokens in addition to ac-
tion tokens on the Key-to-Door environment. The additional
return tokens indicate the reward probability throughout the
task. According to the authors, the DT constantly updates
the reward probability based on events. When looking at a
particular successful episode the attention weights from all
time steps are concentrated on key events, such as picking
up the key and reaching the door.

6) Performance in Sparse Reward Settings: In this ex-
periment, the DT was compared to CQL, BC, and %BC
in a delayed return version of the D4RL benchmarks in
the OpenAIGym task Hopper. All reward earned along the
trajectory is received only at the final timestep. The DT
achieves slightly worse results than in the original dense
reward benchmarks, while CQL performs poorly.



VI. DISCUSSION

In this section, we discuss the results reported for the
experiments and present questions arising from them.

There is an inconsistency in the results presented in [5]
in Table 2 and Table 3. The Reacher environment with
medium dataset scores 48.9 in BC and 58.4 in 100%BC. The
results for BC and also %BC are originally conducted by the
paper [5] and not taken from other sources. What stands out
is the performance loss for 100%BC in HalfCheetah with
the Medium-Replay Dataset. The other percentages perform
nearly equal, ranging from 40.8 to 41.1, whereas 100%BC
reaches a score of 4.3. We suspect the 4.3 could be a typing
error, but if not, it would be interesting to know why there is
such a huge performance gap between 40%BC and 100%BC.

Furthermore, the results from %BC give some interesting
insights on the effectiveness of BC concerning the quality
and quantity of the data used for training. In general, one
would assume that 100%BC (normal BC) performs best
since it sees all the data and therefore generalizes better to
unseen situations, which would result in more stable policies.
For settings with low amounts of data, this assumption is
reasonable as shown in table 4 in [5]. Performing %BC on
a too-small dataset deteriorates the performance, becoming
worse as the percentage of seen trajectories decreases. But
when data is plentiful, on average 10%BC achieves the best
results. We suggest, that above a certain threshold of avail-
able data, quality is more important than quantity for learning
a good policy with BC. However, this is only the case after a
minimum data size is exceeded and generalization becomes
possible based on the quality subset. The DT somewhat fits
the assumption. The paper assumes that in high data regimes,
the DT can focus on a subset of trajectories after seeing all
data and therefore focus on the quality. But when the amount
of available data is low the DT outperforms %BC because
it can see and use all the data and therefore achieve better
generalization.

In the experiments in [5], the size of the context window
is adjusted on a per-task basis. For example, in the key-
to-door environment, the context window is of the size
of the episode length. The paper evaluated that a longer
context length is beneficial for performance. But it would be
interesting to further investigate, how the efficiency of the
DT decreases with an increasingly smaller context window.
Maybe additional experiments in this direction could provide
insight into how huge the performance loss would be if the
context window can’t cover sufficient events for generating
a reliable next token and if the DT could be modified to
mitigate such a problem.

The results indicate that the DT provides a valid alternative
to conventional approaches in the offline RL setting, but it is
not apparent how it fits among other offline RL algorithms.
Based on the correlation in scores with %BC the DT could
be seen as an advanced model in imitation learning. It
also predicts based on seen data, but can more effectively
utilize prior experience in low data settings and therefore
outperform BC as well as %BC. However, it is unclear

what role return-to-go plays in the effectiveness of DT.
Because Behavior Cloning is reward agnostic [5], further
evaluation with reward-dependent algorithms could provide
more insights into this.

VII. CONCLUSION

We reviewed the Decision Transformer, which generates
future action tokens based on preceding states, action, and
return-to-go tokens. The approach proposes a method for
reinforcement learning via sequence modeling. We provided
additional explanations and detailed descriptions to make
the topic more accessible for readers without a background
in reinforcement learning and sequence modeling. Results
of the original paper show that the Decision Transformer
provides a valid alternative in offline reinforcement learning
tasks and therefore lays a foundation for future work for
combining ideas in sequence modeling and reinforcement
learning.
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