
Imitation Learning for Bimanual Manipulation

Adriaan Mulder

Abstract— Imitation Learning for bi-manual Manipulation
represents a cutting-edge area in robotics, aiming to teach
robots the intricacies of using two hands through imitation
of human or expert demonstrations. Various methods, from
traditional behavioral cloning to advanced techniques like deep
reinforcement learning, have been developed. We want to review
several imitation learning methods and discuss the challenges
associated with their application in bimanual robotics. Be-
ginning with dynamic movement primitives, which are the
foundation of contact rich manipulation policies using the least
squares approach, we will also show some state-of-the-art deep
learning methods which are even able to run on low cost robotic
hardware and are thus easy to reproduce. We will discuss the
advances and achievements of different approaches and possible
future research opportunities of combining some of the novel
ideas.

I. INTRODUCTION

This work highlights some of the prominent approaches
in imitation learning, with a specific focus on methods that
have been applied to bimanual manipulation. A review of
several key papers in this field is used to emphasize the
underlying similarities and key achievements obtained so
far. We introduce how these methods are structured from
a technical point of view to help the reader gain insight into
this emerging field of research.

Furthermore, we discuss how existing works have applied
these methods to complex situations like low-tolerance in-
dustrial insertion tasks, object transference, and sequential
motor skill behaviors.

For this, we spectate papers underlying three major cate-
gories of machine learning: motor primitive methods, rein-
forcement learning and behavioral cloning. We show research
that shows the basic concepts of these categories and explain
why the application of just the naive methods does not suffice
to successfully complete the aforementioned complex tasks
having many contacts and thus many interaction forces which
are difficult to model.

We start with a basic imitation learning mechanism called
Dynamic Movement Primitives which are known to general-
ize really well and show several improvements in the class
of Motor Primitives that enable systems to generalize even
in contact rich environments and thus control bimanual ma-
nipulators to solve tasks. After this, we review a successful
case of learning movement primitives and applying them in
reinforcement learning algorithms. For the third category,
we explain the basic ideas of behavioral cloning and show
it’s shortcomings for high precision robotic tasks. Looking
at different papers describing approaches which utilize and
improve upon the ideas of behavioral cloning, we see very
promising results with a bimanual robot in complex contact
rich tasks through novel and maybe unintuitive solutions.

Lastly we discuss the methodologies, findings and results
of these state of the art techniques to analyze potential future
research opportunities.

II. MOTOR PRIMITIVES METHODS

The first class of imitation learning algorithms we focus
on are Movement Primitives. They originate in a very simple
idea of function approximation to copy demonstrated joint
trajectories and then calculating needed forces to push a
manipulator along those paths. Building on deterministic
dynamic movement primitives which allow for very good
imitation performance in static environments, improvements
based on probability theory deliver outstanding results even
in stochastic and changing settings.

A. Dynamic Movement Primitives

The very basis of many successful Imitation learning
approaches are DMPs [7, 8, 15]. DMPs originate from the
idea, that movement can be modeled through trajectories
in space, velocity and acceleration. The objective for our
manipulator is to follow predefined trajectories, that we can
describe through virtual external forces which are added onto
a stable dynamical system as controlling signals [12]. Using a
simple damped spring modeled in a second-order differential
equation

ÿ = α(β(g − y)− ẏ) (1)

g is the goal position, y the current systems observed
position, ẏ the current systems observed velocity and ÿ is
the desired acceleration to reach the goal [3]. Using correct
values for α and β, we gain a stable, critically damped
system which would - over time - converge to a fixed point
(y, ẏ) = (g, 0). We can add our trajectory defining forces
through a nonlinear function f .

ÿ = α(β(g − y)− ẏ) + f (2)

Trajectories are typically modelled by a mapping of
timestamps and positions. We can obtain such a trajectory
e.g. through a single demonstration of the movement. We
can generally encode such modelled trajectories with least
squares approximation through the use of weighted radial
basis functions Ψ [2]. The function that encodes the demon-
stration is defined as

f(x) =

∑N
i=1 Ψi(x)wi∑N
i=1 Ψi(x)

x(g − y0) (3)

with
Ψi = exp(−hi(x− µi)

2) (4)

being a Gaussian function with the variance hi centered
around ci. x in equation (3) can be interpreted as a phase-
variable replacing a typically used time-variable (f(t) instead
of f(x)) which eliminates time dependence and thus decou-
ples our trajectories from time and allowing for new coupling
modifications such as multiple degree of freedom coupling.
x will start at 1 and ultimately converge to 0, which lets the
force converge to 0 the closer we get to the goal. This will
give the full control of the system back to the pd-controller
which we know is stable. We can see an illustration of the
practical use of the basis functions for one joint in Figure 1.

The second term (g−y0) describes a spacial scaling factor
that scales the weights based on the total distance/position
of the goal [11]. When adding a time-scaling variable τ we
are able to speed up or slow down the movement.

τ ÿ = α(β(g − y)− ẏ) + f (5)

The necessary forces needed to recreate a trajectory, espe-
cially in imitation learning can be done through observing
the trajectories in a demonstration.

ftarget = ÿdemo − α(β(g − ydemo)− ẏdemo) (6)

When inserting ftarget back into our modified damped
spring equation, we add the calculated forces back onto the
control signal and copy the demonstration. It’s also possible
to reset the phase variable x to allow for periodic movement
or chain multiple DMPs.

Fig. 1: Illustration of the scaling properties of discrete
dynamical systems. (a) the goal position is varied from -1 to
1 in 10 steps. (b) The time constant is changed from 0.15 to
1.7 seconds. Every graph is differently weighted combination
of radial basis functions [11].

Basic DMPs can be used for imitation learning as shown
and they bring a lot of benefits such as generalization, spacial
and temporal scaling and temporal modulation [17]. But they
also do bring some problems to the table that is, that the
defined trajectory is based on a single demonstration (or on
the mean of multiple demonstrations) which is known to
not perform optimally in a given environment, but only as
good as the demonstrator. We can improve this behaviour and
add some new benefits when using a probabilistic movement
primitive.

B. Probabilistic Movement Primitives

Unifying several and adding new capabilities of
different DMP frameworks, Paraschos et al. introduced

the idea of probabilistic Movement Primitives (ProMPs).
Building the trajectory not only from a single path from
a single demonstration, but as a distribution of multiple
demonstrations allows for modeling the variance of the
movement at different phases of it. This helps among other
things evaluating the importance of precision for each phase
of the movement.

Similar to DMPs, ProMPs use a maximum likelihood
training procedure to obtain a weighting vector w for a
number of basis functions Φ to encode a demonstrated
trajectory τ = [y0, ...yn] with yt = [qt, q̇t]

T . To correctly
calculate the mean and the variance of the trajectories, we
need to synchronise these trajectories by decoupling them
from time and comparing them by the phase of the movement
they are in. This is necessary, as different trajectories can
have different durations. After calculating the weights of all
N trajectories, we can obtain the mean and variance of the
weight vectors.

µw =
1

N

N∑
i=1

wi, Σw =
1

N

N∑
i=1

(wi−µw)(wi−µw)
T (7)

Finally we can capture the variance of the actual tra-
jectories with θ = {µw,Σw} and the introduction of the
distribution p(w; θ) over the weight vector.

This formulation allows simple coupling of multiple De-
grees of freedom in one trajectory for coordinated movement
by extending the trajectory distribution p(τ ; θ). We just have
to maintain the weight distribution p(w; θ) over a combined
weight vector w = [wT

1 , ...w
T
n]

T for the weight vectors of
every DoF. This brings a huge new advantage in correlating
the movement of every DoF instead of just synchronising
the joints through the phase variable. We are now able to
define points in task space which the end effector should
reach at a given point in time. This kind of modulation is
performed by conditioning the probabilistic model through
adding desired points at a given point in time. For this we
have to define a point y∗

t = [qt, q̇t] with its desired accuracy
xt

∗ = {y∗
t ,Σ

∗
y} and applying the Bayes theorem.

p(w|x∗
t) ∝ N (y∗

t |Φtw,Σ∗
y)p(w) (8)

To fully exploit the obtained trajectory distribution and
stochastic weight distribution Paraschos et al. explain why
a simple PD controller is insufficient and a model based
controller is needed [17].

C. Interaction Primitives

In contrast to ProMPs the interaction primitive (IP)
framework of Amor et al. uses probability theory on
DMPs to update future behaviour based on observed
partial trajectories. This is used in a setting in which
interactions between multiple agents take place. The nature
of human-robot interaction, which is presented in the Paper,
shows variance in each demonstrated example and thus it
is necessary not only to have a modulation of trajectories,

but also to predict the actual trajectory of the interaction
partner and adjust the own behaviour.

To achieve this, the DMP parameters θ =
[wT

1 , g1, ..., w
T
N , gN] in this approach consist of the

basis function weights as shape parameters and new goal
attractor parameters to scale the own movement impromptu
based on the partners observed movement, where N is the
number of DoF. Given the DMP parameters of multiple
trajectories, the parameter distribution p(θ) is estimated to
be Gaussian.

We can formulate the likelihood of an observed partial
trajectory until a given point in time τO of the interaction
partner with an Gaussian model.

p(τO|θ) = N (F ∗|Ωθ, σ2I) (9)

With F∗ being the forcing function of the observation, Ω
the matrix of basis functions and σ2 the observation noise
variance. Using the likelihood we now can calculate the
posterior for the DMP parameters and update the distribution.

p(θ|τO) ∝ p(τO|θ)p(θ) (10)

By learning a new DMP with θ = [θTO, θ
T
C]

T , we now can
easily correlate the estimated movement of the observed
agent and the movement of the controlled agent [1].

D. Bayesian Interaction Primitives

IPs see the phase of the interaction only as the spacial
Positions mapped to time st = δt using a time-alignment
algorithm to align several trajectories. This comes with the
weakness of being unable to estimate the correct position
of our controlled agent based on the observed agents state,
when the observed agents trajectory is partially static. Thus
Bayesian Interaction Primitives extend IPs by adding the
phase variables velocity δ̇ to the robots state as well as the
weights of the basis functions st = [δ, δ̇,w]T . Now static tra-
jectories phases will be estimated correctly. But not only that,
BIPs are now also able to not only make spacial reasoning
but also temporal reasoning, meaning that the phase is not
based on an internal clock anymore, but is re-estimated based
on current observations [21]. Using this formulation and
using the Extended Kalman Filter SLAM, the advantage of
being able to couple the phase estimation to the conditioning
of the recursive state estimation. With the newly defined
state, Bayesian inference avoids high computation cost and
aggregation errors of the phase estimations [5].

III. BI-MANUAL MANIPULATION VIA MOTOR
PRIMITIVES

Now, having talked about several forms of movement
primitives, we can introduce a system for imitation learning
of compliant bi-manual manipulation policies that can
adapt to a spectrum of disturbances in space and time and
also leverage physical contact for themselves in a possibly
contact rich environment.

While Methods like Probabilistic Motor Primitives
(ProMPs) would deliver a good chance of reproducing the
learned demonstrations, they are not able to make an estima-
tion of the tasks progress which is essential for successful
manipulation in contact rich environments when using multi-
ple agents. Motor commands may not get executed accurately
enough when handling interactions with some force. To
be able to generate motor commands that are temporally
adequate and are able to overcome obstacles, Interaction
Primitives are essential. However compared to IPs Idea to
observe an interaction partner, the system uses multi-modal
sensing of the force-torque and joint angles on itself. When
working on a task, using an ensemble of BIPs (EnBIPs),
the system can estimate the progress/the phase and perform
spacio-temporal inference based on the observations - the
robot determines both what to do and when to do it.

A demonstration of it is shown in figure 2.

Fig. 2: Phase estimation is a Gaussian distribution. The
distribution roughly stays constant as long as the obstacle has
not been conquered. In the last picture, after the obstacle has
been overcome, the phase estimate moves forward in time
[21]

This system uses the principles of admittance control to
collect demonstration data without risks, and uses those
demonstrations to learn Interaction Primitives. The IPs
conduct inference over both robots jointly, but both are
controlled separately. The term ”admittance” refers to the
system’s willingness or ability to allow external forces or
motions to affect it. If running against an obstacle, the use of
such an admittance controller prevents the buildup of force.

This framework was tested on a bi-manual setup both in
a simulated and in a real-world setting. To demonstrate the
adaptability to variance in training data, 30 demonstrations
were collected in both settings respectively. In the simu-
lation, the movement was altered through pre-programmed
randomization, in the real world setting the demonstrations
were collected from eight human subjects using different
collection methods. The task was to pick up a bracket with
slightly varying starting positions and placing it onto two
pins with tolerances of 1 and 5mm in simulation and 6mm
in the real world. Through the use of multiple data collection
methods such as kinesthetics or backdriving using a 6 DoF
Space-Mouse Control Stick, the collection and use of force-

torque sensor data has shown to be critical for performance
in a contact-rich environment as it drastically increases its
robustness. Overall this system has shown a success rate of
90% using BIPs. It is sample efficient and can adapt to a
large range of disturbances but it is limited by the quality of
training data, as the phase estimation relies on near optimal
demonstration behaviour.

IV. REWARD-BASED METHODS

Some different promising approaches to bi-manual manip-
ulation are based on reward based learning or reinforcement
learning. In these methods, the system tries to learn a policy
based on a reward function, in which the system tries to
maximize it’s reward by choosing the best action in a task
given the current situation. This enables the robots to gain
insights about it’s behaviour through performance feedback
and adapt it’s control signals to optimize the tasks success.

A. Reinforcement Learning

One major challenge in RL methods is defining a
reward function that leads to the desired behaviour. While
specifying a reward is pretty simple in low dimensional
discrete Markov decision processes (MDPs), the complexity
of shaping a reward grows fast in higher dimensional,
continuous spaces.

One successful approach is learning in multiple stages to
solve the task [13]. In a first stage, the robot learns to divide
the task into sub-tasks or phases and phase-transitions and
represent them in a probabilistic model given the human
demonstrations. After having obtained a model, the approach
employs a second learning phase, in which motor primitives
are created that optimize the transitions between phases.

In the demonstration phase, the system observes the robots
time-variant state st and taken actions at, which lead to
the next state st+1. The actions change in the state depends
in the current phase ρt (which cannot be directly observed
and must be inferred) and is modeled by the probability
p(st+1|st, at, ρt). To learn the conditions of phase transition,
we model the transitions by the probability p(ρt+1|st, ρt). To
learn the specific entry and exit conditions of a phase, a bi-
nary termination variable ϵt is learned and used that decides,
whether a phase transition is possible in the current state
and phase. p(ρt+1|st, ρt). Terminating a phase is modeled
through logistic regression:

p(ϵt = 1|st+1, ρt = i) =
1

1 + e−ω̂T
i ϕ(st+1)

(11)

Initiating a phase is modeled by a distribution:

p(ρt = j|st, ϵt−1 = 1) =
eω̂

T
j ϕ(st)

Σkeω̂
T
k ϕ(st)

(12)

where i and j are some phases, ω̂T
i and ω̂T

j are weight
vectors to terminate or initiate a phase and ϕ(st) is a feature
vector of the regression, of which the weight vectors have
to be learned.

After having learned these transition probabilities of the
multi-phase model, the robot needs to learn how to act
in each of the individual phases, which is solved using
dynamic movement primitives Mt, which are learned using
relative entropy policy search (REPS) [18]. For a given state,
the robots action is performed following a chosen DMPs
trajectory p(at|Mt, st) until the DMP has finished. The
value-based learning’s reward function now is defined on
the phase transition distribution p(ρt+1|st, ρt) so that the
sequence of DMPs between ρ0 as the starting phase and
ρg as the goal phase is the task to optimize.

r(t) = p(ρg|St+1, ρt) (13)

Finally, learning a policy for sequencing DMPs as separate
task makes sense from a standpoint in which not only one
task has to be solved, but multiple tasks might be solved
using the same DMPs, which can also be called ’skills’
and thus allow for building a library of skills. The policy
π(M|st, ρ̃t) to choose the right DMP given the current state
and the estimated phase should maximize the reward:

max
π

inf∑
t=1

γtr(st, ρt,Mt) (14)

The optimal sequence can be learned through value
iteration. In the experimental evaluation of this approach,
a box had to be picked up by two hands. Using only two
demonstrations, the system could successfully replicate the
task when the box was in the same position. When randomly
placing the box, the robot had to learn new weights for the
DMPs using additional reinforcement learning, in which the
phases success was labeled by hand e.g. the first phase was
successful when the right hand touched the box. Using this
technique, the success of lifting the box could be elevated
to over 90% in comparison to 38% using just imitation
learning. Using this method, the DMPs also adjusted to
using different shapes.

Reward based bi-manual RL methods also have shown
to be successful solving different tasks [6] requiring a high
degree of dexterity. The described approach by Kroemer
et al. and many others achieved high success rates not
only using gripper-extended manipulators, but end-effectors
mimicking human hands.

B. GAIL

Generative Adversarial Imitation Learning is a distribution
matching algorithm that displays a neural technique to enable
robots to mimic expert demonstrations more effectively. It
can be applied by training in two steps. First a discriminator
is trained on the expert demonstrations to provide high
probability of correctly differentiating the observations of
these demonstrations and the robots actions following the
initial policy. In the second step, this discriminator is used
as a reward function to train the policy by maximizing over
the discriminator [10].

max
π

min
D

Eπ[logD(s, a)]

+ EπE[log(1−D(s, a))]

− λH(π)

(15)

with H(π) = Eπ[−logπ(a|s)] being the γ-discounted
causal entropy [23]. The goal is to find a saddle point (π,
D) to the equation, at which the weights of the generative
model are chosen in a way such that the discriminator cannot
distinguish data generated from the demonstrations. This is
an open research field for bi-manual manipulation in which
Drolet et al. are working actively.

V. SUPERVISED LEARNING / BEHAVIORAL CLONING

A. With Feed Forward Networks

Behavioral Cloning is a supervised learning approach in
which the learning algorithm is trained through a set of state-
action traces of expert demonstrations.

τ = s1 → a1 → s2 → a2 → s3 → a3 → · · · (16)

It learns to directly map sensory observations to actions taken
following the Markov property which states that a future state
is independent of the past given the present state. Using these
traces τ , a policy πθ with is trained which minimizes the loss
function and thus maximizes the likelihood of the learned
policy being the one which the expert followed.

L = E(s,a)∼τE [−log(π(a|s))] (17)

This policy, which often is trained in a feed-forward neural
network then has the form

a = π(s) = ϕT (s)θ or

a ∼ π(a|s) = N (a|µ(s),Σ(s))
(18)

This leads to very good approximated expert behavior
given enough training data, but generalizes badly to non-
observed states, a phenomenon also known as the covariate
shift, as no action is known that leads to recovery. While
there are some methods (DAGGER [19], DART [14]) to
counteract this and thus able to recover from unseen states,
these methods are quite time-consuming.

Fig. 3: Visual comparison of generalization between naive
BC, DAGGER and DART. Naive BC trains with the given
expert demonstrations and has bad behavior in unseen states.
DAGGER queries the expert for new knowledge when
encountering unseen states and is able to act robustly in
the future. DART trains with the original expert data and
introduces noise to increase the demonstrated state space.

For a bimanual contact-rich setup, naive behavioral
cloning might thus be lacking, as a large set of demonstration
data with high variability is necessary to cover sufficiently
large areas. The utilization of DAGGER or DART methods
could pose challenges or may not be appropriate. DAGGER
may face limitations due to the absence of experts, hindering
the ability to provide requested demonstrations. On the other
hand, employing DART in high-precision scenarios may be
impractical, as injecting noise into the demonstrations could
result in imminent failure.

B. Implicit Behavioral Cloning

To address some of the limitations of feed-forward BC,
implicit behavioral cloning remodels the policy from
a = πθ(s) to â = argmin

a∈A
Eθ(s, a) where E is a continuous

energy function representing the new policy. To learn the
policy’s weights θ the least squares Loss is replaced by
an InfoNCE-style loss [16]. Now not only the observation
is used as input to maximize the likelihood of a policy,
but the actions will be taken into account when learning.
This results in a higher dimensional function, an energy

Fig. 4: A visual representation of the continuous energy
function [9]

landscape, being used to estimate the policy. Usage of such
implicit models is not only advantageous for discontinuous
or multi-valued functions, but also brings better extrapolation
for states outside of the training data’s coverage [9]. They
perform better than explicit BC models in many tasks. One
of them being a bi-manual sweeping task in which two 6
DoF arms are required to scoop small particles into bowls;
a task with vision-based inputs in which the implicit method
had a success rate of about 80%, an improvement of 14%
compared to explicit MSE BC.

VI. SUPERVISED LEARNING WITH ALOHA
Another very novel and promising approach by Zhao et

al. [22] addresses compounding errors of BC methods that
are unable to be solved with DAGGER or DART due to
the complexity of the bimanual setting. They achieve this
through a combination of two concepts called action chunk-
ing and temporal ensembling implementing explicitly non-
Markovian behavior. Action chunking is a concepts of psy-
chology, in which not one action is predicted for each state,

but a sequence of actions is predicted and executed in one go.
With temporal ensembling the system doesn’t have to wait
for one of those chunks to be finished executing. The policy
is queried multiple times, so that several chunks overlapping
each other are obtained. Those overlapping action chunks
are then averaged, leading to smooth behavior. This combi-
nation works well even on comparable low-cost hardware.
To obtain reliable and well estimated actions beyond the

Fig. 5: using action chunking alone would generate a chain of
actions every k time steps. To avoid jumping movements and
increase smoothness and with the help of temporal ensemble,
chunks are queried at every time step and the resulting action
for the step will be chosen as weighted average of different
chunks [22].

next state ALOHA (a low-cost open-source hardware system
for bimanual teleoperation) employs a novel algorithm called
’Action Chunking With Transformers’ (ACT). The state of
the system is represented by the joint space of the bimanual
robot as well as an image feed from four different cameras.
Taking human expert demonstrations with a teleoperation
setup, the robots next joint positions in time is seen as an
actions. Differentiating between the current state and the
action (the next joint position) implicitly gives the force
needed to move with a PID controller. These state-action
traces are then used to train a generative neural network,
specifically a conditional variational autoencoder (CVAE)
[20], to estimate a series of actions of length k, learning
a policy π(at:t+k|st).
The encoder of the CVAE is only used to train the policy
(decoder) and can be discarded later on. The decoder takes
in the robots state (visual camera input processed by convo-
lutional neural networks (CNNs), the joint positions of the
robot and the encoders output of the training phase - the style
variables distribution) and outputs an action chunk.

Training is done by again minimizing the mean-squared
loss function e.g. maximizing the log likelihood of the policy.
By employing action chunks, the overall magnitude of
compounding errors is minimized through the reduction of
the effective horizon in lengthy trajectories, achieved by
lowering the sampling rate of the policy. This also helps with
spatio-temporal correlation, such as pauses in the movement.
The benefits of the ACT algorithm can be observed in exper-

imental results. After merely ten minutes of demonstrations,
the robots are able to slot batteries into a remote control,
slide a ziploc, and put a shoe onto human feet among others
with success rates of about 90%-100% each.

Fig. 6: Comparison of (a) The success rate of action chunking
without temporal ensembling based on the size of the chunk.
chunks of size k=1 had a 1% success rate across several
settings of scripted or human-provided data, while chunks
of size 100 improved to 44%. (b) shows the importance of
temporal ensembling.

VII. DISCUSSION

Faced with similar challenges, all of the mentioned ap-
proaches use different architectures, sensors and models and
achieved comparable results. For the control, each approach
employed different types of controllers. Stepputis et al.
[21] and Kroemer et al. [13] implemented closely related
admittance and impedance controllers, which are designed to
regulate the interaction between a robot and its environment
and thus making it safe to use in dynamic environments with
robot-human interaction. The paper about the ACT algorithm
by Zhao et al. [22] uses a traditional PID controller.
The state space is also defined differently in those methods.
For the task of picking up a box with two high dexterity
hands [13] included the position and orientation of the box,
as well as the positions of the hands and the torque sensors of
the fingers into the state space representation, the complete
input dimensionality was reduced from about 60 inputs to
a total of 8 using principal component analysis, such that
reinforcement learning algorithms could gain insights in
reasonable time. Learning how to pick up the box using only
imitation learning to learn DMPs or motor skills gave a 38%
success rate, applying RL (REPS) to learn the skills increased
it more than 90%. [21]’s EnBIPs used a similar definition
and included the force-torque sensor data, the joint angles
and the translational-rotational objective positions as the state
space, however without dimensionality reduction. Through
the use of different teleoperation mechanics, Stepputis et al.
found, that especially the force-torque data was critical to
achieve success and was able to achieve 90-100% success
at inserting an bracket onto pegs depending on the tolerance
and disturbance in the task.
The ACT algorithm, which can be placed into the family
of BC algorithms, defined the state space using the joint
positions as well as visual data of multiple cameras and a
style variable obtained by the encoder for a total of 1202x512

dimensions, which is a huge increase compared to the other
methods. Using this representation to predict action chunks
allowed solving tasks like insertion tasks, knot tying, and
object transference from one hand to another. To compare
the different approaches reasonably fairly, the cube transfer,
which can be somewhat compared to the box pickup as it
required stable contact of an object from two opposing sides
had an success rate of 50-86% based on the quality of the
demonstration data. The insertion task, which consisted of
one arm holding the bracket and one holding the pin with
very low tolerance, resulted in at least 20% success, which
needs to be interpreted cautiously as the arms also had to
pick up the bracket or pin respectively.
The ALOHA paper, inspired by psychological research of
natural human behavior, showed, that using a method based
on the Markov property might not be the only and best strat-
egy nowadays for solving such complex tasks. It increases
the success of BC algorithms in contact rich settings vastly,
coming at the cost of losing ad-hoc flexibility, as action
suggestions of old action chunks are still valued for new
situations.

VIII. CONCLUSION

Our discussion of the prominent approaches to biman-
ual manipulation (via imitation learning) is important for
gleaning meaningful insights into how practitioners can
approach open robotics problems that require human-like
coordination. By extension, this discussion helps to uncover
areas of research that have not been explored yet. We
summarized some immportant findings of success-critical
factors in different areas of imitation learning which would
be interesting to be looked into to integrate into existing
or new methods. We hope this survey can contribute to
not only advances in controllers for manipulation but also
to controllers for locomotion, where both settings require
high-dimensional and continuous control (as discussed in the
Humanoid Robotics Seminar at TU Darmstadt).

REFERENCES

[1] Amor, Neumann, Kamthe, Kroemer, Peters. “Interac-
tion Primitives for Human-Robot Cooperation Tasks”.
In: (2014).

[2] Bishop. Pattern-Recognition-and-Machine-Learning.
Springer, 2006.

[3] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani,
Giuseppe Oriolo. “Robotics; Modelling, Planning and
Control”. In: (2000).

[4] Rui Camacho and Donald Michie. “Behavioral
Cloning: A Correction”. In: (1995).

[5] Campbell, Amor. “Bayesian Interaction Primitives:
A SLAM Approach to Human-Robot Interaction”. In:
(2017).

[6] Yuanpei Chen et al. “Bi-DexHands: Towards Human-
Level Bimanual Dexterous Manipulation”. In: IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence (2023), pp. 1–15. DOI: 10.1109/TPAMI.
2023.3339515.

[7] d’Avella, Bizzi. “Shared and specific muscle synergies
in natural motor behaviors”. In: (2005). URL: https:
// www. pnas.org /doi /10. 1073/pnas .
0500199102.

[8] Dominici, Ivanenko, Cappellini, d’Avella, Mondı̀, Ci-
cchese, Fabiano, Silei, Paolo, Giannini. “Locomotor
primitives in newborn babies and their development”.
In: (2011).

[9] Pete Florence et al. “Implicit Behavioral Cloning”. In:
CoRR abs/2109.00137 (2021). arXiv: 2109.00137.
URL: https://arxiv.org/abs/2109.00137.

[10] Jonathan Ho and Stefano Ermon. “Generative Adver-
sarial Imitation Learning”. In: CoRR abs/1606.03476
(2016). arXiv: 1606 . 03476. URL: http : / /
arxiv.org/abs/1606.03476.

[11] Ijspeert, Nakanishi, Hoffmann, Pastor, Schaal. Dynam-
ical Movement Primitives: Learning Attractor Models
for Motor Behaviors. 2013. URL: https://homes.
cs.washington.edu/˜todorov/courses/
amath579 / reading / DynamicPrimitives .
pdf.

[12] Ijspeert, Nakanishi, Schaal, Stefan. “Learning control
policies for movement imitation and movement recog-
nition”. In: (2003).

[13] Oliver Kroemer et al. “Towards learning hierarchical
skills for multi-phase manipulation tasks”. In: 2015
IEEE International Conference on Robotics and Au-
tomation (ICRA). 2015, pp. 1503–1510. DOI: 10 .
1109/ICRA.2015.7139389.

[14] Michael Laskey et al. “DART: Noise Injection for
Robust Imitation Learning”. In: 1st Annual Confer-
ence on Robot Learning, CoRL 2017, Mountain View,
California, USA, November 13-15, 2017, Proceed-
ings. Vol. 78. Proceedings of Machine Learning Re-
search. PMLR, 2017, pp. 143–156. URL: http://
proceedings.mlr.press/v78/laskey17a.
html.

[15] Moro, Tsagarakis, Caldwell. “On the kinematic mo-
tion primitives (kMPs) - theory and application”. In:
(2012).

[16] Aäron van den Oord, Yazhe Li, and Oriol Vinyals.
“Representation Learning with Contrastive Predictive
Coding”. In: CoRR abs/1807.03748 (2018). arXiv:
1807.03748. URL: http://arxiv.org/abs/
1807.03748.

[17] Paraschos , Daniel, Peters, Neumann. “Using Proba-
bilistic Movement Primitives in Robotics”. In: (2017).

[18] J. Peters, K. Mülling, and Y. Altun. “Relative Entropy
Policy Search”. In: Max-Planck-Gesellschaft. Menlo
Park, CA, USA: AAAI Press, July 2010, pp. 1607–
1612.

[19] Stéphane Ross, Geoffrey J. Gordon, and J. An-
drew Bagnell. “No-Regret Reductions for Imita-
tion Learning and Structured Prediction”. In: CoRR
abs/1011.0686 (2010). arXiv: 1011 . 0686. URL:
http://arxiv.org/abs/1011.0686.

[20] Kihyuk Sohn, Xinchen Yan, and Honglak Lee. “Learn-
ing structured output representation using deep con-
ditional generative models”. In: Proceedings of the
28th International Conference on Neural Information
Processing Systems - Volume 2. NIPS’15. Montreal,
Canada: MIT Press, 2015, pp. 3483–3491.

[21] Stepputtis, Bandari, Schaal, Amor. “A System for
Imitation Learning of Contact-Rich Bimanual Manip-
ulation Policies”. In: (2022).

[22] Tony Z. Zhao et al. Learning Fine-Grained Bimanual
Manipulation with Low-Cost Hardware. 2023. arXiv:
2304.13705 [cs.RO].

[23] Zhengyuan Zhou, Michael Bloem, and Nicholas Bam-
bos. “Infinite Time Horizon Maximum Causal Entropy
Inverse Reinforcement Learning”. In: IEEE Transac-
tions on Automatic Control PP (Nov. 2017), pp. 1–1.
DOI: 10.1109/TAC.2017.2775960.

