
A Survey of Optimal Reduced-Order Models for
Bipedal Robots

Alvin Abduh

Abstract—The reviewed works focus on optimizing reduced-
order models (ROMs), which are widely used for their simplicity
in legged locomotion, particularly bipedal robots, enabling a
wide array of tools for planning, control, and analysis while
remaining low dimensional, albeit at the cost of limiting the
full model and ultimately sacrificing performance. We review
three proposed model optimization algorithms that automatically
synthesize reduced-order models that remain low dimensional
and retain capabilities of the full model. The first two approaches
both solve a bilevel optimization problem. Where the inner-level
is a trajectory optimization problem and the outer-level is a
gradient descent problem. The first algorithm uses sequential
programming, while the second algorithm uses the envelope
theorem to solve the reduced-order model optimization problem.
The third approach uses model-based reinforcement learning to
synthesize a ROM. We observe their results on the bipedal robot
Cassie, showing in simulation a significant improvements in joint
torque costs of 23% and walking speed of 54% and a 49%
improvement in viable task region size.

I. MOTIVATION

State-of-the-art approaches for planning and control of
legged locomotion use model-based approaches or model-
free Reinforcement Learning approaches. The field of model-
based planning and control for robots can be categorized into
two types: the use of a full-order model and the use of a
reduced-order model. The full-order model, while capable of
delivering high performance, presents challenges in formal
analysis due to the numerous degrees of freedom inherent
in legged robots. To mitigate this complexity, the legged
robot community has widely adopted the use of reduced-
order models. These reduced-order models typically impose
constraints on the full model dynamics while encapsulating the
task-relevant aspects of the full-order dynamics. For instance,
the Linear Inverted Pendulum (LIP) model, which assumes
the robot to be a point mass remaining within a plane, which
significantly lowers energy efficiency and restricts the robot’s
speed and stride length. Similarly, the Spring Loaded Inverted
Pendulum (SLIP) model, a point mass model with spring-
mass dynamics, with zero centroidal angular momentum rate
and zero ground impacts at the foot touchdown event. Con-
sequently, planning motions solely within the reduced-space
inevitably imposes limitations on the full dynamics, restricting
a complex robot’s motion to that of the low-dimensional
model and inevitably compromising the robot’s performance.
The limitations of reduced-order models have been widely
recognized within the community, leading to the development
of numerous extensions. These universally rely on human
intuition and often in the form of mechanical components
such as springs, dampers, rigid bodies, additional legs, etc.

Fig. 1. Overview of optimal reduced-order model. Figure taken from [1]

While some extensions have enhanced robot performance,
it remains unclear which extension offers more performance
improvement than others, and a metric for improving model
performance is lacking. Furthermore, it has been demonstrated
that not all model extensions can significantly enhance the
performance of robots. On the other hand, model-free Re-
inforcement Learning (RL) has emerged as a potent tool
for the automatic synthesis of high-performance control poli-
cies. However, these model-free policies lack interpretability,
making existing model-based stability and safety techniques
unsuitable. Additionally, model-free methods struggle with
generalizing policies to new task parameters without policy
retraining, as task space parameterization is determined during

the training phase. Moreover, robots may encounter a wide
array of potential tasks. Thus, it is impractical to enumerate
all possible tasks to avoid future policy retraining. The goal
is to bridge the gap between model-free and model-based
planning and control with reinforcement learning to obtain
the best of both worlds in the context of bipedal locomotion.
This approach seeks to preserve the physical interpretability
and task flexibility inherent in model-based approaches while
harnessing the RL capability to maximize robot performance.

II. PROBLEM STATEMENT

The objective is to identify an optimal model, denoted as
µ∗, given a distribution Γ over a set of tasks. A reduced-
order model is defined as µ ≜ (r, g) where q and u are the
generalized position and input of the full order-model and y
and τ are the generalized position and input of the reduced the
order-model, here r is an embedding function r : q 7→ y and g
is the reduced-order dynamics with g(y, ẏ, τ), with y = r(q)
and ÿ = g(y, ẏ, τ). The aim is to find a reduced-order model
µ∗ that facilitates low-cost motion across the task space. This
can be represented as:

µ∗ = argmin
µ∈M

Eγ [Jγ(µ)] (1)

where M denotes the model space, Eγ represents the
expected value over Γ, and Jγ(µ) is the cost associated with
accomplishing the tasks γ ∼ Γ when the robot is constrained
to a specific model µ. This problem is infinite-dimensional
over the space of embedding and dynamics functions r and g.
The motivation for parameterizing the model is to transform
the infinite-dimensional optimization problem into a finite-
dimensional one, thereby making it computationally tractable.
This approach allows efficient numerical optimization tech-
niques to find the optimal model parameters, which would
otherwise be infeasible with the original infinite-dimensional
problem. To realize the optimization problem in (1), the most
common solution would be to parameterize the embedding
function r and dynamics function g, and solve the param-
eterized trajectory optimization problem. Assuming that the
dynamics are affine in τ with a constant multiplier, r and g
can be expressed as:

y = r(q; θe) = ΘeΦe(q), (2a)
ÿ = g(y, ẏ, τ ; θd) = ΘdΦd(y, ẏ) +Byτ, (2b)

With the functions r and g being parameterized using basis
functions {Φe,i|i = 1, . . . , ne} and {Φd,i|i = 1, . . . , nd} with
linear weights θe ∈ Rny·ne and θd ∈ Rny·nd and where
Θe ∈ Rny×ne and Θd ∈ Rny×nd are θe and θd arranged as
matrices, Φe = [Φe1 , . . . ,Φe,ne], Φd = [Φd1 , . . . ,Φd,nd

] and
By ∈ Rny×nτ . For simplicity, By is assumed to be a constant
value, but the method can be generalized by parameterizing
By(y, ẏ). While a linear parametrization was chosen, any
differentiable function approximator (e.g., a neural network)
can be used. With the model parameters θ = [θe, θd] ∈ Rnt ,
(1) can be rewritten as:

θ∗ = argmin
θ

Eγ [Jγ(θ, w)]

subject to:
fc(xi, xi+1, ui, ui+1, λi, λi+1, δi, αi) = 0,
i = 1, . . . , n− 1
gc(xi, ui, λi, τi; θ) = 0, i = 1, . . . , n
Cγ(xi, ui, λi) ≤ 0, i = 1, . . . , n

(3)

where Jγ(θ, w) is the optimal cost of a trajectory optimiza-
tion problem, defined as:

Jγ(θ, w) ≜ min
w

n−1∑
i=1

1

2
(hγ(xi, ui) + hγ(xi+1, ui+1))δi (4)

Here, fc are the dynamics constraints for the full-order
dynamics, gc are the dynamics constraints for the reduced-
order dynamics, and w are the decision variables w =
[x1, . . . , xn, u1, . . . , un, λ1, . . . , λn, τ1, . . . , τn, α1, . . . , αn−1].
The dynamics and holonomic constraints of the full-order
model are given by, and the reduced-order constraint gc is:

gc = ÿi − g(yi, ẏi, τi; θd) = 0

⇒ gc = Jiv̇i + J̇ivi − g(yi, ẏi, τi; θd) = 0
(5)

where yi = r(qi; θe), ẏi = ∂r(qi;θe)
∂qi

q̇i, Ji = ∂r(qi;θe)
∂qi

and
v̇i = M(qi)

−1(fcg(qi, vi) + Bui + Jh(qi)
Tλi + τapp(qi, vi)).

For readability, (4) is rewritten as:

Jγ(θ, w) = min
w

h̃γ(w)

subject to f̃γ(w, θ) ≤ 0,
(6)

where h̃γ is the cost function of (4) and f̃γ ≤ 0 encapsulates
all the constraints in (3).

III. CHALLENGES

As demonstrated in Jγ(θ, w) which is the optimal cost for
a trajectory optimization problem, we have two variables to
optimize, the model parameter θ and the decision variables
w. This makes (3) a bilevel optimization problem. Solving a
bilevel optimization problem is generally NP-hard. This com-
plexity arises from the hierarchical structure of the problem,
where the solution to one level depends on the solution of
another. This interdependence makes the problem non-convex
and thus challenging to solve both theoretically and practically.

IV. PROPOSED SOLUTIONS

We study three possible ways to solve this bilevel optimiza-
tion problem, the first proposed solution is to use gradient
descent to solve the outer optimization of (3) with two different
approaches of solving the inner optimization, the first using
an approach in quadratic programming and the latter being
the use of the envelope theorem to derive it analytically. The
second approach is to use reinforcement learning to solve the
bilevel optimization problem.

A. Using Approximated Quadratic Program

Starting from an initial parameter seed θ0, N tasks are
sampled. The cost for each task, denoted as Jγ(θ, w), is
evaluated by solving the corresponding trajectory optimization
problem (3). To compute the gradient ∇θ[Jγj(θ, w)], several
approaches have been proposed. One such approach is based
on sequential quadratic programming, where (4) is locally
approximated with an equality-constrained quadratic program,
considering only the active constraints. Let w̃γ = w−w∗

γ and
θ̃ = θ − θ(i), where w∗

γ is the optimal solution of (4) and
θ(i) is the parameter at the i-th iteration. The approximated
quadratic program is given by

Jγ(θ, w) ≈ min
wγ

1

2
w̃T

γ Hγw̃γ + bTγ w̃γ + cγ

subject to Fγw̃γ +Gγ θ̃ = 0

(7)

Applying the KKT conditions, we derive the following
equation for the optimal solution[

Hγ FT
γ

Fγ 0

] [
w̃∗

γ

v∗γ

]
=

[
−bγ
−Gγ θ̃

]
(8)

where v∗γ is the optimal dual solution. Equation (8) can be
further solved, with the solution rewritten as

w̃∗γ = Qγ θ̃ + pγ (9)

for some Qγ ∈ Rnw×nt and pγ ∈ Rn
w. Since we approxi-

mate the original problem around w∗ and θ(i), we know that
w̃∗

γ = 0 if θ̃ = 0; therefore, pγ = 0. Substituting (9) into (7)
and taking the gradient, we derive

∇θ[Jγj(θ, w)]|θ=θ(i) = QT
γj
bγj (10)

Algorithm 1 Reduced-order model optimization using approx-
imated quadratic program
Require: Task distribution Γ
Ensure: θ∗

{Model initialization}
1: θ ← θ0
{Model optimization}

2: repeat
3: Randomly sample tasks γj ∼ Γforj = i, . . . , N .
4: for j = 1, . . . , N do
5: Solve (4) to get Jγj

(θ, w)
6: Compute ∇θ[Jγj

(θ, w)]
7: end for
8: Average the gradients ∆θ =

∑N
j=1 ∇θ[Jγj(θ,w)]

N
9: Gradient descent θ ← θ − α ·∆θ

10: until convergence
11: return θ

B. Using the Envelope Theorem

The second approach uses the Envelope Theorem to directly
derive the analytical gradient.
Proposition 1 (Differentiability Condition). Assume h̃ and
f̃ are continuously differentiable functions, and consider an
optimization problem

J̃(θ) = min
w

h̃(w, θ) s.t. f̃(w, θ) ≤ 0, (11)

where J̃(θ) is the optimal cost of the problem. Let w∗(θ) be
the optimal solution to (11). w∗ is differentiable with respect
to θ if the following conditions hold:

1) the second-order optimality condition for (11),
2) linear independence constraint qualification (LICQ),

and
3) strict complementarity at w∗.

Theorem 1 (Envelope Theorem). Assume the problem in
Eq. (12) satisfies the differentiability condition. The gradient
of the optimal cost J̃(θ) with respect to θ is

∇θ[J̃(θ, w)] =
∂h̃(w∗, θ)

∂θ
+ λ∗ ∂f̃(w

∗, θ)

∂θ
, (12)

where λ∗ is the dual solution to (12).
Corollary 1. The gradient of the optimal cost of (4) is

∇θ[Jγ(θ)] = λ∗ ∂f̃γ(w
∗, θ)

∂θ
, (13)

where w∗ and λ∗ are respectively the primal and the dual
solution to (4).

Proof. The proof follows directly from Theorem 1. Note that
the cost function in (4) is independent of θ, in which case the
first term of (12) becomes 0.

Algorithm 2 Reduced-order model optimization using Enve-
lope Theorem
Require: Task distribution Γ and step size α
Ensure: θ∗

{Model initialization}
1: θ ← θ0
{Model optimization}

2: repeat
3: Sample N tasks from Γ⇒ γj , j = 1, . . . , N
4: for j = 1, . . . , N do
5: Solve (4) to get Jγj

(θ, w)
6: Compute ∇θ[Jγj (θ, w)] by (12)
7: end for
8: Average the gradients ∆θ =

∑N
j=1 ∇θ[Jγj(θ,w)]

N
9: Gradient descent θ ← θ − α ·∆θ

10: until convergence
11: return θ

Fig. 2. Overview of the Pipeline for the synthesis and deployment of optimal reduced-order model using Algorithm 2

C. Using Reinforcement Learning
The third proposed solution involves the use of a model-

based reinforcement learning approach to find the optimal
model parameters. Rather than minimizing the cost as shown
in equation (3), the approach focuses on maximizing the return∑T

t=1 rt, where rt represents the reward at time t.In order to
minimize the cost h(x, u) and achieve a desired task γ, the
reward function is defined as:

r = exp (−w · h) + 0.5 exp (−∥γ − γfb∥W), (14)

Here, w and W are constant weights, γ is the desired task
value, and γfb is the achieved task value. The objective of the
reinforcement learning problem is to maximize the expected
return over the task distribution:

max
θ

Eγ∼Γ[R] (15)

The Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) is used to solve equation (15). In the CMA-ES
algorithm, let pθ represent the probability distribution over θ.
CMA-ES then solves the equation:

max
pθ

Eθ ∼ pθ[Eγ ∼ Γ[R]] (16)

Given the difficulty of learning a policy for a large task space,
curriculum learning is employed to facilitate the learning
process. The continuous task domain Γ is discretized into a set
Γd, which initially starts small and expands every Nc iterations
by including the adjacent tasks of successful tasks during
learning. To evaluate the inner expected value in equation
(16), it is approximated by randomly drawing Nγ number of
tasks from Γd and averaging the return. Let R̂ represent the
approximate expected return given by the model parameters
θ. The evaluation of R̂ is shown in algorithm 3. As Γd grows
larger, the number of tasks Nγ are adjusted as Nγ = (ργ |Γd|),
where ργ is the sampling percentage and |·| counts the number
of elements in a set. The algorithm to solve (16) is outlined in
algorithm 4. In every iteration, CMA-ES samples a number of
model parameters θ according to pθ and evaluates the return
for each θ. Based on these values, CMA-ES updates the mean
and the covariance matrix of the parameter distribution pθ.

Algorithm 3 Evaluation of return R̂(θ, {γj})
Require: model parameters θ and sampled tasks {γj}

1: for j = 1, . . . , Nγ do
2: Roll out an episode with the MPC
3: Compute the return Rγj

=
∑T

t=1 rt of this rollout
4: end for
5: return 1

Nγ

∑Nγ

j=1 Rγj

Algorithm 4 CMA-ES with curriculum learning
Require: initial mean θ0 and variance σ2

0 for the parameter
distribution pθ, and initial task set Γd

1: for iter = 1, 2, . . . do
2: if mod(iter, Nc) = 0 then
3: Grow the task set Γd

4: end if
5: Randomly draw Nγ tasks {γj} from Γd

6: Sample Nθ parameters {θi} ∼ pθ
7: for each sampled θi do
8: Compute return R̂(θi, {γj})
9: end for

10: Update the mean and covariance of pθ (CMA-ES)
11: end for

V. EXPERIMENTAL RESULTS

A. Trajectory Optimization

They tested the model optimization algorithm 1 on two
robots: a five-link planar robot and the 3D Cassie biped.
They optimized two models for each robot, initialized with an
LIP for the 2D model and an LIP plus a point-mass swing
foot for the 4D model. The five-link robot has q ∈ R7,
with the first 3 elements being the floating-base joint. The
feature sets ϕe and ϕd were chosen to include elements
of the LIP and the LIP with a swing foot, among other
terms. The task set Γ includes walking at different speeds
and ground inclines. The cost hγ is the sum of the weighted
norm of generalized velocity q̇, input of the robot u, and

Fig. 3. Overview of the Pipeline for the synthesis and deployment of optimal reduced-order model for the reinforcement learning framework

2D five-link2D Cassie4D five-link4D Cassie

100

200

300

Fig. 4. The number of iterations for averaged sampled task cost to converge
for Algorithm 1

input of the reduced-order model τ . The optimized model
outperforms the LIP, better leveraging the natural dynamics
of the five-link model. For the 3D Cassie, the generalized
position q ∈ R19 is 19-dimensional. The feature sets ϕe and ϕd

are constructed similarly to the five-link robot. The task set
Γ includes walking at different speeds and ground inclines.
They test their algorithm 2, by optimizing 3D reduced-order
models on Cassie, initialized with a three-dimensional Linear
Inverted Pendulum (LIP) model. This model represents a
point-mass body moving at a constant vertical speed. They
present five examples of model optimization, each varying
in task space, monomial order, and dominant cost function
terms. Examples 1 and 2 focus on minimizing the robot’s
energy consumption, with both starting from the same cost
due to zero initial weights on the monomials. Example 1
uses second-order monomials, while Example 2 uses fourth-
order monomials. The authors conclude that second-order
monomials are sufficient for their task space. Example 3,
which heavily penalizes acceleration, exhibits more vertical
pelvis movement than Example 1 and has a higher initial
cost, suggesting that the LIP model is more restrictive under
this performance metric. Example 4, a subset of Example
3’s task space with a larger stride length, also starts with a
higher cost due to the LIP model’s poor performance with

Ex1 Ex2 Ex3 Ex4 Ex5

20

25

30

35

Fig. 5. Cost reduction percantage relative to initial model using Algorithm
2

large strides. However, this high initial cost allows for greater
potential improvement. Finally, Example 5 penalizes the motor
torques u in it’s cost function and increases the task space
dimension and only parameterizes the ROM dynamics g. The
algorithm successfully finds an optimal model, demonstrating
that parameterizing only the ROM dynamics can achieve near
full model performance. The optimized models outperform the
LIP model by expressing more input-efficient motions, thus
better leveraging Cassie’s natural dynamics. This optimization
of the reduced-order model enhances the robot’s performance
while preserving model simplicity. The final, optimized model
does not map easily to a simple, physical model if the
embedding function, denoted as r, contains abstract basis
functions such as monomials. This limits our ability to attach
physical meaning to y and τ .

B. Performance evaluation

They evaluate the performance of the robot with the ROM
settings: without reduced-order model embedding, with initial
reduced-order model embedding and with optimal reduced-
order model embedding. In the cases: trajectory optimization
(open-loop), simulation (closed-loop) and hardware experi-
ment with real Cassie (closed-loop). In all experiments the
initial and the optimal ROM from Example 5 and the cost

Speed Improvement
Straight line (5m) 41%

Fast 90-degree turn 38%
Downhill (20%) 39%

S-turns 41%
TABLE I

PERCENTAGE DIFFERENCE OF LIP AND OPTIMAL ROM SHOWN IN FIGURE
6

function h̃γ is used. To evaluate open loop performance they
run full-model trajectory optimization over a wide range of
tasks. For the simulation they use Drake. The MPC horizon
is set to two footsteps, and the duration per step is fixed to
0.35 seconds which is the same as that of open-loop and
evaluate the performance at different tasks, the duration of
the simulation for a task is 12 seconds. For the hardware
experiments heuristics are introduced to the MPC in order to
stabilize Cassie well. For RL the CMA-ES optimizer adap-
tively selects the number of parameters sampled per iteration,
Nθ. The sample density, ργ , is set to 0.1 to expedite learning
compared to evaluating all discretized task samples. The initial
standard deviation, σ0, of the parameters is kept small as the
initial ROM is effective for simple tasks. A larger σ0 doesn’t
improve performance and may cause divergence from optimal
parameters. For curriculum learning, the initial task space is
straight-line walking with stride lengths from −0.1 m to 0.2 m.
The task space is discretized by 0.1 m, 0.1 rad, and 0.45 rad/s
in stride length, ground incline, and turning rate, respectively.
The task space is expanded every 30 iterations for gradual
model learning. The results of the performance evaluation for
algorithm 2 show that the optimal ROM performs better than
LIP in all tasks, with a maximum cost reduction of 30% in
trajectory optimization and 24% in simulation. The optimal
ROM also has an increased task capability. Which means that
walking faster on slope and increased slope incline is possible.
For algorithm 4 in simulation the optimal ROM reduces the
cost across the task space by up to 21% and increased region
size by 49%. Compared to algorithm 2, algorithm 4 has
increased task space by 28% and increased cost reduction of
2.7%. To showcase the capability of the ROM synthesized
by 2 Cassie has to finish a track, that consists of various
segments requiring Cassie to turn by different angles and
walk on different sloped grounds. Table I shows a roughly
40% faster finishing time compared to LIP, additionally on
ground inclines of 50% the LIP fell where-as the optimal ROM
continued.

VI. POSSIBLE FUTURE WORK

Future research could delve deeper into the trade-off be-
tween planning speed and model performance, where in-
creased model expressiveness enhances performance but at the
expense of slower planning. While linear models approximate
full models well in certain task spaces, for challenging or
complex task spaces, linear basis functions sacrifice significant
performance when compared with those of higher degree.
The possibility of optimizing models of varying degrees,
depending on the complexity of the task space, is an avenue for

Straight Fast turn Downhill S-turns
0

5

10

15

20

5.72

1.65

11.67

20.37

4.05

1.2

8.4

14.47

LIP
Optimal ROM

Fig. 6. Completion time in seconds of some of the segments of the simulated
course using the ROM synthesized by 2

exploration. The role of initialization in bilevel optimization
also presents an interesting avenue for future work. The
requirement for the initial ROM to be feasible for the inner-
level trajectory optimization, necessitates the initial ROM to
be capable of walking, potentially limits the ability to use
stochastic initialization to explore the entire ROM space. De-
termining the dimension of the ROM is another challenge that
future research could address. While increasing the dimension
theoretically enhances model performance, it comes at the
expense of MPC computational speed. The user is currently
required to determine the dimension of the ROM. Automatic
ways to determine the dimension could be explored. Possible
improvement for the reinforcement learning approach is to use
different RL optimizers that improve performance. Also the
embedding function r could also be parameterized.

REFERENCES

[1] Y.-M. Chen and M. Posa, “Optimal reduced-order modeling of bipedal
locomotion,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 8753–8760, IEEE, 2020.

[2] Y.-M. Chen, J. Hu, and M. Posa, “Beyond inverted pendulums:
Task-optimal simple models of legged locomotion,” arXiv preprint
arXiv:2301.02075, 2023.

[3] Y.-M. Chen, H. Bui, and M. Posa, “Reinforcement Learning
for Reduced-order Models of Legged Robots” arXiv preprint
arXiv:2310.09873, 2023.

	Motivation
	Problem Statement
	Challenges
	Proposed Solutions
	Using Approximated Quadratic Program
	Using the Envelope Theorem
	Using Reinforcement Learning

	Experimental Results
	Trajectory Optimization
	Performance evaluation

	Possible Future Work
	References

