
Control for Humanoid Locomotion:
From Pendulum Models to MPC with Centroidal Dynamics*

Joshua Johannson

Abstract— Performing versatile robotic tasks in arbitrary
environments often requires traversing difficult terrain.
Humanoid-legged robots offer great potential for those appli-
cations. However, achieving stable locomotion with two legs re-
mains challenging, since many aspects like robustness, collision
avoidance and real-time performance need to be considered
which makes the generation of feasible motion trajectories
complex. In this work, we will provide an overview of various
classical, non-learning approaches for the control of humanoid
walking. Thereby we will move from simpler pendulum-based
methods over single rigid body dynamics with MPC to full
dynamics utilizing DDP. Finally, we compare the presented
approaches in terms of their optimization capabilities and
performance.

I. INTRODUCTION

Humanoid locomotion remains a challenging problem
because i.a. the dynamics are complex and computations
need to be fast to enable reacting to external disturbances.
Reactions that are too slow may lead to catastrophic failures
such as falling down. Either computation is fast enough to
fulfill this requirement or reference trajectories are produced
that are then tracked by a separate feedback controller. To
cope with these challenges, we will look at three classes of
approaches.
1) The first class of methods utilizes strongly simplified
models to generate walking motions. Here the robot is
abstracted as an Inverted Pendulum (IP), which reduces com-
putational costs. Due to this simplicity, predictive planning
may not be required [12], since the walking motions are
directly derivable from the model. Multiple approaches in
this category utilize the IP model to infer the trajectory for
the body of the robot from predefined step locations [11, 12].
An extension of the IP incorporating an additional spring and
damper allows for robust predictive planning of reference
trajectories via optimal control [10]. We will discuss these
approaches in Section III.
2) Another class of methods considers a more complex
model that represents the robot as a single rigid body, which
is also called centroidal dynamics model. Generally, this
model is used to plan optimal walking trajectories over a
predictive future horizon. Depending on the formulation, this
calculation may be slow and just allows replanning with
low update rates when used repetitively as Model Predictive
Control. Therefore, resulting trajectories may be executed
by employing a separate fast-tracking controller, that often
utilizes a non-simplified dynamics model and only considers
the next time step for optimization [7]. Linearisation around

*This work is part of the seminar ”Humanoid Robotics” at TU Darmstadt.

the current state may be used to reduce the computational
time of the single rigid body dynamics-based optimization
[7]. This dynamics model can also be combined with full-
body kinematics to incorporate collision constraints [3].
These methods will be discussed in Section IV.
3) Also, the full dynamics model, which considers all joints
and links in the dynamics and suffers from less model errors,
can be used for planning optimal trajectories. However, this
yields increased computational costs, which can be addressed
by using Differential Dynamic Programming to optimize
over trajectories [5]. We look at this class of methods in
Section V-A.

In the final Section VI we will compare the discussed
methods in terms of their optimization flexibility. We ex-
amine which properties, such as step positions and step
timings, a method can adapt and which properties have to
be predefined.

A. Related Work

Several other relevant works are using the centroidal
dynamics model for legged locomotion which we don’t
consider in detail in this paper. An approach by Chignoli
et al. [2], which is similar to the work presented in Section
IV-B, aims to create and execute acrobatic jumping motions
for humanoid robots. Chignoli et al. also combine centroidal
dynamics with full-body kinematics during trajectory opti-
mization via a Kino-Dynamic Planner. This allows them to
consider joint constraints and the effect of the joint velocities
on the angular momentum on the body. Note that the contact
sequence is fixed here.

Garcia et al. [9] also use the centroidal dynamics model
to implement MPC for humanoid walking. They linearize
around a given reference trajectory and thereby also consider
variable inertia and angular momentum of the body. The
resulting optimal control problem with linear dynamics is
solved via Quadratic Programming.

II. BACKGROUND

In this Section, we will discuss fundamentals for optimal
control, which is relevant for approaches presented later
that do planning. Regarding notation, we denote vectors and
matrices with bold letters and scalars with normal letters.

A. Optimal Control

A common approach to find trajectories, e.g. for a walking
gait, that are optimal w.r.t. some cost function is to formulate
an Optimal Control (OC) problem [6] which itself is a form
of a constraint optimization problem. Often the dynamics



of a system are only available in the form of an Ordinary
Differential Equation (ODE) which defines the change of
the current system state ẋ(t) = f(x(t),u(t)) depending
on the current state x(t) and control u(t) input. An OC
problem offers the advantage that an ODE is enough and no
closed-form solution for the dynamics is required. A general
simplified form of the OC problem looks like this [6]:

min
x(t),u(t),T

E(x(t)) +

∫ T

0

L(x(t),u(t))dt (1)

s.t. ẋ(t) = f(x(t),u(t)) (2)
x0 = x(0)

0 = r(x(T )) (final constraints)

0 = h(x(t),u(t)) (path constraints)

(3)

The solution of the OC problem consists of the optimal state
and control trajectories x(t),u(t) that minimize the objective
(1). Thereby E(x(t)) stands for the cost in the final state,
e.g. distance to a desired state, and L(x(t),u(t)) represents
the cost of intermediate states that will be accumulated
over the time horizon T . The time horizon is the length
of the run period of the system that is considered during
optimization and may be also an optimization variable, e.g.
when a solution with minimal runtime is required. From the
constraints, (2) ensures that the system dynamics is respected
over the whole horizon. Additional constraints may be added
for initial or final conditions (3), e.g. for fixing the start state.
Also, intermediate conditions, i.e. path constraints, can be
encoded by constraints (3).

B. Solving Optimal Control Problems

The aforementioned OC problems are commonly solved
using direct methods that transform the original formulation
into a Non-Linear Programming (NLP) [6]. The NLP prob-
lem can then be solved with standard numerical solvers.

1) Direct Single Shooting: A direct method to solve
the OC problem which uses time-wise discretized of the
controls is Direct Single Shooting [6]. Here, only the control
actions ut are optimized, whereas the state trajectory is
obtained from the initial state x0 and the control trajectory by
numerical integration. The time domain is discretized, such
that the optimization is performed over a finite number of
actions ut, and the integral in the objective (1) turns into a
sum.

2) Direct Multiple Shooting: The Multiple Shooting
method [6] can be derived by adapting Single Shooting so
that also the discretized state values xt are considered as
optimization variables. Thereby additional continuity con-
straints are introduced that ensure that the value of a next
state xt+1 is equal to the integrated dynamics from the
previous state and control xt,ut. Typically, optimization
variables only involve state values at certain time points,
specifically every N time steps, and are called knot points.
The continuity constraints then are expreseed as xt+N =
fint(xt,ut), where fint is the dynamics integration function
for N time steps. An example formulation very similar to
Direct Multiple Shooting is shown in Equation 14. The

resulting NLP problem may then be solved with a numerical
solver. Note that multiple shooting offers the advantage that
the solver can be easily warm-started by reusing a previous
solution trajectory [4, 6], e.g. in an MPC setting. With single
shooting, warm-starting is not directly possible.

3) Differential Dynamic Programming (DDP): DDP is
based on the single or multiple shooting formulation of an
OC problem [4]. The solving process consists of two main
steps [4]: 1) The dynamics constraints and cost function
are approximated around an initial guessed trajectory, xt,ut.
This is done via a first and second-order Taylor series approx-
imation. The resulting problem is linear in the dynamics and
quadratic in the cost function. Thus it can be solved via the
Linear Quadratic Regulator1, which yields a linear feedback
controller not just a new control trajectory. 2) The feedback
controller is then used in the forward pass to simulate the
system and create a new trajectory to approximate around.
Now the first step is repeated with the new trajectory as
an initial guess. Note that the result of this algorithm is
a feedback controller that can be employed to follow the
optimal trajectory calculated in the forward pass.

C. Model Predictive Control

To incorporate feedback, an OC problem can be solved
repeatedly with varying starting conditions. Thereby the
starting state will be set to the current real observed state.
From the solution of the OC problem, just the first control
action is executed. These two steps will be repeated to
react to perturbations in the real system and to do the
corresponding replanning. This procedure is called Model
Predictive Control (MPC) [6].

III. PENDULUM BASED APPROACHES

A simple model used for bipedal locomotion is the Linear
Inverted Pendulum (LIP) [13, 11], where we consider the
whole robot as a point mass m concentrated at some point
r = [rx, ry, rz]

T , see Figure 1. Thereby r is called the center
of mass (CoM). The pendulum connects the CoM with the
pendulum base p which is in ground contact (px = 0).
Note that the distance between CoM and p, i.e. the leg
length, is variational as for a prismatic joint. The LIP can
be derived from the general inverted pendulum [11]. Here
we are looking at the 3D case where CoM is constrained to
move parallel to the ground. The dynamics of the general
inverted pendulum depends on the pendulum angles θx, θy
and actuation torques τx, τy acting on the pendulum base.
These actuation torques are directly associated with the
respective pendulum angles. Additionally, the gravity and
the ground reaction force Fp act on the point mass of the
pendulum. To make dynamics linear, τx, τy can be remapped
to new virtual actuation torques ux, uy which eliminates
the dependency of the dynamics on θx and θy . By further
assuming that the ground is flat and horizontal we obtain the
dynamics for the LIP2:

1This is just the case when the dynamics are linearly approximated.
2For the previous assumptions.



r

p

Fp

ξ

ṙ

θx
z

x
y

Fig. 1: LIP Model with DCM
The pendulum connects the point mass at r with the pendulum

base at p. θx denotes the angle between the pendulum and the flat
ground in the x-z plane. Note that here we just show a 2D side
view of the 3D inverted pendulum, thus the angle θy in the y-z

plane is not visible. The DCM position ξ is in the direction of the
point mass velocity ṙ. Fp is the force of the pendulum base on

the ground.

r̈x =
g

rz
(rx − px) +

ux

mrz

r̈y =
g

rz
(ry − py)−

uy

mrz

(4)

Note that the CoM is locked in the z-direction, thus r̈z = 0.
We can observe that movements in the x and y directions
are fully decoupled. Often the actuation torques are assumed
to be zero (ux = uy = 0), which further simplifies (4).
Since these differential equations are linear, they can directly
be solved, e.g. via the Laplace Transform. This yields a
closed-form trajectory equation r(t) of the CoM for given
initial boundary conditions (e.g. the initial CoM position and
velocity) as well as a predefined base location p and CoM
height. r(t) results in a hyperbolic curve in the x-y plane.

A. LIP Walking Pattern Generation

Kajita et al. [11] utilize the LIP to generate walking
trajectories for humanoid robots. They assume a fixed gait
schedule where a single support phase for the first foot
is followed by a double support phase. Subsequently, both
phases are repeated but with the other foot in contact during
the single support phase. Both phases have fixed durations.
By varying the predefined foot contact locations the walking
direction and speed can be adapted. The LIP model now
allows inferring CoM reference trajectories from the foot
step locations. For the single support phases equations (4)
(with ux = uy = 0) are solved to derive the CoM
trajectory. During the double support phases, the CoM moves
with a constant velocity which is equal to the last CoM
velocity from the previous single support phase. Kajita et al.
validate the resulting walking pattern on a humanoid robot
in simulation. Therefore, they map the reference trajectories
to joint angles via inverse kinematics and track them with
a PD controller. This implies that the pendulum base p
corresponds to the robot’s foot currently in ground contact.

B. LIP and Divergent Component of Motion

The dynamics of the LIP model can be split into a stable
and unstable part [14, 15, 8, 12]. The unstable component

is called the Divergent Component of Motion (DCM). For
conciseness, we only consider the x component of the LIP
dynamics (4) and DCM. The y part of the DCM can be
derived completely analogously. Here we also assume zero
actuation torques (ux = uy = 0). For simplicity, we
introduce ω2 = g/rz , now we get (5) for the x component
of the LIP dynamics from (4).

r̈x = ω2rx − ω2px (5)

We have to consider that the foot of a real robot is not a point
contact, as assumed by the LIP, but makes contact over a
whole surface. Thus, a foot can induce torques which would
violate our previous assumptions that ux = uy = 0. Instead
of assuming that the pendulum base p matches the point
where the foot is attached to the robot’s leg, we can consider
p to be the Zero Moment Point (ZMP). The ZMP is a virtual
point where applied torques of the feet in contact become
zero and just forces remain. Note that for stability, the ZMP
has to be inside the support polygon which is the convex
hull of the stance feet.

We can observe that (5) is unstable since the poles of the
corresponding transfer function (18) are on the right half
plane, for the derivation see Appendix VIII-A. For splitting
the dynamics into stable and unstable parts, we have to apply
a coordinate transformation (6) [14, 15].(

ξx
sx

)
=

(
rx + 1

ω ṙx
rx − 1

ω ṙx

)
(6)

To express the LIP dynamics with our transformation, we
take the derivative of (6) and replace the appeared r̈x terms
with (5). After also replacing rx and ṙx terms with (6) we
get the new transformed LIP dynamics (7).(

ξ̇x
ṡx

)
=

(
ṙx + ωrx − ωpx
ṙx − ωrx + ωpx

)
=

(
+ωξx − ωpx
−ωsx + ωpx

)
(7)

Note that (7) still fully captures the LIP dynamics (5). Since
in (7) ξ̇x and ṡx are independent of each other, we can look
at their individual transfer functions (8).

Fξx(p) =
ω

ω − p
Fsx(p) =

ω

ω + p
(8)

We observe that sx is always stable since the poles of its
transfer function Fsx(p) are on the left half-plane. ξx on the
other hand is unstable, because its transfer function Fξx(p)
has poles on the right half-plane. For the derivation of the
transfer functions see Appendix VIII-B. Consequently, just
the unstable ξx, which is the DCM, needs to be controlled
[12]. When also considering the y component of the DCM,
we get the general vector form of ξ.

ξ = r+
1

ω
ṙ (9)

As shown in Figure 1 the DCM ξ is a point in the movement
direction of the CoM.



C. Walking via LIP and DCM

One application of LIP with the DCM formulation is
the generation of reference trajectories from predefined step
locations. Kasaei et al. [12] present an approach where
the step locations come from a simple step planner, that
generates these locations based on given parameters (e.g. step
length, step duration). The ZMP trajectories pt are calculated
from the footstep positions via a stepping function, where
pt instantly changes when a step is taken and the contact
location changes. Solving Equations (4), (7) and (9), directly
allows to infer the DCM and CoM trajectories between
two changing ZMP locations. This is similar to the work
presented in Section III-A, except that the unstable DCM
component of the LIP is considered. Swing leg motions
for the time period when a leg is not in contact with the
ground because it moves towards the next step location, are
generated by interpolating the step locations with spline poly-
nomials. All these stages work offline and create reference
trajectories.

Online execution for walking is done by tracking the
reference trajectories via a Linear-Quadratic-Gaussian con-
troller (LQG). To cope with external pushes on the robot, an
additional online step adjustment process is introduced. This
ensures that the robot remains stable even when the current
real ZMP moves on the edge of the feet support polygon.
By again utilizing Equations (7) and (9) the DCM at the end
of the current step can be predicted by using the current real
DCM as an initial value condition. With this new next DCM,
the next step location can be adjusted to avoid falling. Note
that this can be calculated effectively in closed form.

D. Variable Height Inverted Pendulum

The LIP model can be extended to allow height variations
of the CoM which yields the Variable Height Inverted
Pendulum (VHIP). In his work [1] Caron utilizes the VHIP
to improve bipedal stabilization. Because of the conservation
of angular momentum, increasing the height of the CoM can
capture some of the robot’s motions when it is pushed. This
allows to avoid falling over without the requirement of doing
an additional capture step, even when with the LIP model
the ZMP would move to the edge of the feet support region.
Changing the CoM in the vertical z direction allows shifting
the ZMP to a certain extent back within the support region
of the feet, which may be required for keeping balance.

Similar to the approach in Section III-C, Caron expresses
the VHIP dynamics via the DCM ξ. Note, that here the CoM
velocity in the z direction may not be zero, so ξ is the 3D
DCM as defined in [8]. The 3D DCM extends our previous
definition (7) where ω is now changing over time. Thus, the
DCM may not be the same height as the CoM, see Figure 1
for comparison.

To derive a controller that stabilizes around a given
reference trajectory, which may come from a previous opti-
mization step, Caron formulates the DCM error dynamics
∆ξ̂, which is the difference between the current and the
desired DCM. ∆ξ̂ is then linearized around the reference

r

p

d

Fig. 2: ASLIP Model
Parallel spring-damper in series with a linear actuator that can

vary the length d. Here the leg is the stance phase. The pendulum
connects the CoM r with the pendulum base p.

trajectory. In the end ∆ξ̂ should behave like a given de-
sired error dynamics ∆ξ̂

∗
, which is a P-controller with

an error converging to zero. To make ∆ξ̂ behave like
∆ξ̂

∗
, a Quadratic programming problem is formulated that

minimizes the distance between these desired and actual
error dynamics. It is solved in realtime via a QP solver
and optimizes over ∆ξ̂ and the ZMP p. Also, constraints
like the CoM height limits are considered. The ZMP p,
resulting from the optimization, is tracked with a whole-body
admittance controller for execution on the robot.

E. Actuated Spring Loaded Inverted Pendulum

To further extend the VHIP model, an additional spring
and damper can be added, which results in the Actuated
Spring Loaded Inverted Pendulum (ASLIP) [10]. Figure 2
illustrates the composition of the ASLIP model: The single
ground contact p is first connected to a parallel spring-
damper system. The spring-damper itself is connected to
the CoM r via a linear actuator that can vary the length d.
By incorporating the spring-damper the system gains more
compliance.

In their work, Green et al. [10] propose a method utilizing
the ASLIP model to generate walking trajectories for bipedal
robots. Their approach is robust to unknown variations of
the ground height. They model the ASLIP dynamics by
considering two distinct cases. 1) During the flight phase
there is no ground contact and the CoM just moves due to its
constant velocity and the gravity. The leg moves according to
the current control input d̈ and the spring-damper dynamics.
2) During the stance phase the foot position p is fixed and
the linear actuator can apply force in leg direction through
the spring-damper on the CoM. The control input consist of
the linear actuator acceleration r̈.

Here it is assumed that the real robot has only one foot on
the ground at maximum. Therefore, to map the ASLIP model
to a real robot with two legs the following walking circle is
considered: 1) First, the robot is in the flight phase where
no leg has ground contact. 2) Then one leg makes ground
contact during the stance phase. Afterward, these two steps
repeat but with the other leg in contact during the stance



phase. As a simplification just one-half of this circle is taken
into account. This is sufficient since the stance phases of both
feet are equal when the robot is symmetrical.

To generate an open loop trajectory that is robust to
variable ground height, Green et al. optimize over multiple
disturbance cases simultaneously. Thereby each disturbance
case has a different initial CoM height, which corresponds
to varying the ground height. The key point here is to link
the control trajectory of all these cases so that one control
trajectory leads to the same final goal CoM height and
velocity for all cases. To now solve for a control trajectory,
an optimal control problem, see Section II-A, is formulated
and solved via direct collocation.

Experimental evaluation in simulation shows that the
applied simultaneous optimization of multiple disturbance
cases leads to the desired robustness. Even though the
optimized control trajectory is just played back in an open
control loop, variations in ground height can be successfully
rejected so that the CoM always reaches the final goal
position.

Note, that the ASLIP model is simulated for evaluation,
instead of using the real robot. Thus, for applying the
optimized control trajectory to a real robot, additional effort
is necessary for mapping control actions.

IV. SINGLE RIGID BODY BASED APPROACHES

A robot model often used in trajectory planning for
walking robots is the Single Rigid Body Model (SRBM),
also called centroidal dynamics [7, 3]. Here the robot is
simplified as a single rigid body on which forces and torques
from contact points ci, as well as the gravity, can act. The
mass m of the rigid body has an expansion and is distributed
over the body. This differs from pendulum models where the
robot is just treated as a point mass. Considering the mass
distribution allows to take the effects of moments on the
angular velocity into account. The legs and feet are massless
in this model.

For describing the dynamics we separate the effects of the
forces of the contact points and the gravity on the CoM r
from the effect of the contact points on the angular velocity
ω:

r̈ =
∑
i

Fi

m
+ ag (10)

Iω̇ =
∑
i

(di × Fi +mi) (11)

Here we consider the 3D case, so all vectors are three-
dimensional. Figure 3 shows a two-dimensional illustration
of the SRBM. Equation (10) indicates that the sum of all
contact forces Fi and the gravity ag lead to an acceleration
of the CoM position r. In Equation (11) the inertia matrix
I describes the distribution of the mass. Note that I is
expressed in the CoM frame and has to be fixed w.r.t. the
CoM, to that I is constant. We can observe that torques acting
on the body, i.e. the right side of (11), cause a change in
angular velocity ω. The whole torque acting on the body

m I

r

ci

Fi

di

Fig. 3: Single Rigid Body Model
The rigid body with CoM location r has the mass m and its mass

distribution is captured by the inertia matrix I. The vector di

describes the displacement from the CoM to the contact location
ci. From the contact location the force Fi and torque mi (not

shown in the Figure) act on the body. Note that there are
generally multiple contacts, although just one is shown here.

consists of the individual torques mi applied by each contact,
and the torques induced by the displacement di of the contact
forces from the CoM. The vector di is expressed in the CoM
frame and points from the CoM to the contact point ci. Note,
that when ω ̸= 0 then the direction of Fi and di will change
over time even when the global contact locations and forces
don’t change. This is because both vectors are expressed in
the CoM frame and the body rotates.

A. MPC with Linearized Centroidal Dynamics

A common way to utilize the SRBM is its integration into
an MPC optimal control scheme. Here a common challenge
is to minimize the optimization time of the optimal control
problem to increase reactivity. In their work, Ding et al. [7]
cope with this by linearizing the centroidal dynamics around
the current state.

Ding et al. consider a fixed walking gait where single
support phases of the two feet are alternating without an
intermediate flight phase. Therefore, always one of the feet
is on the ground. All timings, e.g. when a touchdown occurs,
are fixed. These restrictions allow to model the dynamics
of changing foot contact locations c by simply moving the
foot instantaneously directly before it makes contact with
the ground during touchdown. Note, that this immediate
movement of a foot does not violate the dynamics, since
legs and feet are considered massless. The location change
of the ground contact from the previous to the next location
is denoted by δc. The foot contact location is incorporated
into the SRBM dynamics (11) via di = c− r.

The states of SRBM dynamics, e.g. CoM position r and
CoM rotation, are summarized together with the current foot
contact location in the state vector x. The contact force
Fi and contact torque mi are combined into the control
vector u. This results in the dynamics function f(x,u) = ẋ.
Now f is linearized around the current state x∗ and control
u∗ values. The dynamics are also time-discretized by doing
Euler integration of the linearized dynamics. This leads to



the linear and time discrete form, where t is the time step:

xt+1 = xt + Ts[f(x
∗,u∗) +A∆xt +B∆ut︸ ︷︷ ︸

linearized dynamics

] + gt(δc)

(12)
where ∆xt = xt − x∗ ∆ut = ut − u∗

For the Euler integration, the linearized dynamics is multi-
plied with the timestep size Ts. The matrices A and B are
calculated by taking the derivates of the dynamics f at the
current observed state x∗ and control u∗ w.r.t. the state and
control, see Equation 13.

A =
δf

δx

∣∣∣∣
x∗,u∗

B =
δf

δu

∣∣∣∣
x∗,u∗

(13)

The function gt(δc) is just active (non-zero) directly before
the next touchdown and moves the contact location by δc.
gt(δc) is required since moving the contact locations is not
part of the dynamics f .

Finally, Ding et al. formulate an optimal control problem
for planning walking trajectories using (12):

min
xt,ut,δc

N∑
t=0

γtlt(xt,ut)

s.t. xt+1 = (12) (dynamics)

x0 = xstart (start state)

0 ≥ gs(xt, δc) (kin.-, step- constraints)
0 ≥ gf (ut) (friction constraints)

(14)
Here control and state trajectories xt,ut, as well as the next
two step-location changes δc, are optimized over a fixed time
horizon of N steps. This optimization over discretized state
and control trajectories is very similar to a direct multiple
shooting formulation, see Section II-B.2. Also, just like in
direct multiple shooting, the state trajectory variables are
linked together via constraints containing the time discrete
dynamics (12). Additional kinematic constraints limit the
maximum leg extension and step size based on the robot’s
capabilities. The height value of the contact also has to match
the given terrain height at the specific contact location (step
constraints). To avoid slipping, friction constraints ensure
that the contact forces of the feet, which are modeled as
line constants, stay within a defined friction cone.

The objective to minimize consists of the accumulated cost
function lt(xt,ut) over all the time steps. Thereby the cost
function is discounted with γ ≤ 0 to decrease the weight
of the time steps further in the future. This is beneficial
since the errors of the linearization will increase towards
these later time steps. The cost function lt(xt,ut) itself
penalizes deviations from the commanded CoM velocity,
deviations from a reference control value and deviations from
a reference step location. The reference control value is just
the required force to hold the body horizontally over the foot.
The reference step location can be computed via a heuristic,
e.g. the capture point.

Since all the constraints are linear and the objective is
quadratic the OC problem can be formulated as a quadratic

Fig. 4: Atals walks Through an Obstructed Door Using the Ap-
proach Presented in Section IV-B. Figure from [3].

programming (QP) problem and thus solved efficiently. This
allows repetitive execution as MPC with a solving frequency
of 100Hz.

To verify their approach, Ding et al. track the first value
of solved trajectories from the MPC with a Task-Space con-
troller in simulation. The Task-Space controller outputs the
necessary joint torques to track the trajectories. They demon-
strate that terrain with varying heights can be traversed.
But the maximum slope of the terrain has to be limited,
otherwise, their method fails. Note, that linearization around
the current state and not around a reference trajectory offers
the advantage of not becoming unstable when diverging too
much from the reference. However, it induces increasing
errors for later time steps within the predictive horizon.
Therefore, the maximum length of the prediction horizon
of the MPC is limited and the discounting by γ has to be
used in the cost function.

B. Centroidal Motion Planning with Whole Body Kinematics

For planning motions of humanoids, the centroidal dynam-
ics model can be combined with the full-body kinematics
during optimization. Dai et al. [3] explore this approach,
offering the advantage that potential collisions of all body
links can be considered during planning. Moreover, they
allow for the optimization of the non-fixed contact sequence
of the feet and hands. Ultimately, everything is formulated
as an optimization problem.

To incorporate the dynamics, Dai et al. add the two equa-
tions of the centroidal dynamics, (10) and (11) as constraints.
Since also the kinematic joint configurations are considered,
the inertia matrix I(q) here also depends on the current joint
configuration q. This is because different joint configurations
change the mass distribution, e.g. when the legs are strongly
bent the mass is more concentrated than when the legs are
fully extended. This way, the centroidal dynamics model is
extended by taking the changes of the mass distribution into
account. The relationship between contact locations ci and
(11) is expressed via di = ci − r. This is similar to the
work shown in Section IV-A. Note, that here arbitrary contact
schedules are allowed, e.g. zero, one or two legs are on the
ground. The set of contacts does not just include the feet but
also the hands of the robot.



The joint configuration has to be linked to the centroidal
dynamics model. To do this, Dai et al. formulate kinematic
constraints:

r = kinCoM (q)

ci = kinci(q)

Here the CoM location r is restricted to the value resulting
from the forward kinematics kinCoM (q) of the current
joint configuration. The contact locations have to match the
forward kinematics for computing the corresponding contact
location kinci(q). This way, the inverse kinematics will
indirectly emerge when solving the later formulated opti-
mization problem that has these constraints. Both constraints
are summarized in the constraint gkin, which is later used in
the optimization.

A major reason for incorporating the joint configurations
lies in the ability to reason about the locations of the robot’s
links. This can be used to check for collisions of the links
and add additional constraints to avoid these collisions. For
this purpose, Dai et al. attach a convex collision geometry
to each link and each global object, e.g. to walls or doors.
Now minimum distances between each pair i, j of these
collision geometries can be formulated by the function dij .
To avoid collisions, the value of dij has to stay above a
minimum distance for each potential collision pair. Since
this would result in a large number of constraints, these
restrictions on dij are considered by putting the value of
constraint violations into a hinge-loss-like function. These
loss values of all collision pairs are then summed up. The
sum value becomes zero when all constraints are not violated.
Therefore, the number of required constraints for collisions
can be reduced to just one, i.e. gcoll.

Finally, the planning of trajectories is formulated via
an Optimal Control problem. First, the dynamics are time
discretized via numerical integration fint(xt). Thereby, next
state xt+1 depends on the previous state xt values. Note that
in contrast to the work presented in Section IV-A, here the
discretized dynamics are not linear. Control and state values
are not separated here, so there is just a state trajectory xt.
Dai et al. solve the Optimal Control problem with direct
multiple shooting, see Section II-B.2:

min
xt,δot

N∑
t=0

lt(xt)δot

s.t. xt+1 = fint(xt) (dynamics)

x0 = xstart (start state)

0 = gkin(xt) (kinematic constraints)

0 = gcoll(xt) (collision constraints)

0 ≥ gcontact(xt) (contact regions)

0 ≥ gfric(xt) (friction constraints)

0 ≥ gjoint(xt) (joint limits)

Eq. (16) (comp. contact constraints)
(15)

Here the state x consists of the CoM position, CoM rota-
tion, joint configuration q and the first derivatives of these

quantities. The dynamics for q just results from integrating
the joint velocities q̇. Contact locations ci, contact torques
and forces are also part of the state. The state values of
all time steps are optimization variables. Also, the durations
δot of the individual time steps are optimized. This allows
to adapt the contact timings. Additionally, there are the
previously discussed kinematic and collision constraints.
Since for every time step the joint configuration is known
during optimization, supplementary constraints for respecting
the joint limits, which are part of gjoint, can be added. The
contact location can also be restricted to allowed contact
areas, e.g. stepping stones or handles for the hands to hold
on. These contact restrictions are formulated in the constraint
gcontact.

The cost function lt(xt) which is minimized over the
whole trajectory, contains the norms of the deviation from
the nominal joint configuration, the joint velocities and CoM
accelerations. So all these entities will be minimized.

One set of constraints is still missing from the optimal
control problem. It has to be ensured that the contact forces
and torques are only non-zero when the corresponding con-
tact touches the ground or another object in the scene. Dai et
al. offer two different approaches to this: 1) When the contact
sequence is fixed in advance, the condition that the contact
forces and moments must be zero is added for time steps in
which no contact takes place. 2) When the contact sequence
should be optimized, complementary constraints are added
to each time step. Therefore, we consider the distance ϕj(q)
for each contact j to its contact surface. The complementary
constraints ensure that for a timestep either the distance to
the contact surface is zero or the normal contact force Fn

j is
zero, see (16a).

ϕj(q)F
n
j = 0 (16a)

ϕj(q)[τj ]
2 = 0 (16b)

Fn
j (cj,t − cj,t−1)

T tx = 0

Fn
j (cj,t − cj,t−1)

T ty = 0
(16c)

The same holds for the corresponding complementary con-
straints for the contact torques τj , see (16b). Dai et al.
also ensure that the contacts do not slide when in contact
with the ground with constraint (16c). The unit vectors
tx, ty are tangent vectors of the contact surface and are
orthogonal to the normal force Fn

j . When in ground contact,
i.e. Fn

j is non-zero, (16c) states that the position change of
a contact location between two timesteps projected onto the
contact surface tangent directions must be zero, i.e. no sliding
along the surface. Additionally, there are constraints for the
contacts to obey a defined friction cone which are defined
as gfric.

The optimization problem with all these constraints is
solved with a numerical solver. Note that solving one tra-
jectory takes minutes to hours. Dai et al. show that their
approach works with the Atlas humanoid robot for multiple
scenarios in simulation where a feedback controller is used
for executing calculated trajectories. In simulation the Atlas
robot successfully walks over flat terrain, does jumps and



walks through an obstructed door, see Figure 4. Dai et al. also
demonstrate working optimization of the contact schedule.

V. FULL DYNAMICS PLANNING

Instead of using reduced models as shown in Sections III
and IV, the full dynamics model, which includes the effects
of the links, may be utilized. With the full dynamics, the
joints and their respective velocities and acceleration as well
as the actual link masses are considered. This offers the
advantage that planned optimal joint trajectories more closely
obey the dynamics of the real system. However, managing
the increased computational effort is a challenge.

A. Whole Body MPC with Full Dynamics

An interesting approach for planning optimal trajectories
for humanoid walking using the full dynamics is imple-
mented by Dantec et al. [5]. In their work, they solve the
constructed OC problem with Differential Dynamic Pro-
gramming (DDP). The approach is then deployed on a real
robot via MPC. Here a fixed contact schedule with predefined
timings is assumed.

For the dynamics model, the effects of the joints on the
moments of the links are considered by utilizing the inertia
matrices of all the links. Also, the effects of gravitation,
Coriolis and centripetal forces are part of the dynamics. To
reduce computational load, just the joints of the legs and two
for the torso are taken into account, the arms are locked in
a fixed position during walking.

The formulated optimal control problem for generating
walking trajectories uses the joint values q and velocities
q̇ as the state x = [q, q̇]T , the control vector u consists of
the joint torques τ . Similar to direct shooting, the dynamics
are time discretized and added as constraints for the corre-
sponding next state value xt+1 = fint(xt,ut), so that the
next state is equal to the integrated dynamics fint(xt,ut)
with the previous control and state values. The resulting OC
problem is shown in (17).

min
xt,ut

N∑
t=0

l(xt,ut, t)

s.t. xt+1 = fint(xt) (dynamics)

x0 = xstart (start state)

(17)

This formulation is similar to (15) in Section IV-B, except
that the step times are not optimized but just the state
and control values, and that the constraints just contain the
dynamics. The objective of the OC problem consists of the
accumulated costs l(xt,ut, t) over all time steps. Note, that
to be able to solve the OC problem in real time, additional
constraints are included implicitly as penalty terms in the
cost function. The cost function for each time step consists
of the following five terms:

1) A cost for deviating from the nominal state and con-
trol values. These nominal values describe the initial
robot joint configuration (half-sitting position) and the
required joint torques to compensate the gravity.

Fig. 5: Talos Climbs Down a 10cm Step Using the Approach
Described in Section V-A. Figure from [5].

2) To make a foot that is currently in the swing phase
move to the next defined contact location on the ground,
a deviation cost for the feet to follow desired swing
trajectories is included. These desired swing trajectories
are predefined and interpolate between two subsequent
contact locations.

3) A penalty term for ensuring that the kinematic con-
straints and control bounds are obeyed.

4) To avoid slipping, the feet have to stay in a defined
friction cone. Since adding this constraint directly to
the cost as a penalty function leads to long solving
times, Dantec et al. instead include a cost for following
a reference wrench contact trajectory τ d(t) for each
foot. Thereby τ d(t) consists of the contact forces and
torques that directly emerge from the predefined contact
schedule. τ d(t) is always zero, except when the corre-
sponding foot is in ground contact the z-axis component
of τ d(t) is equal to the required force to support the
robot’s weight.

5) Additional to ensure obeying the friction cone con-
straint, a term for regulating the Center of Pressure
(CoP) is added.

The OC problem with the described cost function is
solved via DDP, see Section II-B.3. A nice consequence
of using DDP is that it yields not just optimal trajectories
as a solution, but also optimal linear feedback gains. These
feedback gains can be used to implement a simple controller
that executes the optimized trajectories.

For the OC problem a predictive horizon of 1.5s is con-
sidered. Thereby the horizon is split into 150 discretization
points. Due to the efficient constraint formulation, DDP can
solve the problem in one iteration, which takes on average
15ms. Note, that sometimes the solving time increases up
to 50ms. After DDP finds a solution, it is executed using
the resulting optimal feedback gains. The OC is then solved
again using the last real observed state as a new starting
condition. This way, the optimal linear feedback controller
bridges the time gap resulting from the solving time of the
DDP.

Dantec et al. verify their approach using the Talos hu-
manoid robot. They show that Talos can walk over flat terrain
and climb up and down a step, see Figure 5. Note that for
each of these scenarios the contact schedule and interpolated
feet swing trajectories have to be adapted. Additionally,



Method Objective/Solving Reactiveness Can Optimize

Open
Loop OC

Reactive
MPC

Reactive,
Without OC Step Pos Gait

Timing
Contact
Pattern

CoM
Trajectory

Pe
nd

ul
um

LIP Walking Pattern
[11], III-A - / closed-form × × × ✓

LIP DCM Walking
[12], III-C - / closed-form, LQG • ✓✓ × × ✓✓

VHIP DCM Stabilization
[1], III-D

min tracking error /
QP formulation •⋆ × × × ✓✓

ASLIP Opti [10], III-E none /
direct collocation • × ✓ × ✓

SR
B

M

MPC Lin. Centroidal
[7], IV-A

track command vel. /
QP formulation • ✓✓ × × ✓✓

Centriodal with full Kin.
[3], IV-B

min accelerations . . . /
multiple shooting • ✓ ✓ ✓ ✓

Fu
ll

D
yn

.

Whole Body MPC
[5], V-A

track swing ref . . . /
DDP • × × × ✓✓

⋆ Requires a given reference trajectory.
✓ Can be optimized just offline.
✓✓ Can be optimized online.

TABLE I: Comparison of Presented Methods
The column “Objective/Solution” shows how a method calculates a solution and, in the case of using an optimization problem, how its
objective is formulated. “Reactiveness” describes if a method can react online to external disturbances. Thereby, we differentiate whether
an Optimal Control formulation is used. When no sub-column in “Reactiveness” is selected, a method is not using Optimal Control and
can not react online to disturbances. The column “Can Optimize” lists the properties a method can adapt/optimize. Note that “Gait Timing”
relates to the duration of the gait phase (e.g. double/single support phases) while “Contact Pattern” describes the sequence in which the
feet make contact. Generally, the values a method can not adapt/optimize are also required input values.

their approach requires careful tuning of the weights of
the individual terms in the cost function to produce stable
motions.

VI. COMPARISON OF METHODS
To compare the presented methods we can look at the

different properties in Table I. First, we have to differentiate
between methods that just produce reference trajectories
while not supporting online reactions to disturbances, and
methods that include this reactive behavior. Furthermore,
some methods employ Optimal Control for predictive plan-
ning, while others do not utilize this approach. The combi-
nation of Optimal Control and reactiveness results in doing
MPC.

Most of the pendulum-based approaches are not based
on Optimal Control, but either utilize closed-form solutions
or employ another optimization problem. The methods pre-
sented in Sections III-A and III-C both focus on deriving
CoM trajectories from predefined step locations. Note, that
in both approaches the CoM height is fixed. The work of
Kajita et al., III-A, just allows for the creation of reference
trajectories from the step locations. In contrast, in III-C this
idea is extended to allow for reactive adaptation of the CoM
trajectory and the step locations to avoid falling. Here the
predefined reference step positions come from a step planner
with fixed parameters.

In comparison, the work by Caron, see Section III-D, fo-
cuses on stabilization during standing and therefore does not

include adaptation of step positions. However, it improves
stability since varying the CoM height can be used to avoid
falling. Note, that this approach can be adapted for walking
motions. In this case, the steps and CoM path would be
predefined to provide a reference trajectory. An advantage
of these simpler pendulum-based methods is the fast solving
time, e.g. 0.1ms [1], which yields high feedback control rates.

The only pendulum-based method that does predictive
planning with OC is presented in Section III-E. A feature
of this method is that it allows the optimization of gait
phase timings, but the gait sequence is fixed (alternating
flight phase and one-foot contact phase). Note that here just
the gait cycle is optimized and the actual terrain structure
is not considered. However, planning is done over multiple
scenarios with varying flat ground heights, so the gait in-
corporates some implicit robustness on the terrain structure.
This comes at the cost of increased solving times (4.3s on
average), therefore this method can’t be used for real-time
feedback.

A combination of the more complex single rigid body
dynamics model and linearization around the current state
bridges the gap between Optimal Control and being reactive
in the work presented in Section IV-A. Here the linearization
enables real-time MPC that also incorporates changing foot
locations for stabilization. Nevertheless, the gait timings and
contact schedule, as well as reference contact locations have
to be predefined. Additionally, the linearization leads to



errors in the predictive horizon which, inter alia, restricts
the types of terrains this method works with.

In contrast, the approach described in IV-B offers the
most flexibility, since here the whole gait schedule with
timings, positions and pattern is part of the optimization.
The incorporation of joint values in the planning, similar to
[2] (see Section I-A), allows for additional consideration of
joint and link collision constraints. But the gained flexibility
comes at the cost of slow solving times, which makes this
method non-real-time and unusable as MPC.

The last method V-A is similar to IV-A [7], when looking
at Table I. Both methods offer fast (re)planning which
is deployed as MPC. But V-A uses the full dynamics
model without linearization which avoids large errors in the
planning horizon. It also directly yields optimal low-level
feedback gains. However, the contact locations can not be
adapted during replanning and feet reference trajectories have
to be predefined. But the authors plan to include online step
adaptation in future work [5].

VII. CONCLUSION

In this report, we looked at various approaches for control-
ling humanoid-legged robots. We divided these into the three
classes “pendulum based”, “SRBM dynamics based” and
“full dynamics”. Finally, we compared the presented methods
in terms of reactiveness and optimization capabilities. None
of the considered methods allow optimizing over all walking
parameters, shown in Table I while providing reactiveness.
The work presented in Section IV-B is most flexible but not
real-time capable.

VIII. APPENDIX

A. LIP Transfer Function Derivation

r̈x = ω2rx − ω2px

sc Laplace transform

p2Rx(p) = ω2
0Rx(p)− ω2

0Px(p)

Rx(p)(p
2 − ω2) = −ω2Px(p)

F (p) =
Rx(p)

Px(p)
=

ω2

−p2 + ω2
=

1

1− p2/ω2
(18)

B. DCM Transfer Functions Derivations

ξ̇x = +ωξx − ωpx

sc Laplace transform

pΞx(p) = +ωΞx(p)− ωPx(p)

Ξx(p)(p− ω) = −ωPx(p)

Fξx(p) =
Ξx(p)

Px(p)
=

ω

ω − p
(19)

ṡx = −ωsx + ωpx

sc Laplace transform

pSx(p) = −ωSx(p) + ωPx(p)

Sx(p)(p+ ω) = ωPx(p)

Fsx(p) =
Sx(p)

Px(p)
=

ω

ω + p
(20)

REFERENCES

[1] Stéphane Caron. “Biped Stabilization by Linear
Feedback of the Variable-Height Inverted Pendulum
Model”. In: 2020 IEEE International Conference on
Robotics and Automation (ICRA). 2020, pp. 9782–
9788. DOI: 10 . 1109 / ICRA40945 . 2020 .
9196715.

[2] Matthew Chignoli et al. The MIT Humanoid Robot:
Design, Motion Planning, and Control For Acrobatic
Behaviors. 2021. arXiv: 2104.09025 [cs.RO].

[3] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake.
“Whole-body motion planning with centroidal dy-
namics and full kinematics”. In: 2014 IEEE-RAS In-
ternational Conference on Humanoid Robots. 2014,
pp. 295–302. DOI: 10.1109/HUMANOIDS.2014.
7041375.

[4] Ewen Dantec, Michel Taix, and Nicolas Mansard.
“First order approximation of model predictive con-
trol solutions for high frequency feedback”. In:
IEEE Robotics and Automation Letters 7.2 (2022),
pp. 4448–4455.

[5] Ewen Dantec et al. “Whole-Body Model Predictive
Control for Biped Locomotion on a Torque-Controlled
Humanoid Robot”. In: 2022 IEEE-RAS 21st Interna-
tional Conference on Humanoid Robots (Humanoids).
IEEE. 2022, pp. 638–644.

[6] Moritz Diehl et al. “Fast direct multiple shooting algo-
rithms for optimal robot control”. In: Fast motions in
biomechanics and robotics: optimization and feedback
control (2006), pp. 65–93.

[7] Yanran Ding et al. “Orientation-Aware Model Predic-
tive Control with Footstep Adaptation for Dynamic
Humanoid Walking”. In: 2022 IEEE-RAS 21st In-
ternational Conference on Humanoid Robots (Hu-
manoids). 2022, pp. 299–305. DOI: 10 . 1109 /
Humanoids53995.2022.10000244.

[8] Johannes Englsberger, Christian Ott, and Alin Albu-
Schäffer. “Three-dimensional bipedal walking con-
trol using divergent component of motion”. In: 2013
IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE. 2013, pp. 2600–2607.

https://doi.org/10.1109/ICRA40945.2020.9196715
https://doi.org/10.1109/ICRA40945.2020.9196715
https://arxiv.org/abs/2104.09025
https://doi.org/10.1109/HUMANOIDS.2014.7041375
https://doi.org/10.1109/HUMANOIDS.2014.7041375
https://doi.org/10.1109/Humanoids53995.2022.10000244
https://doi.org/10.1109/Humanoids53995.2022.10000244


[9] Gabriel Garcı́a, Robert Griffin, and Jerry Pratt. “MPC-
based Locomotion Control of Bipedal Robots with
Line-Feet Contact using Centroidal Dynamics”. In:
2020 IEEE-RAS 20th International Conference on Hu-
manoid Robots (Humanoids). 2021, pp. 276–282. DOI:
10.1109/HUMANOIDS47582.2021.9555775.

[10] Kevin Green, Ross L Hatton, and Jonathan Hurst.
“Planning for the unexpected: Explicitly optimizing
motions for ground uncertainty in running”. In: 2020
IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2020, pp. 1445–1451.

[11] Shuuji Kajita et al. “The 3D linear inverted pendulum
mode: A simple modeling for a biped walking pattern
generation”. In: Proceedings 2001 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems.
Expanding the Societal Role of Robotics in the the
Next Millennium (Cat. No. 01CH37180). Vol. 1. IEEE.
2001, pp. 239–246.

[12] Mohammadreza Kasaei, Nuno Lau, and Artur Pereira.
“A Robust Biped Locomotion Based on Linear-
Quadratic-Gaussian Controller and Divergent Com-
ponent of Motion”. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).
2019, pp. 1429–1434. DOI: 10.1109/IROS40897.
2019.8967778.

[13] Bruno Siciliano, Oussama Khatib, and Torsten Kröger.
“Springer handbook of robotics”. In: 2nd ed. Vol. 200.
Springer, 2008. Chap. 17.4, pp. 430–432.

[14] Toru Takenaka, Takashi Matsumoto, and Takahide
Yoshiike. “Real time motion generation and control for
biped robot-1 st report: Walking gait pattern genera-
tion”. In: 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE. 2009, pp. 1084–
1091. DOI: 10.1109/IROS.2009.5354662.

[15] Jifei Xu. “Biped walking trajectory design and stabi-
lization”. https://www.ideals.illinois.
edu/items/102787/bitstreams/327204/
data.pdf. MA thesis. 2017.

https://doi.org/10.1109/HUMANOIDS47582.2021.9555775
https://doi.org/10.1109/IROS40897.2019.8967778
https://doi.org/10.1109/IROS40897.2019.8967778
https://doi.org/10.1109/IROS.2009.5354662
https://www.ideals.illinois.edu/items/102787/bitstreams/327204/data.pdf
https://www.ideals.illinois.edu/items/102787/bitstreams/327204/data.pdf
https://www.ideals.illinois.edu/items/102787/bitstreams/327204/data.pdf

	INTRODUCTION
	Related Work

	BACKGROUND
	Optimal Control
	Solving Optimal Control Problems
	Direct Single Shooting
	Direct Multiple Shooting
	Differential Dynamic Programming (DDP)

	Model Predictive Control

	PENDULUM BASED APPROACHES
	LIP Walking Pattern Generation
	LIP and Divergent Component of Motion
	Walking via LIP and DCM
	Variable Height Inverted Pendulum
	Actuated Spring Loaded Inverted Pendulum

	Single Rigid Body Based Approaches
	MPC with Linearized Centroidal Dynamics
	Centroidal Motion Planning with Whole Body Kinematics

	FULL DYNAMICS PLANNING
	Whole Body MPC with Full Dynamics

	COMPARISON OF METHODS
	CONCLUSION
	Appendix
	LIP Transfer Function Derivation
	Appendix


