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Abstract— Learning-based controllers have reached remark-
able results on different platforms due to the recent improve-
ments seen in robotics and artificial intelligence. As a result,
quadrupeds have gained much attention due to their ability
to adapt to challenging terrains (compared to other types of
robots). Mastering agile, robust, and natural locomotion in real-
world environments presents significant challenges due to the
complexities of non-simulated environmental dynamics. Recent
studies demonstrate that conventional reinforcement learning
(RL) methods can successfully learn difficult tasks. Neverthe-
less, the resulting behaviors tend to be energy-inefficient and
artificial due to the overreliance on task rewards. This paper
centers on examining the concept of style reward, which has
emerged in recent years as a crucial element in enabling RL-
based controllers to exhibit natural locomotion.

I. INTRODUCTION

Compared to wheeled robots, legged robots possess su-
perior capabilities in adapting to challenging terrains, such
as on stairs and discontinuous ground. This adaptability is
achieved through the strategic planning of contact points.
However, generating natural, agile, and robust behavior in
tasks remains a significant challenge for legged robots. Tra-
ditional methods, which involve manually designing control
strategies, demand extensive knowledge of the dynamic sys-
tems involved and considerable skill. This design process is
not only time-consuming but also results in control strategies
that lack adaptability when applied to new tasks, requiring
a redesign of the controller for each new application. To
address the limitations of these manually crafted controllers,
reinforcement learning (RL) offers an efficient solution by
enabling an agent to learn and update control strategies
through environmental interaction. Despite this, the motions
produced via RL are often physically infeasible, energy-
inefficient, and exhibit unnatural behavior during task ex-
ecution. To address these challenges, many researchers have
begun incorporating an additional reward into the reward
function. This supplementary reward is designed to motivate
the agent towards desired behaviors, thereby guiding the
reinforcement learning (RL) algorithm to encourage the
agent to emulate reference motions while achieving task
objectives.

The essence of natural behavior learning lies in formu-
lating reward functions, which consist of style rewards and
task rewards. The style objective defines a motion imitation
reward, which can be hand-crafted through motion tracking
or learned automatically through adversarial imitation learn-
ing. This component ensures that the reproduced behavior is
similar to the reference motions. The objective is introduced
to guarantee that the overarching goal or task is fulfilled.
By combining these two rewards, the reward function can

direct the learning process to generate such a control strategy,
reproducing natural, agile, and robust behaviors.

One prominent RL algorithm employed for training in this
framework is Proximal Policy Optimization (PPO) [16]. PPO
is derived from Trust Region Policy Optimization (TRPO),
utilized in Generative Adversarial Imitation Learning (GAIL)
[8]. In policy iterations, we need to compute policy gradients,
which help us better evaluate the executed actions under
the current policy. However, without constraints on the
magnitude of policy updates during optimization, it often
results in excessively large adjustments. This divergence can
adversely affect the learning progression and the overall
effectiveness of the policy improvement. Instead of limiting
the Kullback–Leibler (KL) divergence between the old and
new policies, PPO clips the probability ratio to achieve a
restriction similar to TRPO, therefore having the stability
and reliability of trust-region methods but are much simpler
to implement.

This report primarily discusses various methods for ex-
tracting style rewards to facilitate the generation of natural
motions in four-legged robots for specific tasks. An overview
of the report is depicted in Figure 1. Initially, we talk about
the dominant platforms for quadrupedal robots and outline
the main research objectives. To understand the current
learning-based control strategies for quadrupedal robots, we
discuss recent works with reinforcement learning (RL) and
the methods for transferring simulation results to real-world
applications. The report focuses on extracting style rewards,
either through motion tracking or adversarial motion priors,
and then integrating these style rewards into the task rewards.
By employing reinforcement learning, we aim to develop a
policy capable of completing tasks with a specific style. In
the end, we discuss the future work and possible limitations
of style reward.

II. QUADRUPED LOCOMOTION

One of our primary interests in this seminar is to explore
how to learn agile and realistic locomotion on robots. As this
comprises our key interest, there are various platforms of in-
terest, such as bipedal and quadruped robots. While there are
many opportunities for improving bipedal locomotion, this
paper focuses on the frontier of developments in quadruped
research.

A. Platforms

A variety of quadrupedal robots have stood on the stage
in the past decades. ANYmal from ETH is one of the
most promising four-legged systems [24], which features
outstanding mobility and high flexibility. ANYmal has a



Fig. 1. An Overview of ”Learning Natural Locomotion from Demonstration”

different topology design on the leg compared to others. The
full rotation of joints allows it to achieve various configu-
rations for different tasks like walking and stair climbing.
The recent research based on it exhibits more powerful
performance on robustness over challenging terrain [14]. The
most prominent platform seems to be Unitree, a series of
quadrupedal robots from Unitree Robotics [25] that is quite
popular among academic laboratories. As showcased in the
parkour demos [19], over challenging terrain [23], in the wild
[15] and in other versatile motion task [3], [20]–[22], [28]–
[31]. MIT mini cheetah is a lightweight and mechanically
robust quadrupedal robot, which is also the first one to
finish motion backflip [26]. Additionally, Boston Dynamics’
Spot has garnered a lot of attention due to its exceptional
skills in various scenarios, including dancing and dragging a
truck. However, the development of its low-level controller
is challenging because of proprietary restrictions. Spot is
mainly a commercial product that has been deployed in
rescue operations, searches, and examinations in dangerous
places [27].

B. Research Objectives

The research on quadrupeds focuses on the practical
applications of the robot in real-life scenarios. In real life,
dog-like robots are often required to perform various tasks in
common scenarios, such as slopes with different inclinations,
irregular gravel fields, and smooth surfaces with varying
levels of slipperiness, like ground covered by mud, snow,
or ice. As showcase in [14] [23]. They may even encounter
discontinuous ground, like steps and gaps, which usually
require them to climb and jump [19], [28]. While these may
seem trivial for humans and animals, they pose significant
challenges for robots. Therefore, studying how quadrupedal
robots maintain stability over different terrains is a crucial
research direction.

Meanwhile, the tasks often require robots to exhibit a
variety of gaits like walking, trotting, and galloping, as

showcased in [31]. Robots need to adopt different gaits to
achieve varying speeds. Investigating how to make dogs per-
form different gaits for given tasks and stabilize transitions
between different gaits is also an essential research direction
[28]. In industrial applications, we not only require dogs
to complete tasks safely and stably but also wish for them
to do so effortlessly, i.e., low-power transport, which is a
characteristic of natural locomotion. as showcased in [3],
[15], [20].

III. RELATED WORK

A. Learning Natural Locomotion from demonstration

Learning from demonstration, also known as imitation
learning, offers distinct advantages over reinforcement learn-
ing by leveraging expert demonstrations. It eliminates the
need to explicitly design a reward function, which is usually
tedious, time-consuming, and challenging, especially under
real-world scenarios. Imitation learning incorporates expert
experience by aligning the agent’s policy with the expert,
aiming to replicate expert behaviors. Over the past decades,
various approaches have emerged, broadly classified into
three categories: behavior cloning, inverse reinforcement
learning, and adversarial inverse reinforcement learning. Be-
havior cloning achieves this alignment through supervised
learning. However, it tends to perform poorly in unseen
scenarios due to generalization issues. Inverse reinforcement
learning (IRL) aims to infer the underlying reward func-
tion based on the observed behavior of the expert. The
reconstructed reward function guides the learning process,
hence the agent is enabled to adopt an expert-like policy.
Adversarial inverse reinforcement learning (AIRL) builds on
IRL by integrating adversarial training, where the policy and
a discriminator are trained simultaneously. The agent strives
to mimic expert behaviors to deceive the discriminator,
while the discriminator seeks to differentiate between the
actions of the agent and those of the expert. This adversarial



process encourages the agent to generate behaviors that are
indistinguishable from the expert.

Fig. 2. Schematic overview of Learning natural locomotion with a style
reward. Starting with motion reference that outlines desired motion styles
for the agent, the system then trains a motion prior, specifying style reward
rSt . The style reward is then combined with the task reward, denoted as rGt ,
and used to train a policy. By doing so, the agent can achieve task-specific
goals while also emulating behaviors that are similar to those observed in
the reference motion.

In the application of quadrupedal robots, employing an
RL-based controller can effectively complete several tasks.
However, it is common to observe that the behaviors demon-
strated in given tasks often exploit unnatural gaits, result in
excessive contact force, and incur high energy consumption.

To address these problems, several works have focused
on integrating natural motion styles into tasks. One of the
primary directions is extracting style from demonstrations.
In the DeepMimic [6], the authors propose a method that
combines a motion-imitation objective with task objectives,
enabling animated characters to perform highly dynamic ac-
tions such as flips and spins. The motion imitation objective
acts as a style reward, constructed based on the difference
between the agent’s joint states and the reference motion
clips. It guides the learning process toward developing a
policy that not only fulfills the task but also replicates the
style from the motion clips. In [13], the authors provide a
framework that allows robots to learn skills from real ani-
mals. The challenge in learning from motion capture data lies
in the reduction from the real animal to the robot, where the
real animal usually has a different topology and more flexible
configuration. They address this through motion retargeting,
which involves tracking key points of a real dog, such as
the feet and hips, and then leveraging inverse kinematics
to compute a configuration for the joints of the robot. The
resulting policy enables the Unitree robot to exhibit a diverse
set of skilled locomotions, including trotting, pacing, agile
turning, and spinning. The aforementioned works utilize
motion tracking to generate a broad spectrum of skills.
However, when dealing with large, diverse, and unstructured
datasets, these approaches necessitate extra effort to select
appropriate motions. This challenge led to the development
of the Adversarial Motion Prior (AMP) [4], which adopts a
GAN-style approach to extract style rewards without relying

on handcrafting. The discriminator is trained simultaneously
with the RL controller, and it also provides auxiliary infor-
mation in the task reward, known as the style reward. This
enables animated characters to not only complete the task
but also to exhibit the styles from reference motion clips.
The overview of this kind of approach is shown in figure 2.
For varying styles, AMP introduces a selector mechanism,
allowing users to interact with the agent to produce a desired
style for achieving the task goal, or to automatically select
the best style based on the maximum reward achieved. The
subsequent work [2] extends this approach to the wheeled-
legged robot, ANYmal, discussing the adjustment of multiple
adversarial motion priors. By employing a one-hot encoding
selector, it achieves intentional style switching, allowing for
the selection of motion priors to a given scenario. To en-
hance the existing dataset, they mirror the reference motion,
which later proved to be a crucial factor for enabling their
resulting policy on ANYmal to transition from a quadrupedal
configuration to a humanoid form.

In [15], the authors integrate the teacher-student frame-
work with AMP on the Unitree A1 robot and successfully
enable it to exhibit a diverse range of natural gait patterns
in various outdoor environments. They also enhanced the
dataset by mirroring specific joint positions. Which turns out
to be an important factor to enable Unitree A1 to perform
gallop gait in the wild.

The answers to achieving natural motion in tasks are more
than just AMP. The author in [32] provides an alternative
approach by learning a kinematic generative model of human
motion from example motion data, using an autoregressive
conditional variational autoencoder (Motion VAE). The pre-
diction of the pose at the next timestep depends on several
stochastic latent variables. These latent variables are treated
as the action space for reinforcement learning. With a goal-
specific reward function, the animated human character can
generate natural, goal-directed motion in tasks. Besides the
work in [20] discusses another method, which also achieves
natural gaits but without reference motion. The authors
incorporate the energy information defined by a product
of joint torque and velocities in the total task reward. It
points out that energy minimization leads to the emergence
of natural gaits.

B. Sim-to-Real

After obtaining a trained controller from the simulator,
it’s crucial to transition the learned behaviors to the real-
world environment. This presents a significant challenge
due to the substantial reality gap that cannot be ignored.
To bridge this reality gap, we can construct more accurate
simulation environments. One way to achieve this is by
randomizing the physical parameters of the simulator, such
as friction, mass, etc. A wide range of randomization could
cover the physical configuration of reality. Training in these
environments makes the trained controller more robust and
helps the controller transfer more effectively to real-world
scenarios. This technique is referred to as domain randomiza-
tion (DR). It has become a common technique to facilitate the



TABLE I
SUMMARY OF EXISTING RESEARCH ON NATURAL LOCOMOTION LEARNING

Ref Datasets Learning Type Sim2Real Platform Terrains

[13] Mocap Motion Tracking DR & DA Unitree Laikago Indoor

[2] Synthetic AMP DR & Acutator Net ANYmal Indoor

[3] Mocap AMP DR Unitree A1 Indoor

[15] Mocap & Synthetic AMP DR & DA Unitree A1 In/Outdoor

[20] N/A Engergy-based DR & DA Unitree A1 In/Outdoor

[32] Mocap & Synthetic Motion VAE N/A Animated Characters N/A

[4] Mocap & Synthetic AMP N/A Animated Characters N/A

[6] Mocap & Synthetic Motion Tracking N/A Animated Characters N/A

transfer of results into reality. as showcased in [3], [13], [15].
Another approach is modeling an accurate physics system,
including the actuators, as shown in [12]. This involves
training an actuator network that outputs an estimated torque
at joints, given a history of position errors and velocities.
Essentially, it uses supervised learning to obtain an action-
to-torque relationship that encompasses all software and
hardware dynamics within one control loop. In addition to
focusing on physics simulation configuration, the authors
in [14] proposed a teacher-student policy. This leverages
proprioceptive signals such as base velocity, orientation,
and joint states to recover feature information containing
privileged information like contact states, terrain profiles,
friction coefficients, etc. In the teacher-student policy, as the
name suggests, there are two policies. The teacher policy
is trained using some reinforcement learning algorithm in
simulation and has access to privileged information not
available in the real world. Then, a proprioceptive student
policy learns by imitating the teacher, having access only
to proprioceptive signals, instead of privileged information.
This framework has proven so effective that it even enables
the robot ANYmal to demonstrate zero-shot generalization
from simulation to natural environments. Subsequent works
have also achieved remarkable results by utilizing this frame-
work, as showcased in [15], [23]. The table I presents a
summary of the approaches above. This table provides an
overview, comparing key aspects and outcomes of each
method to facilitate understanding of their differences and
applications.

IV. STYLE REWARD

In this report, we focus on incorporating style features
from reference motions into task rewards to achieve natural
locomotion. We first discuss the categories of datasets. These
can include motion capture files, which document key points
on real animals such as dogs and horses, as well as synthetic
data, which might be collected from existing RL controllers,
optimized trajectory, and video. Synthetic data also might
involve playing motions in reverse or mirroring existing
datasets. Synthetic data enables the learning of unexpected
behaviors, as demonstrated in [2] and [15]. Motion capture
datasets are often collected from real animals with similar

structures but varying limb lengths. Therefore, mapping the
reference dataset to the dog model is necessary for obtaining
learnable simulation datasets. This entire process is known
as motion retargeting [33]. Initially, a set of source and target
key points from animals will be recorded and mapped onto
the robot’s body structure according to their timestamps. This
is achieved by constructing an optimization formulation that
leverages inverse kinematics and additional constraints to
determine the corresponding joint configuration.

To extract style information from datasets, this report
discusses two approaches. The first is motion tracking, which
involves tracking joints and other crucial points that represent
the motion style. The second approach is AMP (Adversarial
Motion Priors), which integrates adversarial imitation learn-
ing with reinforcement learning.

A. Motion Tracking

In the studies referenced in [6] and [13], the reward func-
tion encourages the policy to track a sequence of target pose
q̂0, q̂1, ..., q̂T at every timestep. The overall task objective at
each timestep is defined as follows:

rt = wIrIt + wGrGt (1)

where rIt and rGt denote the imitation and task-goal objec-
tives respectively, wI and wG represent their corresponding
weights, typically determined manually. The imitation ob-
jective rIt is derived from the tracking loss associated with
positions, velocities, and orientations of key points, such as
joints and the base trunk, encouraging the agent to adhere
to the specified motion sequence. Here is an example of
imitation reward defined by motion tracking:

rIt = wprpt + wvrvt + weret (2)

where rp is the pose reward, as defined in the following
equation, minimizing the difference between the joint ro-
tations specified by the reference motion and those of the
robot at each timestep. q̂jt represents the t time local rotation
of joint j from the reference motion, and qtj represents the
robot’s joint angle at time t. q̂jt ⊖ qjt denotes the quaternion



difference. ||q|| computes the rotation in radians.

rpt = exp[−2(
∑
j

||q̂jt ⊖ qjt )||2)] (3)

The rvt and ret represent the velocity reward and end-effector
reward, defined similarly to the above equation by terms ˆ̇qjt
,q̇jt , x̂e

t and xe
t , which denote the angular velocity of joint

j from the reference motion and robot , the relative position
of end-effector from reference and robot respectively. Fur-
thermore, in this work, the root pose and velocity are also
considered to construct the root motion accurately.

The authors implemented the method on the Unitree
Laikago, enabling it to perform a wide range of agile
behaviors, including various locomotion gaits, dynamic hops,
and turns. Nevertheless, this approach requires manually
defining the reward function and selecting suitable motions
for the agent to track in specific scenarios. This becomes
challenging and impractical when dealing with large and
complex unstructured datasets.

B. Adversarial Motion Prior

To address the challenges of large and complex datasets,
one solution is to use a model capable of automatically
extracting information from the reference motion. Instead of
manually crafting imitation objectives, Peng, in his work [4],
introduces fully automated approaches based on adversarial
imitation learning. This method involves two models: a
generator and a discriminator. The generator’s job is to create
motions, while the discriminator attempts to differentiate be-
tween the generated motion and expert motion. The discrim-
inator assesses the disparities between the generated states
and that of the experts. The learned discriminator serves as
the imitation objective, effectively acting as a style reward.
The style reward, when combined with the task reward,
creates a comprehensive reward system. Consequently, after
applying a reinforcement learning algorithm, the learned
policy not only achieves the goal, such as an animated human
kicking a stationary ball but also exhibits a specific style akin
to the reference. A more intuitive overview is illustrated in
2. The whole reward function is defined as the following
equation:

r(st, at, st, st+1, g) = wGrG(st, at, st, g) + wSrS(st, st+1)
(4)

where a task-specific reward is denoted as rG(st, at, st, g). It
encourages the agent to move to the target. And rs(st, st+1)
is the style reward, which determines the agent how to reach
the target. Compared to the task reward function, the style
reward focuses solely on the state transition as its input. The
complete objective for training the discriminator is usually
defined as follows:

argmin
D

EdM(s,s′)[(D(Φ(s),Φ(s′))− 1)2]

+ Edπ(s,s′)[(D(Φ(s),Φ(s′)) + 1)2]

+
wgp

2
EdM(s,s′)[∥∇ϕD(ϕ)|ϕ=(Φ(s),Φ(s′))∥2] (5)

The training process often faces unstable dynamics, such as
gradient vanishing and function approximation errors. Gra-
dient vanishing occurs when the objective is defined using
a sigmoid cross-entropy function like the loss defined in the
original GAIL due to the sigmoid function saturation. Em-
ploying a least squares GAN, known for more stable training
and higher quality outcomes, is a viable option. Nonetheless,
using only least squares is not a panacea. Instability can
still happen during training due to function approximation
errors in the discriminator. Namely, the discriminator might
assign non-zero gradients on the real data sample manifold,
which causes the generator to overshoot and deviate from the
data manifold. This can result in oscillations and instability
during training. To address this, applying a gradient penalty
on non-zero gradients on dataset samples can be effective.
The aforementioned factors explain why the objective is
defined as above. Through solving a least-squares regression
problem, the objective aims to predict a score of 1 for
samples from the dataset M and -1 for samples generated by
the policy π. Φ(s) denotes an observation map that extracts a
set of features relevant to state transitions. The objective has
proven effective in many subsequent studies. As showcased
in [15], [3], [2], [4]. It is also worth noting that most of
these works employ off-policy training on the discriminator
through a replay buffer to achieve sample efficiency. As
mentioned in [7] [18]. Therefore the state transitions are
collected from a replay buffer, which stores past experience
from the interaction of the agent with the environment. The
style reward function for training the policy can be defined
by:

r(st, st+1) = max [0, 1− 0.25(D(Φ(s),Φ(st+1))− 1)2]
(6)

When the discriminator classifies a state transition as pos-
itive, indicating that the generated motion resembles that
of an expert. otherwise, it yields zero. To evaluate whether
the policy trained with adversarial motion priors generates
natural locomotion, we use the concept of cost of transport,
a common metric for estimating the energy efficiency of
locomotion. It is typically defined as follows:

COT =
∑

motors

[τ θ̇]+ (7)

where τ is the joint torque and θ̇ is the motor velocity. The
task can involve various velocity commands. To meet these
velocity demands, the robot adapts to different gaits. For
instance, at lower velocities, the walking gait is typically
the most energy-efficient, as reported in [20]. This serves
as a criterion to evaluate whether the resulting policy can
produce natural locomotion that demonstrates lower energy
consumption.

V. CONCLUSION

In this report, we primarily explore two distinct approaches
to extract style information from demonstrations, which then



work as part of the reward function in the reinforcement
learning algorithm to develop a viable policy. The first
method involves defining a loss function that tracks a se-
quence of key points, which subsequently serves as the
reward function. The second approach employs adversarial
imitation learning, simultaneously training a discriminator
alongside the policy. This latter method automatically gener-
ates the reward function, eliminating the need for manually
setting constraints. However, the training process in the
latter approach may encounter instability and require a large
number of samples from the interactions of the agent with
the environment

A. Limitation

Generally, extracting style information from a dataset and
using it as a reward results in good performance on different
platforms. However, a small dataset might not be sufficient
to support the policy in producing a natural gait for a
given scenario. With a large dataset- one that encompasses
multiple skills/scenarios- the challenge lies in finding the
most suitable skill within the dataset for a given task.
Additionally, finding the right coefficient weights to balance
task reward and style reward is important in getting good
policies. Ensuring stability, validity, and execution of the
gait transition is especially challenging when considering
complex terrains such as construction sites, terrains affected
by natural disasters, etc. Additionally, heavy biases in the
dataset, meaning data in which instances of a specific gait
significantly outnumber the instances of others, can also pose
a major problem.

Regarding different platforms, it is worth thinking about
adjusting the natural gait. For example, the gait of a horse is
much more different than that of a dog. It may be necessary
to consider combining gaits with energy consumption across
different platforms since it is unlikely that a single ’natural’
gait works for all of them. We probably need to consider the
platform’s dynamic parameters (like inertia, leg weight, trunk
weight, and various motor types) and the structure (different
topologies). These properties of a quadrupedal robot lead
to different motion characteristics, such as maximum speed
and payload weight, which could be very helpful heuristic
information for applying different platforms in different
scenarios such as rescue operations (which may require high
speed) or transportation, which demands payload.

B. Future Work

To address the limitations previously discussed, exploring
latent embeddings derived from locomotion could be a
promising solution. Capturing the underlying patterns across
different gaits may facilitate smoother transitions between
different modes of gait. Regarding the improvement of
stability, incorporating style rewards might be insufficient
for a robot to achieve true animal-like motion, which is
more robust and adaptive in the environment when compared
to a robot. A potential avenue for improvement involves
estimating real-world disturbances and then applying com-
pliant control techniques. This strategy is proven to enhance

the learned controller’s energy efficiency and naturalness in
robotic movements, as evidenced in recent studies [34], [35].
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