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Abstract— Differences in gait can be attributed to a multitude
of entangled factors, such as physique and anatomy (inter-
personal), mood (intrapersonal), and terrain (environmental).
These factors are relevant in many aspects of robotics and
Human Robot Interaction (HRI). Hence, this work aims to
provide an overview of how gait can be incorporated into
robotics, primarily in motion generation and secondarily in the
classification of gaits. We focus on the use of gait embeddings to
model the varying factors affecting gait. Specifically, we analyze
the requirements emerging from the different applications and
a breakdown of how current works aim to meet them. We
additionally provide an overview of existing and available
datasets relating to gait. Lastly, we discuss the state of the art,
current limitations, and potential starting-off points for future
work.

I. INTRODUCTION

Gait describes the general manner of walking and refers to
a wide variety of different walking patterns. These variations
typically don’t have a single cause. Instead, they are the
result of a multitude of interrelated factors. Modeling these
factors is relevant in many areas of robotics and Human
Robot Interaction (HRI).

In human walking, changes in terrain can induce move-
ment adaptations for safer and more efficient locomotion.
Similarly, the speed at which areas are traversed also alters
the movement. These adaptations can be significant enough
to be considered different types of locomotion. Replicating
this behavior can be desirable in the design of legged
robots exposed to different and unseen environments. Ideally,
gaits should adapt to input signals, and transitions between
locomotion types should happen smoothly [56, 51].

Learning different types of locomotion is also relevant
to the design of assistive devices, such as lower limb ex-
oskeletons, used for patient rehabilitation [56]. The natural
walking style of each patient is different due to their varying
physique and other interpersonal differences. To ensure that
assisted walking feels natural and comfortable to patients,
assistive devices must take these differences into account
when generating movements [52, 61, 26].

Another objective is the generation of human-like motion.
This objective often requires some level of control over the
generated motion. The classification of human gaits, which
can be considered as the inverse of the motion generation
task, can also be important in HRI to allow robots to adapt
their behavior accordingly. A prominent example of this
dichotomy is the generation and classification of emotive
gaits. Conveying emotions can be helpful to increase the like-
ability of social and collaborative robots and to improve the
experience of people interacting in HRI scenarios [42]. More-
over, emotions increase human likeness [13], which could

potentially reduce vandalism directed towards robots [3].
Conversely, emotion recognition from human gaits [5, 6, 39]
is an important problem for social robots during human-robot
interactions.

Other generation and classification tasks can be derived
from the various factors affecting gait. For example, gait
changes caused by carrying heavy objects could be imitated
to non-verbally communicate that a robot has reached its
carrying capacity. The recognition of gait factors may also
be relevant in fields outside of robotics and HRI, including
but not limited to medical analysis (abnormal gait recog-
nition [20] and estimation of anatomical conditions [37]),
surveillance (detection of deceptive behaviour [40] and per-
son identification (PID) [12, 22, 25, 35, 41]), and accident
prevention (fatigue detection [38] and measuring distrac-
tion [4, 57]).

The isolation of factors is relevant in many classificational
and generative cases [20], e.g. for PID, which is mainly
concerned with isolating static interpersonal differences from
other variable intrapersonal and environmental factors.

Another helpful aspect in the aforementioned applications
is the proper modeling of spatio-temporal dependencies of
human motion [6, 8, 5, 41, 25]. Although task-agnostic
models have the potential to learn these dependencies with
a sufficient amount of data, considering these in the design
of models can increase performance.

Learning gait embeddings has been explored for many
of the aforementioned applications. In generative tasks, gait
embeddings benefit from being more descriptive than discrete
class labels. They are also computationally more efficient
than learning separate models for each class. In combination
with Deep Generative Models (DGMs), they can be used
to generate synthetic examples without the need for addi-
tional inputs. They furthermore allow transfer across different
input modalities [20, 37, 52, 26]. Classification tasks use
embedding to reduce the need for labeled data using self-
supervision [6, 41, 35]. In PID tasks, gait embeddings can
constitute templates for private and memory-efficient open-
set identification [8, 25, 35]

This work aims to provide an extensive overview of the
application of gait embeddings in current research. First, we
introduce the different ways in which gaits can be captured
and represented (Section II) and describe commonly used
motion generation methods (Section III). In Section IV,
we outline the requirements that arise from the different
applications and discuss how different works attempt to meet
them, specifically focusing on the use of gait embeddings. A
collection of gait-related datasets is presented in Section V.
Finally, in Section VI, we summarize the current progress



in the respective fields, discuss existing limitations, and
highlight the resulting potential future work.

II. GAIT DATA

This section covers relevant methods for capturing gaits.
First, we introduce general motion capture methods in Sec-
tion II-A. We subsequently discuss auxiliary data used in
works related to gait. These are used alongside classical
motion representations in order to augment the overall rep-
resentation and to capture a wider range of gait-relevant
information.

A. Capturing Motion

Motion can be captured and represented in several ways. In
the following, we present the most common representations,
namely video, keypoint-based, and rotation-based represen-
tations.

Video is a fairly straightforward way of capturing motion.
Compared to other data, video can be obtained cheaply and
quickly without much preparation. However, the resulting
representation is relatively dense and may also capture
unwanted environmental information. It is also sensitive to
changes in lighting and viewing angle among other things.
Unnecessary information about changing backgrounds and
illumination can be omitted by extracting silhouette images.
Increasing the amount and variety of training data can also
help mitigate the problems caused by the non-invariant nature
of video data. This is achieved by recording more examples,
data augmentation, or multi-view capturing. Aside from that,
the application of video for robot motion generation is not
trivial and usually requires extracting keypoints or joint
angles for proper mapping.

In keypoint-based representations, the human body is rep-
resented by a set of specific points over time. These points
typically coincide with relevant parts of the human body,
such as joint locations or landmarks on the surface of the
human body. Capturing the keypoints can be done either
using Motion Capture (MoCap) systems, which typically
require attaching markers to the subject’s body, or indirectly
using video and extracting the keypoints algorithmically
using computer vision. The latter tends to be less accurate
and, depending on the method used, may return only 2D
coordinates, but can be applied anywhere and without much
preparation.

Rotation-based methods similarly represent motion w.r.t.
to joints, but instead of measuring their position, their rota-
tion, relative to the previous joint, is captured. The angles can
be captured using gyroscopic sensors at the corresponding
joints. Like keypoint-based representations, they can also be
estimated from video. They are usually represented as Euler
angles, axis angles, or quaternions.

These representations can be used on their own, but
oftentimes also in combination. Additionally, keypoint- and
marker-based representations often also include first- and
second-order dynamics, i.e., velocity and acceleration, or the
forces and moments exerted.

Both joint-based representations have the computational
advantage of being representationally sparse compared to
video data. Although, some information is naturally omitted
when representing motion this way. One consequence of this
representation is that information about the volume of the
associated limbs is not taken into account. Thus the body
shape, the interaction of touching limbs, and the soft tissue
motion cannot be captured. For this reason, some datasets
additionally provide body meshes, to model the surface of
the human body [29, 18].

B. Auxilliary Data

In addition to the kinematic data described in the previous
section, many methods use auxiliary data to better represent
gait.

Labeled gait events, such as foot strikes, can be used to
aid the model in capturing more high-level data [56, 51, 22].
They can also be useful for segmenting gait sequences into
gait cycles, allowing their duration to be normalized [56, 37,
52, 35]. The labeling of foot-based gait events is often done
using insole foot pressure sensors for prediction [35, 56].
The readings from these sensors can also be used directly as
auxiliary data [35].

Interpersonal differences such as anthropomorphic features
also affect a person’s gait. These can include height, weight,
and age, as well as more specific parameters such as the
length of body parts or muscle properties. Several methods
use this information to learn individualized gait patterns [37,
61, 52, 26].

The acute physiological state of a person additionally
also has an influence on their gait. The measurement of
physiological processes can therefore be relevant for the
adaptation of generated movements, e.g. for assistive devices.
Commonly used sensors are heart rate sensors [59] and
electromyographic (EMG) sensors that measure the electrical
activity of individual muscles [31, 28, 49]. Furthermore,
some medical works have examined the possibility of using
neural activity [48].

III. MOTION GENERATION METHODS

In the following, we introduce key concepts in the field of
DGMs, namely Variational Autoencoders (VAEs) and Gen-
erative Adversarial Networks (GANs). We further elaborate
on modifications for generating sequences and conditioning.

A. Deep Generative Models

DGMs, such as VAEs and GANs, can be used not only
to predict motion from a given input condition but also
to generate synthetic examples without the need for addi-
tional signals. Figure 1 provides a schematic overview of
the different models used in motion motion generation. In
the following, we also describe the most commonly used
methods and briefly compare their respective strengths and
weaknesses.

Variational Autoencoders (VAEs) [27] are a form of
Autoencoders (AEs), that is, they consist of an encoder,
which extracts a latent representation from the input, and
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Encoder Decoder(a) VAE

Discriminator 0/1Generator(b) GAN

Fig. 1: An overview of different generative Models. Adapted
from [60]

a decoder, which aims to reconstruct the input from the
latent representation. In VAEs, the encoder produces a latent
distribution qϕ(z|x), which is conditioned to approximate a
predefined prior pθ(z) while being optimized to reconstruct
the original input. Entirely new outputs can be synthesized
by decoding random samples from the prior pθ(z). The
architecture of a VAE is depicted in Figure 1a.

Generative Adversarial Networks (GANs) [19] consist of
two neural networks, namely a generator and a discriminator
model. The Generator produces synthetic examples from ran-
dom noise z sampled from some probability distribution pz.
The generator implicitly learns the probability distribution
pg . This distribution cannot be evaluated directly, which is
why we need the discriminator to encourage pg to resemble
the actual distribution of the data pdata. Concurrently, the
discriminator tries to distinguish real from synthetic data,
while the generator is trained to ”fool” the discriminator,
i.e. to maximize the probability of a generated image being
classified as real by the discriminator. The general structure
of a GAN is illustrated in Figure 1b.

Implicitly learning the distribution pg allows it to be more
complex than the distribution over the outputs of a VAE,
resulting in higher quality examples. However, the latent
space of VAEs tends to be more interpretable than that of
GANs.

B. Generation of Temporal Data

The generation of any motion intrinsically requires the
generation of sequential data. This can be achieved by
generating an entire motion sequence in a single pass through
the network (Figures 2a and 2e). This way, the model can
always reference any previous or upcoming point in time. A
major drawback of this approach is that it often requires all
input data to be of the same length. This is not realistic
for gait data, as the duration of recordings can vary de-
pending. Therefore, the sequences must often be segmented
into individual gait cycles. The duration of these cycles
also varies, e.g. due to walking speed or anthropomorphic
features such as leg length. Therefore, the duration of the
gait cycles additionally needs to be normalized. Nevertheless,
the resulting networks tend to be relatively large, due to the
high-dimensional input and output, and consequently require
a large amount of training data.

In contrast, other models predict each time step sequen-
tially, allowing for sequences of arbitrary length. One way
to implement this are autoregressive AEs (Figure 2b), where

the readings from timestep t are used to predict the following
timestep t + 1, instead of reconstructing the readings from
timestep t. Repeating this for all timesteps allows the recon-
struction of the entire sequence. Alternatively, the temporal
dependencies can be modeled with recurrent connections,
e.g. using a Variational Recurrent Network (VRNN) [10] or
an Recurrent GANs (RGANs) [14]. In this, the hidden state
ht−1 from the previous timestep is passed to the model in
the current timestep t. Depending on the architecture and
design choices this can happen in various places in the
model e.g. within the encoder and decoder / the generator
and discriminator or within the latent space. Versions of the
former are depicted in Figures 2c and 2c. The autoregressive
approach as well as the use of simple recurrent connections
model temporal dependencies in a Markovian way, in which
the current timestep t depends only on the previous one
t−1. Longer-term dependencies are typically captured using
more complex recurrences, such as LSTMs [23], or by
incorporating the Attention [2] mechanism.

Attention has become especially relevant with the rise
of Transformers [50]. These models process sequences in
parallel without recurrent units, allowing the model to ef-
ficiently learn long-term dependencies. The previously de-
scribed drawbacks of this approach are addressed by pa-
rameter sharing and a high level of parallelization, which
is possible through the use of the Attention mechanism. In
this mechanism, each element in a sequence is represented as
a pair of learned query (Q), key (K), and value (V ) vectors.
The output of the attention function is the weighted sum of
the values of different timesteps w.r.t the weights assigned
through the compatibility function of the queries and the
keys. Like recurrent units, transformer blocks can be inserted
almost anywhere within a model, enabling their usage in
VAEs and GANs alike (see Figures 2d and 2g).

C. Conditioning

Another relevant aspect is the conditioning DGMs with a
supplementary class label y. This modification is described
by Conditional VAEs (CVAEs) [44] and Conditional GANs
(CGANs) [34]. The class label conditions each part of the
networks, i.e. the encoder and the decoder or the generator
and the classifier, respectively. This allows for more control
over the generated examples. A schematic representation of
CVAEs and CGANs is depicted in Figure 3.

IV. GAIT EMBEDDINGS

The generation and classification of gaits come with
different requirements some general and some depending on
the use case. The general requirements consist of learning
spatio-temporal dependencies and isolating task-relevant in-
formation from interfering factors and noise. Task-specific
requirements can be grouped as follows: The ability to
condition gait generators on input signals, smooth transitions
between locomotion types, and structured latent spaces for
classification.

In the following subsections, we cover how these require-
ments have been addressed in different works. Furthermore,
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Fig. 2: Temporal DGMs. We show VAE variants (left), where the sampling step is omitted for better readability, and the
corresponding GAN variants (right). Figures (a) and (e) depict the processing of the entire sequence in a single pass, Figure
(b) depicts an autoregressive VAE, Figures (c) and (f) depict the use of recurrent units, and Figures (d) and (f) depict the
Transformer approach.

Encoder Decoder
(a) CVAE

Discriminator 0/1Generator
(b) CGAN

Fig. 3: Conditioning of DGMs

Table I compiles an overview of the publications covered in
this work and the requirements they fulfill.

A. Learning Spatio-Temporal Dependencies

The motion of articulated objects is always constrained
by their kinematic chain. This knowledge is not explicitly
available to task-agnostic models and, therefore, typically
needs to be learned implicitly. However, there are also
approaches that aim to implement knowledge about limb
dependencies directly into the model’s structure, which can
subsequently reduce the need for training data and increase
accuracy.

Bhattacharya et al. [6], for instance, propose hierarchically
pooling and unpooling the limb features, following the
kinematic chain of human joints in the encoder and decoder,
respectively.

GaitPT [8] similarly pools joints hierarchically but in
a multi-step manner. This results in joint-level, limb-level,
limb-group-level, and body-level representations that are
concatenated to form the gait embedding.

By the same reasoning STEP [5] implements a Spatial
Temporal Graph Convolutional Network (ST-GCN) [53] for
encoding and a corresponding Spatial Temporal Graph De-
convolutional Network (ST-GDCN) for decoding. In this,
a graph is constructed from skeleton sequences with inter-
body connections reflecting the natural connections of the
human body and inter-frame edges, connecting the same joint
across neighboring frames. The resulting graph is used to

perform graph convolution. This graph also induces temporal
dependencies to the immediately connected frames.

Temporally adjacent poses usually exhibit high correlation.
Modeling such relationships can increase the accuracy of a
model and can help to avoid jerky outputs. Furthermore,
human gaits are repetetive motions, if undisturbed. From
a more global perspective, it can therefore be helpful to
reference previous poses corresponding to the same phase
of a gait cycle.

Self-supervised temporal attention is commonly used to
learn dependencies on a wider scale [8, 41, 25, 54]. While
this is efficient in learning long-term dependencies, the model
is not guaranteed to learn local dependencies. Because of
that, Rao et al. propose a locality-aware attention mechanism,
in which the attention scores are conditioned to be higher in
adjacent regions.

B. Feature Isolation
As discussed before, there are many factors from which

differences in gait may arise. Therefore, it may be necessary
to disentangle these factors to obtain more accurate results.
Many works rely on a data-driven approach, where a dataset
containing lots of variation implicitly guides the model
towards learning task-relevant features.

Gu et al. [20], on the other hand, address this more
explicitly, using a multi-encoder AE setup. They split the
encoder into two branches, each embedding a different
aspect of the gait, namely subject-specific and gait-pattern-
specific features. These are disentangled using a cross-
subject-reconstruction loss term and a triplet loss on both
latent representations using the respective labels. The use of
the first term relies on the availability of training data captur-
ing the same person exhibiting multiple patterns separately.
If there is a person exhibiting patterns A and B, the person
specific pattern of that person is extracted from the recording
exhibiting pattern A. The pattern-specific embedding of
another person exhibiting pattern B is also extracted and
transferred to the first person. Lastly, the newly comprised
embedding is decoded and the reconstruction loss w.r.t the
original recording of the first person exhibiting pattern B is
computed.
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Furthermore, by learning a model that produces an in-
tended embedding using supervision, either concurrently
or beforehand, we can more directly control the learned
representation [6, 51, 61, 37]. This can be helpful when
certain variables are known to affect gaits but they can’t
be directly measured or easily computed as hand-crafted
features. Bidirectional GaitNet [37], for instance, generates
gaits using labeled gait conditions and anatomical features at
the skeletal and muscular levels. Accurate modeling of the
latter requires invasive measurements or estimation trough
physical exams conducted by experts. Because of this, the
authors propose an automatic estimation. The model is
trained in two steps. First, the decoder learns to predict
gait sequences given a subset of sequences with muscle
conditions manually annotated by an expert. Second, the
decoder’s parameters are frozen and the entire pipeline is
trained with the objective. This way, the encoder implicitly
learns to reproduce matching muscle conditions, even if the
information is unknown.

Similarly, Bhattacharya et al. [6] learn to predict the
embedding for a set of gait-based affective features that are
supposed to capture a persons displayed emotions. They only
constrain a subset of the embedding and allow the remainder
to learn freely, so that hidden patterns that may not be
obvious to the model designers can be learned aswell. An-
other advantage compared to handcrafted inputs is that such
constrained embeddings can be conditioned using multiple
objectives and therefore can be adapted to scenarios when
needed, while still imposing structure on the model [51].

Self-supervised methods can also be conditioned more
implicitly by extending or altering the inputs that should be
reconstructed. Yu et al. [56] reconstruct the relative timing
of gait events, with the goal of retaining relevant information
and Rao et al. [41] reconstruct sequences in reverse order in
order to capture more high-level information.

C. Conditioning on Input Signals

In gait generation, conditioning the generative model can
be relevant if the end-result should be controllable. This is
the case in the generation of movements associated to some
class, e.g. the generation of a ’happy’ as opposed to a ’sad’
gait. Furthermore, some robots are required to adapt to input
signals. This can be the adaptation to starting and ending
poses, terrain, commands (e.g. speed), or anthropomorphic
features of a patient.

Both STEP [5] and Bidirectional GaitNet [37] use a
CVAE, where the conditional input, i.e. a class variable,
is used to generate gaits, which enables us to sample new
synthetic gaits.

This approach is naturally limited to previously labeled
classes. The MoConVQ framework [54] aims to allow more
open-ended conditioning using textual commands. To this
end, they suggest two different approaches. The first inte-
grates textual features into the temporal transformer of the
network via an additional cross-attention layer. The second
uses Large Language Models (LLMs) for obtaining the
embeddings. In this, the LLM is provided with pairs of

textual descriptions and a sequence of embeddings during
training. It is subsequently prompted to produce embeddings
given a textual description. The resulting embeddings are
used to generate new synthetic motions.

Similarly, other methods don’t sample the embedding
directly, but instead obtain it algorithmically from the re-
spective input signals [52, 26, 35, 56, 51, 61]. This can be
achieved in a single step or in multiple steps. In single-
step approaches, the control signals are used directly as
inputs to a model that learns the embedding [51, 61, 20].
In multi-step approaches, an embedding is first learned,
oftentimes in a self-supervised manner. A second model is
then trained to predict the embedding. In both methods, the
embedding is used to generate the output trajectory. Several
works that implement gait generation methods for lower limb
exoskeletons use the multi-step approach, using different
models. IPGP [52] and Yu et al. [56] use an AE/VAE, to learn
the embedding. Jisoo Hong et al. also utilize self supervision
by using a Gaussian process dynamical model (GPDM).
Secondly, both IPGP [52] and Jisoo Hong et al. [26] use
Gaussian Process Regression (GPR) to predict the person-
specific gait embedding in relation to anthropomorphic fea-
tures. Other works use a Reinforcement Learning (RL) policy
network to generate new embeddings [56, 54].

D. Smooth Transitions

Smooth transitions between different types of locomotion
are important in motion generation to ensure safety and
stability. This is especially important for assistive devices,
as errors can increase the risk of falls and thus injury.

Wu et al. [51] learn a set of predefined gaits for quadruped
robots, such as trotting and pacing. Each gait class is asso-
ciated with a certain embedding tuple of leg phase offsets,
frequency and proportional standing times. By encouraging
the model to reproduce one of these tuples adversarially,
alongside giving rewards for successfully treading terrains,
they allow the robot to adapt the gait when needed and to
transition between gaits. Yu et al. [56] capture transitions in
terms of gait events. They construct a RL policy that aims
to reduce gait event prediction errors in order to facilitate
smooth transitions.

E. Structured Latent Space

The capability of classification methods depend on the
underlying structure of the input, which is no different when
working with embeddings. Because of this, the latent space
needs to be structured. Gait embedding works oftentimes
do this indirectly if the discriminator network is trained
alongside the training network [6]. A more direct way to
impose structure on the embeddings is to encourage class
separation. This has been explored for person identification
purposes using loss terms, e.g. using the triplet-loss [20, 35,
8] or a prototype-loss [35].

V. GAIT DATASETS

In the following section we provide a non-exhaustive
overview of available gait datasets. We broadly summarize
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Wu et al. [51] Robot Control ✗ ✓ ✓ ✓ ✗ - GAN + RL critic
MoConVQ [54] Conditioned Motion Generation ✗ ✗ ✓ ✗ ✗ other VQ-VAE

IPGP [52] Gait Generation for Assistive Devices ✗ ✗ ✓ ✗ ✗ own AE + GPR
Jisoo Hong et al. [26] Gait Generation for Assistive Devices ✗ ✗ ✓ ✗ ✗ own GPDM

Yu et al. [56] Gait Generation for Assistive Devices ✗ (✓) ✓ ✓ ✗ own VAE + RL critic
Bidirectional GaitNet [37] Simulation of Anatomical Conditions ✗ ✓ ✓ ✗ ✗ own CVAE

STEP [5] Emotion Classification & Generation ✓ ✗ ✓ ✗ ✗ [5] CVAE
Bhattacharya et al. [6] Emotion Classification (S) ✓ ✗ ✗ ✗ [5] AE

Gu et al. [20] Gait Analysis ✗ ✓ (✓) ✗ ✗ own AE
Rao et al. [41] Person Identification (T) ✗ ✗ ✗ ✗ other AE

Moon et al. [35] Person Identification ✗ ✗ ✗ ✗ ✓ own AE
GaitTAKE [25] Person Identification ✓ ✗ ✗ ✗ ✓ [55, 46] other

GaitPT [8] Person Identification ✓ ✗ ✗ ✗ ✓ [55], other other

TABLE I: Examined publications implementing gait embeddings. We report their main objective and whether they explicitly
address the requirements outlined in Section IV. For spatio-temporal (ST) modelling we also denote works focusing on
spatial modelling (S) or temporal modelling (T), only. We also report the model architecture and the used dataset.

how they differentiate or classify different gaits, how the
gaits are represented, i.e. video, keypoints, or joint angles,
and which auxiliary data is available. We further report
the number of subjects and sequences. To facilitate a fair
comparison, we report both the number of gaits and the
number of total sequences, wherein the number of gaits refers
to independent sequences, so additional views or additional
synthetic data and data obtained trough data augmentation
are not counted as extra sequences. For datasets that contain
more than only gait-related data, only gait-related sequences
are reported. Table II provides an overview over these
attributes.

A. EmotionGait

The EmotionGait dataset [5] combines 2,177 real gait
sequences with 1,000 synthetically generated examples, re-
sulting in 3,177 sequences. Of the 2,177 real sequences,
342 explicitly depict emotion. The remaining sequences are
taken from Habibie et al.’s Edinburgh Locomotion MOCAP
Database [21] and have been manually labeled. Each se-
quence is labeled as one of 4 emotions, namely: angry,
neutral, happy, and sad.

B. DeceptiveWalk

The DeceptiveWalk dataset [40] contains video footage
and extracted poses (joint positions) of walks that are la-
beled as either being deceptive or natural. Each participant
performs either a natural or a deceptive walk, which is
randomly assigned. In the deceptive, setting the participants
are instructed to conceal an object from potential onlookers
(people unrelated to the experiment). Walking sequences are
split into segments, that are interrupted by other tasks. Some
segments had to be removed, if participants did not follow the
instructions correctly, resulting in 589 separate sequences.
The sequences are additionally labeled with regards to ges-
tures performed by the participants while walking (e.g. hands
in pockets or looking around).

C. DUO-GAIT

The DUO-GAIT Dataset [59] records walking under fa-
tigued and dual-tasking conditions alone and in combination.
Fatigue was induced via physical activity, and assessed
by participants’ perceived level of fatigue and changes in
heart rate and blood lactate concentration. For dual-tasking,
participants were asked to perform a cognitive task while
walking. The dataset provides joint angle data measured
using Inertial Measurement Units (IMUs)-sensors and par-
ticipants’ antropomorphic features (age, mass, height, leg
length, and activity level).

D. CASIA Gait Database

The CASIA Gait Database consists out of 5 independent
datasets [9, 55, 47, 58, 45] to date, each capturing identity
while focusing on different variations.

CASIA-A [9] focuses on interpersonal differences and
includes outdoor videos of three different walking directions
(frontal, diagonal, and side view). Each of the 20 participants
walked a total of 12 times (4 demonstrations per direction),
resulting in 240 walking sequences in the form of silhouette
videos.

CASIA-B [55] includes 11 views of each gait sequences.
It also provides variations of clothing and carrying con-
ditions. The 124 participants provided 10 demonstrations
each: walking normally (6), with backpack (2), wearing a
coat (2), resulting in 1240 independent sequences captured
indoors. The dataset contains both plain videos and silhouette
videos. CASIA-B* [30], provides an updated version that
used newer methods for extracting silhouette images for less
noisy results. Furthermore, CASIA-B-Pose [15] provides 2D
joint positions extracted from the original dataset.

CASIA-C [47] captures the gaits of 153 different subjects
using an infrared camera. Each subject walked 10 times
(= 1530 total sequences) with four different conditions:
walking normally (4), walking with a bag, walking slowly,
and walking quickly (twice each). The infrared videos and
the extracted silhouette videos are provided.

6



Dataset Captured Differences Vid. Kpts. Ang. Auxiliary Data # Subj. # Gaits # Seq.
EmotionGait[5] Emotion ✗ ✓ ✗ ✗ - 2,177 3,177
DeceptiveWalk [40] Deceptiveness ✓ ✓ ✗ (+) 162 589 589
DUO-GAIT [59] Fatigue, Multi-tasking ✗ ✗ ✓ (AF), (+) 16 64 64
CASIA-A [9] Identity (S) ✗ ✗ ✗ 20 240 240
CASIA-B [55, 30, 15] Identity* (S), (MV) (2D) ✗ ✗ 124 1,240 13,640
CASIA-C [47] Identity* (IR) ✗ ✗ ✗ 153 1,530 1,530
CASIA-D [58] Identity ✓ ✗ ✗ (FP) 88 - -
CASIA-E [45] Identity* (S), (IR), (MV) ✗ ✗ (AF) 1,014 29,952 778,752
OU-ISIR Treadmill [32] Identity* (S), (MV) ✗ ✗ ✗ - 3,928 8,728
OUMVLP [46, 1, 29] Identity (S), (MV) (2D) ✗ (BM) 10,307 41,228 288,596
TUM-IITKGP [24] Identity* (S) ✗ ✗ ✗ 35 840 840
Fukuchi et al. [16] Speed ✗ ✗ (LB) (AF), (FP) 42 462 462
Habibie et al. [21] Speed ✗ ✓ ✗ ✗ - 1, 835 1, 835
Macaluso et al. [31] Perturbations* ✗ ✗ (LB) (FP), (EMG) 10 180 180
Reznick et al. [43] Locomotion, Incline, Speed ✗ (LB) (LB) (FP) 10 - -
MoVi [18] Locomotion (MV) ✓ ✓ (BM) 90 - -
Lencioni et al.. [28] Locomotion ✗ (LB) ✓ (FP), (EMG), (+) 50 1,750 1,750
CMU MoCap [11] Locomotion ✓ ✓ ✗ ✗ 144 - -
100STYLE [33] Locomotion, Style ✗ ✓ ✓ ✗ 1 810 810
Van Criekinge et al. [49] Medical Conditions ✗ ✗ ✓ (AF), (FP), (EMG) 188 - -

TABLE II: Gait related dataset, categorized by their captured differences. Entries marked with * denote that the additional
differences are captured but are not the main focus of the dataset. These differences are described in the section regarding
the specific dataset. The Vid. column denotes wheter videos are included in the dataset (✗ = no video, ✓ = plain video,
(S) = silhouette videos, (MV) = multiple viewing angles, (IR) = infrared videos) The usage of keypoints and angles are denoted
in the columns labelled Kpts. and Ang., respectively (✗ = no data, ✓ = full body, (2D) = 2D keypoints, (LB) = lower body).
The availability of auxiliary data is further documented (✗ = no additional data, (FP) = foot pressure, (AF) = anthropomorphic
features, (BM) = body meshes, (EMG) = electromyographic (EMG), (+) = other (documented in the respective dataset’s
section)). The columns labelled # Subj., # Gaits, and # Seq. denote the number of subjects, gaits and total sequences.

CASIA-D [58] contains videos of gaits captured indoors
as well as corresponding cumulative foot pressure images,
which represent the pressures exerted during a single gait
cycle.

CASIA-E [45] provides a large-scale datasets of 1,014
different people captured from 26 different viewpoints (13
angles at 2 different heights). The data was captured in
three different outdoor scenes under four different conditions:
normal walking, carrying a bag, wearing a coat and pausing.
The dataset comes with plain video and silhouette video,
and also provides soft biometric features (age, gender, height,
weight, and nationality). A subset of CASIA-E was captured
using a thermal infrared camera in a single-view setting (540
videos).

E. OU-ISIR Gait Database

The OU-ISIR Gait Database is compiled form sev-
eral independent datasets pertaining to identification using
gait [36]. We cover the Treadmill Dataset [32] and the
Multi-view Large Population (OUMVLP) Dataset and its
variations [46, 1, 29].

The Treadmill Dataset [32] contains 3,928 independent
gait sequences captured on a treadmill. The dataset itself is
divided into four subsets A-D, dedicated to altering a single
variable at once. All subset provide single-view silhouette
and plain video recordings, except for the multi-view Subset
C. This subset captures 200 participants from 25 different
views under otherwise constant walking conditions. Subset A
captures walking at 9 different speeds ranging from 2 km/h to
10 km/h in 1 km/h intervals (612 gaits from 34 participants).
Clothing variations are captured by Subset B (2,746 gaits

from 48 participants, up to 32 variations per participant).
Lastly, Subset D focuses on capturing the stability of gaits,
measuring the fluctuation between gait cycles and dividing
the 185 participants into two subsets of people with low and
high gait fluctuation.

The OUMVLP [46] provides gaits from 10,307 participants
recorded with 7 cameras. The original version provides only
silhouette videos, but later versions also provide 2D joint
positions (OUMVLP-Pose) [1] and body meshes (OUMVLP-
Mesh) [29] extracted from the base dataset’s videos.

F. TUM-IITKGP

The TUM-IITKGP Dataset [24] provides 840 gait se-
quences from 35 different subjects in the form of silhou-
ette videos. It captures interpersonal differences, 2 different
walking styles, as well as different carrying conditions and
introduces occlusion as a challenge. Each participant was
filmed in 6 configurations: regular walking, hands in pocket,
with a backpack, wearing a gown, dynamic occlusion (caused
by other walking people), and static occlusion (caused by
other standing people).

G. Fukuchi et al.

Fukuchi et al.’s dataset [16] contains gaits recorded both
on a treadmill and overground at different speeds. The
lower limb and pelvis keypoints of the 42 participants were
captured in addition to external forces measured using force
plates. The anthropomorphic attributes (age, height, and
mass) of each participant are also reported.
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H. Habibie et al.

Habibie et al.’s Edinburgh Locomotion MOCAP
Database [21] models different gaits w.r.t to speed. The
1,835 sequences are represented using joint positions.

I. Macaluso et al.

The dataset by Macaluso et al. [31] captures the differ-
ences in gait in response to disturbances. The dataset is
comprised of the control dataset and the perturbed dataset.
In the former, ten able-bodied participants walked on a split-
belt treadmill at three different inclines (-5°, 0°, and +5°)
at a self-selected speed. In the latter, the same participants
walked on the same treadmill with the same base speed. The
gait was disturbed by randomly timed perturbation events,
slowing down or accelerating the treadmill. Each participant
completed 5 walking-sessions per incline, resulting in a
total of 15 perturbed and 3 regular walking sequences per
person. The dataset captures the lower limb joint angles, foot
pressure, and EMG muscle activation of the lower body.

J. Reznick et al.

Reznick et al.’s dataset [43] focuses on different types
of locomotion and the transitions between them, namely
standing up, walking, running, and climbing stairs. Each
locomotion type was captured under various conditions
(e.g. inclines, speed, and acceleration). The actions were
performed by ten able-bodies participants, equipped with
markers on the lower body, for extracting joint position and
angles, as well as estimating joint forces, moments, and
powers. The action were performed on a treadmill equipped
with force plates and a 4-Step adjustable stair set.

K. MoVi

The MoVi dataset [18] contains recordings of 20 pre-
defined action, 5 of which relate to different locomotion
types: namely walking, jogging, running in place, side gallop,
and crawling. The dataset is multi-modal containing video
from 4 different points of view, extracted body meshes,
MoCap-data, and data from IMUs-sensors. The recordings
of the different modalities, taken in different sessions, have
been synchronized.

L. Lencioni et al.

The dataset by Lencioni et al. [28] contains multi-modal
recordings of 4 different locomotion styles (toe-walking,
heel-walking, stair-ascending, and stair-descending) at differ-
ent velocities. The dataset contains full-body joint position,
the joint angles of the lower body ground reaction forces
and torques, center of pressure, lower limb joint mechanical
moments and power, displacement of the body’s center of
mass as well as EMG signals of the main lower limb muscles.

M. CMU MoCap

The CMU Motion Capture Database (CMU MoCap) [11]
covers a wide range of human motions, partially related to
gait. It captures different types of locomotion (e.g. running,
walking, and jumping), as well as gait differences caused by

environmental disturbances (e.g. uneven terrain) and social
interactions (e.g. walking with linked arms). Both video and
joint position data is provided.

N. 100STYLE

Mason et al.’s 100STYLE dataset [33] contains different
types of locomotion (e.g. forwards walking and sidestep
running) in a total of 100 different styles ranging from natural
variations such as walking with folded arms to theatrical
ones such as walking like a zombie. All gaits were recorded
once by a single actor and joint angles and positions were
extracted from the resulting videos.

O. Van Criekinge et al.

Van Criekinge et al.’s dataset [49] captures the gaits of 138
able-bodied adults and 50 stroke survivors. It provides full-
body joint angles, forces, moments and power, as well as the
3D center of mass, foot- pressure and EMG muscle activity
of 14 back and lower limb muscles. They additionally
report age, sex, body mass, height, and leg length of each
participant.

VI. DISCUSSION

Gait embeddings have been applied in numerous recent
works regarding many different task and have generally
yielded good results. Despite the different objectives, there
are many shared techniques that can be found across task.
Notably, there are many publications that utilize gait embed-
dings for classification purposes. Most of them are designed
using some variation of an AE/VAE-architecture. Therefore,
they could theoretically be adapted for gait generation and
the efficacy of the different modeling choices that address
general requirements could be tested in future work. More-
over, one could conceptualize a full pipeline in which human-
gait is analyzed and a matching robots gait is generated
accordingly. Such pipelines have been explored in HRI [17,
7] and could be relevant in the generation of interactive gaits,
e.g. synchronizing walking rhythms while talking to a person
or supporting a physically-impaired person.

Current works focusing on the generation of motion w.r.t.
to class are limited to the classes known beforehand. In some
cases new classes may become relevant overtime. Therefore,
future work could explore a more open-ended approach
inspired by few-shot learning and the methods used in open-
set PID [20, 35, 8]

There also exist a wide range of gait-related datasets.
While many gait factors are covered, identity is by far the
most common one, not only in terms of dataset quantity
but also in size. Other factors do not get as much coverage,
which potentially slows research in these fields as researchers
need to create their own datasets for experiments [52, 20, 37,
26]. Such datasets are often times not shared publicly which
hinders comparability trough common benchmarks. We es-
pecially observe a large discrepancy between the number of
publications and the availability of datasets dedicated to gait
generation for assistive devices. The lack of datasets related
to medical applications could be due to privacy concerns
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and the reduced amount of potential participants. Similarly,
the obtainment of datasets capturing emotive gaits can be
challenging, because actively inducing negative emotions in
participants is limited by ethical considerations. Because of
this, some works rely on participants imitating the desired
behaviour [40, 5, 20]. While this increases the availability of
data, the quality depends heavily on the quality of imitation
and there is a risk of missing crucial aspects of the genuine
motions.

Another aspect is the data representation. Many datasets
focus on video data and very few provide full-body 3D joint-
data, which restricts their applicability in robotics. Therefore,
there is still lots of potential future work that can be done
in the creation of large scale and varied datasets capturing
gaits on a joint-based basis.
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