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Abstract— This report investigates the use of reinforcement
learning (RL) to develop bipedal gaits in humanoid robots,
emphasizing stability and adaptability on diverse terrains. It
examines three methods: ’Sim-to-Real Learning of Bipedal
Gaits,’ ’Rapid Motor Adaptation for Bipedal Robots,’ and
’Learning Humanoid Locomotion with Transformers.’ These
approaches utilize Proximal Policy Optimization (PPO) in
simulations, applying dynamics randomization to counter real-
world disturbances. The aim is to detail these methods, their
implementation, and their impact on bipedal robot mobility,
contributing to robotics research.

I. INTRODUCTION

The quest for bipedal robots capable of moving with
human-like agility and precision across different terrains has
evolved significantly since the first humanoid robot in the
1970s [1]. Advances in control systems [2]–[5] and opti-
mization techniques [6]–[9] have improved robot dynamics.
Reinforcement Learning (RL) has been pivotal since the
1990s in enhancing locomotion for both quadrupeds [10]–
[13] and bipedal models.

This report reviews three RL strategies enhancing bipedal
movement: ’Sim-to-Real Learning of Bipedal Gaits’ [14],
[15], aimed at generating versatile gaits; ’Rapid Motor
Adaptation for Bipedal Robots’ [16], which enhances ter-
rain adaptability; and ’Learning Humanoid Locomotion with
Transformers’ [17], [18], focusing on an end-to-end learning
model. These methods demonstrate progress towards adapt-
able and intelligent systems for real-world applications. The
review outlines these advancements and their relevance to
future robotics.

II. METHODS

This section delves into several reinforcement learning
(RL) methods aimed at improving humanoid robot mobility.
It highlights significant contributions in this area.

A. Sim-to-Real Learning for Bipedal Gaits

1) Approach Overview: Traditional RL approaches for
bipedal gait learning face significant challenges, includ-
ing limited adaptability and inefficient tuning processes.
Reference-based methods [19]–[23] can achieve certain gait
characteristics but fail to provide the needed flexibility for
developing robust gaits. On the other hand, reference-free
methods, exemplified by OpenAI Gym [6], often lead to
tedious tuning, rarely attaining optimal results.

To overcome these issues, they introduce a sim-to-real RL
framework [14] for the autonomous learning of common
bipedal gaits. This framework eliminates the reliance on
reference motions, opting instead for simple, periodic cost

functions based on kinetic and dynamic criteria to tailor gait-
specific rewards. This approach facilitates easy parameter
adjustment for various gaits, ensuring rewards align with
desired gait behaviors.

A key innovation is the use of periodic reward functions
that resonate with the cyclic nature of bipedal movements.
By targeting the dynamics of swing and stance phases with
a probabilistic method for applying cost functions at specific
intervals, the framework enhances gait learning. This method
dispenses with the need for external references or bench-
marks, representing a significant step forward in robotics by
enabling more natural bipedal locomotion, in Figure 1.

Fig. 1. Illustration of the reward design framework enabling the learning of
locomotion behaviors such as standing, walking, and running in robots. This
framework incorporates gait parameters into an LSTM policy to generate
PD joint position targets and gains, optimizing robotic movements.

2) Problem Formulation: The study addresses the chal-
lenge of sim-to-real transfer in RL for bipedal gait learning.
It models the problem as a discrete-time Markov Decision
Process (MDP) with continuous states and actions (S and
A), a transition function T (s, a, s′), and a dynamic reward
function R(s, t). The goal is to develop a control policy
π(a|s) that maximizes the expected T-horizon discounted
return, J(π):

J(π) = E

[
T∑

t=0

γtR(St, t)

]
(1)

where γ is the discount factor, and St represents the state
at time t under policy π and transition dynamics T .

3) Learning Bipedal Gaits with Periodic Reward Com-
position: At the core of the method is the periodic reward



function, R(s, ϕ), which varies with the cycle time Φ, cycling
from 0 to 1. This allows for cyclic application of costs:

R(s, ϕ) = β +
∑
i

Ri(s, ϕ) (2)

Each component Ri(s, ϕ) includes a phase coefficient ci,
a phase indicator Ii(ϕ), and a measurement of phase-specific
reward qi(s). This setup facilitates phase-focused reward
adjustments, aiming to minimize foot forces during swing
phases for better foot lifting and reduce velocities during
stance phases for improved stability.

4) Describing Bipedal Gaits: The framework categorizes
bipedal gaits by modifying rewards for swing and stance
phases, crucial for bipedal movement. These phases may
occur alternately or simultaneously for the left and right feet.
For instance, walking involves alternating these phases be-
tween legs for continuous motion, whereas hopping engages
both feet simultaneously, as depicted in 2.

The expected total reward from bipedal actions is com-
puted by combining phase-specific rewards for each foot,
factoring in phase offsets (θleft and θright):

E[Rbipedal(s, ϕ)] = E[Cfrc(ϕ+ θleft)] · qleft frc(s)

+ E[Cfrc(ϕ+ θright)] · qright frc(s)

+ E[Cspd(ϕ+ θleft)] · qleft spd(s)

+ E[Cspd(ϕ+ θright)] · qright spd(s)

(3)

Fig. 2. Expected force phase coefficient for various bipedal gaits. Hopping
displays negligible phase shift (|θleft − θright| ≈ 0) between feet. Walking
and running show a moderate phase shift (|θleft − θright| ≈ 0.5), indicative
of a galloping transition. Skipping requires four phases and mirrors the
moderate shift (|θleft − θright| ≈ 0.5). Shaded areas represent hybrid phases
combining behaviors of both feet.

5) Model Architecture: they use a Long Short-Term Mem-
ory (LSTM) network with two 128-unit layers, chosen for
sequence handling abilities essential for bipedal locomotion.
This network tracks the robot’s state, inputs, and gait phases,
outputting 10 joint positions and their PD gains at 40Hz,

matching the robot’s PD controllers at 2000Hz for dynamic
posture adjustments.

The state space encompasses cycle time ϕ, cycle offsets
(θleft and θright), and gait timing, with sine wave clocks and
a phase duration ratio vector aiding in phase management
and leg coordination.

6) Policy Learning and Optimization: they apply
Proximal Policy Optimization (PPO) for training, with a
batch size of 32 trajectories, a learning rate of 0.0001, and
a replay buffer of 50,000 samples. Training spans 4 epochs
per iteration over 150,000,000 samples, typically taking 24
to 36 hours using the cassie-mujoco-sim based on MuJoCo.

7) Reward Function Design: The reward function is for-
mulated as:

E[R(s, ϕ)] = E[Rbipedal(s, ϕ)]+Rsmooth(s)+Rcmd(s)+β (4)

where

Rcmd(s) = (−1) · qix(s) (5)
+ (−1) · qiy (s) (6)
+ (−1) · qorientation(s) (7)

Rsmooth(s) = (−1) · qaction diff(s) (8)
+ (−1) · qtorque(s) (9)
+ (−1) · qpelvis acc(s) (10)

E[Rbipedal(s, ϕ)] quantifies the expected reward for bipedal
gait patterns, emphasizing the cyclic aspects of movement.

Rsmooth(s) imposes penalties on sudden movements and
high joint torques to encourage smoother, energy-efficient
motions.

Rcmd(s) rewards the robot’s compliance with specified
velocities and orientations, ensuring precise execution of
commands.

with penalties for abrupt movements and rewards
for adhering to velocities and orientations, balanced by
beta to encourage desirable actions and deter undesired ones.

8) Stair Climbing Extension: they extend the RL frame-
work to stair climbing by incorporating terrain random-
ization, including varied stair dimensions. This enhances
proprioceptive control for autonomous stair navigation in
ascent and descent, demonstrated in 3.

B. Adapting Rapid Motor Adaptation for Bipedal Robots

1) Approach Overview: The Adapted Rapid Motor Adap-
tation (A-RMA) algorithm [16], an extension of the RMA
framework developed for quadrupeds, facilitates bipedal
robot support. It starts with a base policy [26], [27] informed
by gait references, streamlining the initial learning phase.
A-RMA [28] enhances policy refinement through Proximal
Policy Optimization (PPO), keeping the adaptation module
constant, thus improving bipedal adaptability in varied envi-
ronments, as illustrated in 4.



Fig. 3. Methodology for training stair navigation policies without visual
cues, improving proprioceptive adaptability to ground height changes for
versatile application.

Fig. 4. Illustration of A-RMA’s training and deployment phases, following
RMA’s framework [25] with an additional phase for fine-tuning the base
policy using PPO, maintaining the adaptation module unchanged. This step
precisely addresses external estimation inaccuracies.

2) Bootstrapping the Base Policy: Initialization of the
bipedal robots’ base policy utilizes Hybrid Zero Dynamics
(HZD)-based gaits, offering a variety of walking patterns.
The policy π, from state xt and vector z ∈ R8, predicts ac-
tion at for joint target positions, translated into torque via PD
control. Vector zt, a condensed environmental representation
by function µ, contains essential adaptation data:

zt = µ(et),

at = π1(xt, at−1, zt).

This process is enhanced by implementing µ and π1 as Multi-
Layer Perceptrons (MLPs), jointly trained through model-
free reinforcement learning to optimize the policy’s expected
return:

J(π) = Eτ∼p(τ |π)

[
T−1∑
t=0

γtrt

]
,

where τ represents the agent’s trajectory under policy π1.

3) Fine-tuning with PPO and Fixed Adaptation Module:
Incorporation of the adaptation module ϕ aids in base policy
refinement against external estimate inaccuracies. Proximal
Policy Optimization (PPO) is applied for fine-tuning the base
policy π, improving responsiveness to external variances
without altering the adaptation module, thus bolstering the
policy’s real-world adaptability.

4) Reward Function Design: The reward function is
crafted to optimize motor precision, pelvis imitation, effi-
ciency, and reaction forces, including:

1) Motor imitation: exp
(
−ρ1 ∥qrm − q̂m∥22

)
2) Pelvis position imitation: exp

(
−ρ2 ∥qp − q̂p∥22

)
3) Pelvis velocity imitation: exp

(
−ρ3

∥∥∥q̇rp − ˙̂qp

∥∥∥2
2

)
4) Pelvis Rot-imitation: exp (−ρ4 (1− cos (qrT − q̂rT )))

5) Rotational velocity imitation: exp
(
−ρ5

∥∥∥q̇rT − ˙̂qr

∥∥∥2
2

)
6) Torque penalty: exp

(
−ρ6 ∥u∥22

)
7) Ground reaction force penalty: exp

(
−ρ7 ∥F∥22

)
C. Learning Humanoid Locomotion with Transformers

1) Approach Overview: This method applies Transform-
ers for dynamic humanoid locomotion, targeting direct real-
world application [29]–[37]. Successful in various domains,
Transformers now address robotics challenges, such as be-
havior cloning and depth integration, through online rein-
forcement learning, bypassing the need for offline datasets.

Simulation training teaches the robot to refine movements
and adapt to different terrains by processing observation and
action sequences. Initially, it optimizes a state policy in a
fully observable simulation, then transitions to an observa-
tion policy using KL divergence, improving environmental
adaptability, as shown in 5.

Fig. 5. Exploring blind bipedal locomotion limits, this study introduces a
training pipeline for generating policies enabling real-world stair ascent and
descent without visual input. These policies develop proprioceptive reflexes
for substantial ground height disturbances, achieving robust performance
across diverse environments.

2) Problem Formulation: Humanoid locomotion is
framed within an MDP, expanded into a Partially Observable
MDP for real-world complexity.

MDP to POMDP Transition:
• State Space(S): Describes potential states a robot might

encounter, including various environmental configura-
tions.

• Action Space(A): Enumerates actions available to the
robot, spanning a comprehensive range of movement
options for navigation.

• Transition FunctionP (st+1|st, at):
Determines the likelihood of moving from one state to
another after an action is taken, reflecting environmental
variability.



• Reward Function: R(st+1|st, at):
Assigns a scalar value to each transition, assessing the
action’s impact.

• Observation Space(O): Captures the robot’s partial in-
sights into the current state, considering sensor limita-
tions and environmental factors.

• Observation FunctionZ(ot|st):
Manages uncertainties in observations, crucial for oper-
ation in partially observable settings.

3) Model Architecture:
Transformer Model Implementation: Transformers [39],
adapted for robotics, process observation-action sequences in
POMDPs, using self-attention for action prediction accuracy
and direct applicability to locomotion without offline data.

Self-Attention Mechanism: The self-attention mechanism
in Transformers prioritizes relevant input features, identi-
fying key movement strategies. It incorporates sinusoidal
positional encodings to maintain temporal context, enhancing
future action predictions.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (11)

4) Policy Learning and Optimization:
State Policy Development: The initial step is to develop
a state policy (πs) in a simulated environment, focusing on
state-driven actions. This process is enhanced by adjusting
reward functions for improved gait and interaction with the
environment.

Observation Policy Refinement: Refinement to an obser-
vation policy is achieved by applying Kullback-Leibler (KL)
divergence, transitioning from a state-dependent to a partially
observable decision-making framework. This process mirrors
the teacher-student learning model [11], [12], adapting the
policy for complexities and uncertainties encountered outside
simulated conditions.

Joint Optimization Approach: A joint optimization strategy
addresses the discrepancies between state and observation
spaces, aligning decision-making processes. It merges rein-
forcement learning (RL) loss with state-policy supervision
into a comprehensive objective function that harmonizes
these aspects, ensuring an integrated approach to policy
development.

L(πo) = LRL(πo) + λDKL(πo||πs) (12)

balances RL loss and the divergence between the observation
and state policies, with the weighting factor.

5) Reward Function Design: The reward function for
robot locomotion covers dynamics and environmental inter-
actions, focusing on velocity, stability, and efficient move-
ment. It includes metrics for velocity tracking, stability,

ground interaction, and joint efficiency, aiming for smooth
and realistic motion.

rv := exp

(
− 1

2σxy

∥∥vxy − v∗xy
∥∥2) (13)

rbm := v2z + 0.5 ∗ ∥ωxy∥2 (14)

rf :=
∑
i∈foot

{
∥F (i)− fmax∥2 if ∥F (i)∥2 > fmax

0 if ∥F (i)∥2 ≤ fmax
(15)

III. DISCUSSION

Sim-to-real Gaits Using LSTM networks, this method al-
lows humanoid robots to learn gait patterns without prede-
fined trajectories, reflecting the cyclic nature of bipedal loco-
motion. It produces hopping, walking, and running behaviors
by adjusting ratios and cycle offsets, showing the method’s
flexibility.

In further developments, training included randomized
stair scenarios with the same reward function. Analysis
showed that stair-trained policies, while increasing foot
clearance and leg angle retraction speed, also led to higher
energy use, indicating a balance between training strategy
adaptability and energy efficiency.

Outdoor experiments demonstrated the practical effective-
ness of these policies across varied terrains. Stair-trained
LSTM policies were particularly effective in stair navigation,
achieving high success in ascending and descending, even
without visual input. These policies adeptly managed tasks
like hopping onto sidewalks and traversing uneven surfaces,
demonstrating smooth gait transitions and ground slope adap-
tation, emphasizing effective force management.

Rapid Motor Adaptation employs a gait library to facilitate
adaptive learning, ensuring immediate operational capability



and adaptability to various terrains. This approach provides
stability and enables environmental adaptation.

In field tests with a Cassie bipedal robot, the A-RMA
policy adapted to diverse conditions without post-simulation
fine-tuning. It effectively managed tasks such as following
dynamic commands on standard terrain and towing heavy
loads, demonstrating stability and directional control under
varying forces.

On slippery surfaces, A-RMA maintained stability and
accurately followed commands, despite significant slips and
contact changes. This highlights the policy’s capability to
adjust to rapid surface condition changes.

In uneven terrain tests, including soft foams and wooden
planks, A-RMA navigated without imbalance, adapting to
variations in surface softness and contact, showing resilience
to untrained conditions.

Humanoid Locomotion with Transformers leverages
Transformer models for improved movement prediction by
analyzing locomotion dynamics. This technique demon-
strated stability and adaptability in real-world tests, manag-
ing varying loads while maintaining stable gait, indicating
balance and weight adaptability.

The controller navigated diverse terrains, from varying
friction levels to obstacle-laden paths, without external sen-
sory input, showing durability and adaptability in complex
environments.

Notably, it exhibited dynamic adaptation in new chal-
lenges, like climbing untrained steps and recovering from
simulated motor malfunctions. The robot’s ability to adjust
leg movements for step climbing and recover from mal-
functions underscores its dynamic learning and adjustment
capabilities based on historical data.

Commonalities:
All three methods employ Proximal Policy Optimization
(PPO) as their core learning algorithm, based on PPO’s
capability to efficiently manage the high-dimensional ac-
tion spaces common in humanoid robotics, ensuring stable
progress in learning.

To address sim-to-real discrepancies, each approach in-
corporates some form of Dynamics Randomization. This
technique diversifies the simulation dynamics by random-
izing physical parameters like damping, mass, and friction
at the start of each training episode. Such randomization
prevents overfitting to the simulated environment, facilitating
a smoother transition to real-world applications. This strategy
acknowledges the inevitable modeling errors in simulations
and ensures robustness against them by exposing the learning
algorithms to a wider range of dynamic conditions.

None of the methods rely on exteroceptive sensors, such
as cameras, for terrain estimation. This design choice stems
from the recognition that robots need to operate reliably
in diverse and unpredictable real-world conditions, where
reliance on such sensors could introduce vulnerability to oc-
clusions, lighting variations, or other environmental factors.
Instead, these approaches emphasize proprioception, aiming

for a level of robustness that allows for effective navigation
across a broad spectrum of human environments without
detailed external sensory input.

Difference:
Adaptation Strategies to Diverse Terrains:

The Sim-to-Real Gaits method excels in pre-simulated,
predictable environments by directly tuning to specific ter-
rains, offering precise adaptability within known parameters.
Its strength lies in customizing locomotion for anticipated
scenarios, ensuring optimal performance in familiar settings
but struggling with unexpected terrain changes.

Rapid Motor Adaptation (RMA) utilizes a gait library for
flexibility, enabling swift adaptation to unpredictable terrains
by leveraging a wide array of pre-learned movements. This
approach combines the reliability of predefined gaits with
on-the-fly learning’s adaptability, making it suitable for en-
vironments with both known and novel terrain types.

Humanoid Locomotion with Transformers adopts an end-
to-end learning strategy from historical data, dynamically
adapting to new terrains. By analyzing complex patterns over
time, this method provides nuanced adjustments to unfore-
seen environments, highlighting its capability for forward-
looking adaptability without prior explicit programming for
each potential scenario.

In summary, these methods illustrate different approaches
to navigating the complex landscape of robotic locomotion.
Sim-to-Real Gaits focuses on precision for known terrains,
RMA balances pre-defined reliability with adaptive learning
for mixed environments, and Transformers offer a forward-
thinking solution for unpredictable terrain changes. Each
strategy reflects a unique balance between leveraging known
gait patterns and adapting dynamically to the challenges of
real-world mobility.

IV. CONCLUSIONS

This report synthesizes findings from key studies on
”Reinforcement Learning for Humanoid Locomotion,”
focusing on three innovative strategies: Sim-to-Real
Learning, Rapid Motor Adaptation, and Learning with
Transformers. It outlines progress in increasing the
adaptability and stability of bipedal robots, with each
method addressing distinct aspects of navigation in
real-world conditions. Sim-to-real learning ensures the
effective application of simulation-trained behaviors, Rapid
Motor Adaptation emphasizes quick adaptability to changing
terrains, and Learning with Transformers offers sophisticated
decision-making capabilities for dynamic locomotion. This
analysis contributes to the scholarly discussion and sets
a foundation for future investigations into optimizing
humanoid robot movement.

V. FUTURE PERSPECTIVES

A. Integration of Multi-modal Sensory Data

Future research should explore incorporating visual and
tactile feedback into reinforcement learning algorithms, aim-



ing to enhance robots’ environmental perception and nav-
igation abilities. This approach could bring robots closer
to human sensory processing, potentially increasing their
autonomy and adaptability in complex environments.

B. Parallel Reinforcement Learning Across Multiple Robots

Investigating parallel reinforcement learning among
multiple robots could accelerate learning and develop more
robust locomotion strategies. This collective experience and
data sharing could improve learning algorithm efficiency
and behavior generalization, enhancing humanoid robots’
scalability and real-world applicability.
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