
Bipedal Locomotion for Football

Simon Giegerich

Abstract— Playing football with humanoid robots is a highly
complex task. Among other challenges, it involves maintaining
balance on two legs, interacting with the ball, cooperating with
other robots, and quickly changing direction. In this work, we
study three recent works that use Reinforcement Learning to
learn a hierarchical policy that enables humanoid robots to
play football. They all rely on hierarchical policies consisting
of low-, mid-, and high-level skills. The development of low-level
skills involves learning basic movements that are essential for
football, such as walking or standing up. These basic movements
are applied to learn football-specific skills, such as dribbling
and shooting. Finally, these skills are further reused to enable
strategic and goal-oriented football play as high-level skills. The
policies can subsequently be transferred to a real robot zero-
shot. Our analysis examines the similarities and differences in
the methods used across the three studied papers for each skill
level within the hierarchical policy.

I. INTRODUCTION

Humanoid robots can perform a wide range of tasks.
Thanks to their structure, they are perfectly suited to assist
humans in their daily work. However, maintaining balance on
two legs, interacting with a range of objects, or cooperating
with other robots and humans are just some of the many
challenges that must be overcome. Playing football combines
these challenges, among others, such as interacting with
objects while maintaining balance, and quickly changing
direction, into a single task.

In recent years, several studies have investigated the use of
Reinforcement Learning (RL) to enable humanoid robots to
play football [1][2][3]. However, when using RL for playing
football, it is important to distinguish between the short-
term goals, such as the movement of the robot’s joints to
perform a kick, and the long-term goals, such as scoring
goals to win matches. Therefore, Hierarchical Reinforcement
Learning (HRL) can be used to abstract these individual
subtasks from one another. In this report, we will analyze
three papers [1][2][3] that use HRL to teach humanoid robots
to play football, as shown in Figure 1.

In the following section, we will introduce the concepts
behind RL and hierarchical policies. We will then compare
the works on how they each use HRL to teach humanoid
robots to play football. The methods for transferring their
approaches to the real robot without further training are
shown in Section IV. In Section V we will discuss the limits
of each work and point out possible future work for achieving
more general humanoid robot players. Finally, this work will
be concluded in Section VI.

Fig. 1. Two humanoid robots playing football against each other. Their
hierarchal policy is trained in simulation using RL and transferred to the
robot zero-shot [3].

II. PRELIMINARIES

A. Reinforcement Learning

RL is a learning approach in which an agent interacts with
an environment to achieve a goal. A central concept of RL
is the Markov Decision Process (MDP), which consists of
the following components:

• A set of states S
• A set of actions A
• A transition function P(st+1|st, at) that defines the

probability of transitioning to state st+1 given that the
agent takes action at in state st

• A reward function rt = R(st, at, st+1) that defines
the reward rt that the agent receives when transitioning
from state st to state st+1 by taking action at.

• A discount factor γ that impacts the importance of
future rewards compared to immediate rewards.

The agent’s goal in RL is to find a policy π that maximizes
the expected return

J (π) = Eτ∼π[R(τ)] (1)

where R(τ) is the discounted return

R(τ) =

∞∑
t=0

γtrt (2)

of trajectory τ = (s0, a0, s1, a1, ...) following policy π.

B. Hierarchical Policies

One of the most fundamental problems of RL is Bell-
man’s “curse of dimensionality” [4], which describes the
exponential growth of a problem with an increasing size of
the state space. Vanilla RL methods work on a single level of
abstraction to solve problems as a whole. However, they are
unsuitable for very complex problems that consist of several

Liu et al. [1] Bohez et al. [2] Haarnoja et al. [3]

Target Task Team Play Dribbling Skills Real-World Compatible Football
Play

Methods for Learning
Low-Level Skills Imitation of MoCap Data Imitation of MoCap Data -

Achieved Low-Level
Skills Natural Movements Natural Movements -

Methods for Learning
Mid-Level Skills RL reusing Low-Level Skills RL reusing Low-Level Skills RL reusing Low-Level Skills

Achieved Mid-Level
Skills

Follow, Dribble, Shoot, and
Kick-To-Target Walk and Dribble Score Goals, Prevent Conceding

Goals, Ball Interaction, and Get-Up
Methods for Learning

High-Level Skills Self-Play - Self-Play

Achieved High-Level
Skills 2v2 Team Play - 1v1 Play

Transfer to Real
Environment - System Identification + Domain

Randomization
System Identification + Domain

Randomization + Shaping Rewards

TABLE I
OVERVIEW OF THE STUDIED APPROACHES

sub-tasks as well as for long-horizon tasks that require the
identification of these sub-tasks beforehand.

HRL is an alternative approach that uses a divide-and-
conquer technique to abstract the subtasks into different
levels of smaller problems, which in turn can be solved
using RL. The hierarchy consists of multi-level policies
that range from choosing between different options or sub-
goals to taking primitive actions to achieve those sub-goals.
Using the hierarchical approach therefore makes it possible
to learn low-level skills independently of high-level skills.
An example of low-level skills is learning to move different
joints to perform a simple behavior in robotics. The strategies
learned at the lower level can be reused at higher levels.
The high-level skills consist of choosing between the learned
lower-level skills to achieve a more complex goal. For
example, using the learned behaviors of the robot to score a
goal in football.

Overall, HRL reduces the complexity of the whole prob-
lem, as the individual sub-goals are much easier to solve than
the entire global goal.

III. HIERARCHICAL POLICY FOR FOOTBALL
Learning football using RL is a very complex task that

could be divided into several subtasks. Rather than learning
to play football in an end-to-end manner, most current
approaches divide the learning process into several phases.
In the first phase, basic, natural-looking movement low-level
skills required for football, such as walking or standing up,
are learned. In the subsequent phase, these low-level skills
are reused, to learn football-related mid-level skills, such as
dribbling and kicking the ball. In the final phase, these mid-
level skills are again retargeted to learn high-level skills that
enable goal-oriented football play.

It is important to point out that although current methods
deal with the use of RL for humanoid robot football, each
focuses on a specialized goal. In [3], the main objective is to
learn football skills in 1v1 scenarios in simulation which are
also suitable for real robots and can therefore be transferred
to the real platform zero-shot. In [1], on the other hand, the

focus is on 2v2 matches to promote team play and division
of labor. However, the strategies learned are only used in
simulation. Finally, the objective of [2] differs the most from
the other two papers. The authors’ goal is not to master as
much of the football task as possible, instead, they focus on
achieving natural-looking running and dribbling skills. They
also transfer their results to real robots, and in addition to
the other works, they use a quadruped robot alongside the
humanoid one.

Despite these different specializations, the papers share a
common focus on learning hierarchically, using the results of
the previous phases in the subsequent ones. In the following
subsections, we compare the different ways and phases in
which these skills are learned and reused. Table I provides
an overview of the similarities and differences between the
individual approaches.

A. Learning Low-Level Skills

Humanoid robots are particularly well-suited for perform-
ing human activities, such as playing football, due to their
human-like structure, as they can perform human move-
ments. This is why in [1] and [2] human Motion Capture
(MoCap) data is used to achieve natural-looking behaviors.
This MoCap data allows for the use of imitation learning.
The training of the low-level controller based on MoCap
data is divided into two steps. First, the MoCap clips are
imitated using a low-level policy created using RL. Both
approaches follow the procedure described in [5]. Secondly,
an encoder q and decoder πd network are used to distill these
movements into a low-level controller. Thus, the encoder q
generates latent variables z ∈ Z that represent the desired
future trajectories based on the current state. Z refers to the
corresponding latent space. The decoder πd takes these latent
variables z and the current state st into account to generate
the action at that leads to joint commands for the robot. The
networks are trained end-to-end, and the decoder network
can then be reused as the low-level controller. The supervised

objective to train the low-level controller π is represented as:

Eq

[
T∑

t=1

decoder / low-level controller︷ ︸︸ ︷
log πd(at|st, zt) +

β
(
log pz(zt|zt−1)︸ ︷︷ ︸

latent prior

− log q
(
zt|zt−1, st+1:t+k

)︸ ︷︷ ︸
encoder

)] (3)

where st are the states and at are the actions from the
tracking policies, and β is a hyperparameter. Using the
encoder-decoder technique enables the use of RL in the latent
space rather than directly in the action space, resulting in
more realistic humanoid movements, as random exploration
in the latent space makes this more feasible. A visualization
of this method in [1] can be seen in Figure 3.

Fig. 2. Trajectories in the X-Y-plane of the imitation on ANYmal of one
MoCap reference clip [2].

The evaluation of [2] shows that the robot can follow
the imitated movements reliably while moving naturally.
Figure 2 shows the xy-position error of the base following
a trajectory. In [1], the performance of imitation learning is
not evaluated in isolation.

B. Learning Mid-Level Skills
Although the actions learned by the low-level controller

lead to natural-looking movement behaviors, they do not
encourage any football-related behaviors, such as ball inter-
action and goal-directed play. In [1], the phase for learning
this type of skill is called “Acquiring Transferable Mid Level
Skills”.

In [1], four drill tasks are defined to enable football-related
movements:

• Follow: The agent must follow a moving target
• Dribble: The agent must follow a moving target while

keeping the ball close to it
• Shoot: The agent must score a goal with a maximum

of three ball contacts
• Kick-to-target: The agent must kick the ball towards a

target within a certain time
This step is also divided into two steps visualized in Figure 3.

In the first step, the k-th drill is represented as a reward
function rk, resulting in an objective function

J k(π1) = E

[
T∑

t=1

rk(st)

]
(4)

Fig. 3. Overview of the phases for learning the low- and mid-level skills
in [1]. The bold components are reused in later phases: (Left) Encoder-
Decoder Setup of the MoCap Phase. (Middle) Creation of the Expert Drill
Policies. (Right) Creation of the Expert Drill Priors.

for a policy π1. This objective is then maximized for each
of the drill policies, resulting in an expert policy π̄k per
drill task. The policies act within the latent space of the
previous step so that the low-level controller can be reused.
Additionally, several shaping rewards are used to optimize
the policies for the drill tasks. For example, to maximize the
ball-to-target velocity or to encourage ball interaction.

In the second step, the drills are distilled into transferable
drill priors µk. This is achieved by minimizing the KL-
divergence between each expert policy and drill prior in order
to imitate the expert policy:

E

[
T∑

t=1

DKL

(
π̄k(·|ht)||µk(·|h̃t)

)]
(5)

with the observation-action history ht at time t regarding the
drill expert, and the observation-action history h̃t regarding
the prior’s observation set.

In [2], the encoder gets replaced by a task-specific con-
troller as well. The new controller is also trained in the latent
space and also acts in it. Figure 4 shows an overview of the
approach of [2]. It is visible that it is very similar to [1],
as the low-level controller of the imitation learning part has
been adopted to the phase where the mid-level skills are
learned. The task policy, which is similar to the drills, also
replaces the encoder.

Fig. 4. Overview of the phases for learning the low- and mid-level skills
in [2]: (Left) Imitation learning using the MoCap data to train the low-level
controller. (Right) Reuse of the low-level controller in combination with a
trained task policy that outputs the latent actions to enable dribbling.

In [2], however, the task policy focuses mainly on walking
and dribbling rather than scoring goals, This is achieved by

the following rewards which depend on a scale factor ϕ for
the resolution:

rvt = exp

(
−||vt − v̂t||22

ϕ

)
(6)

for minimizing the difference between the target velocity v̂t

and current velocity vt, and

rpt = exp

(
−||pball

t − p̂t||22
ϕ

)
(7)

for minimizing the distance between the current ball position
pball
t and target position p̂t. Another difference to [1] is that

there is also no distillation into drill priors.
The approach described in [3] differs slightly from that

of the other two papers, as it combines the learning of low-
and mid-level skills. In this phase two teacher policies are
trained: one for scoring goals and one for getting up from the
ground. Whereas in the other two approaches, the training
is performed for an isolated agent, in [3] the training takes
place in an environment in which an untrained opponent is
already present.

The main goal of the soccer teacher πf is to score goals.
This is achieved through a variety of shaping rewards:

• Scoring: positive reward for scoring a goal
• Conceding: negative reward for conceding a goal
• Velocity to ball: agent’s velocity toward the ball to

encourage ball interaction, as in [1]
• Velocity: agent’s forward velocity, similar to the reward

in [2]
The purpose of the get-up teacher πg , on the other hand,

is to teach the robot to stand up from the ground. This is
achieved in a similar way to the imitation learning of the
other two approaches by guiding the policy to several target
poses of a trajectory. However, the trajectory does not come
from MoCap data, but from a pre-programmed get-up skill,
which is shown in Figure 5.

(a) Get up from front

(b) Get up from back

Fig. 5. Key poses used to train the get-up teacher [3].

Given the current joint positions pt, and the current gravity
direction gt an error is computed for both of these variables
regarding the target values ptarget and gtarget, respectively:

• Scaled error in joint positions:

p̃t =
(
π − ||ptarget − pt||2

)
/π (8)

• Scaled angle between gravity:

g̃t =
(
π − arccos

(
gT
t gtarget

))
/π (9)

The objective of the get-up teacher is to maximize the
following reward:

r̂pose = −p̃tg̃t (10)

In [2], the policy successfully led to the robot walking
toward the ball and even positioning itself to shoot it in
the correct direction. The skill module thus enabled precise,
goal-oriented movement, even though the MoCap data dif-
fered significantly from the dribbling task.

To evaluate the effect of the drill priors in [1], the authors
use differently trained agents to let them play multiple
matches against evaluation agents to compute an ELO score
for each agent, as shown in Figure 6. The following agents
are used:

• Sparse rewards with the drill priors
• Shaping rewards without the drill priors
• Shaping rewards with the drill priors
• Shaping rewards with the drill priors and additional

rewards to encourage team coordination
The agent using the sparse rewards and drill priors performs
consistently poorly. The agent, using only the shaping re-
wards, starts crawling across the ground to reach the ball,
trying to score with his arms as well. Interestingly, using
additional shaping rewards to encourage team coordination
leads to poorer results than not using these rewards. This
could be a consequence of the agent exploiting these rewards
and starting to focus more on team play than on scoring
goals.

Fig. 6. ELO scores for the different training methods across all games
in [1]: (Green) Sparse rewards with the drill priors (Red) Shaping rewards
without the drill priors (Orange) Shaping rewards with the drill priors (Blue)
Shaping rewards with the drill priors and additional rewards to encourage
team coordination.

Similarly to [1], when learning without regularization to-
wards the teachers in [3], but instead with sparse rewards, the

agent learned an alternative technique to score by crawling to
the ball and scores while lying down, as shown in Figure 7.

(a) Crawling to the ball

(b) Scoring while lying down

Fig. 7. No regulation towards the teachers leads to crawling to the ball
and scoring a goal while lying down [3].

C. Learning High-Level Skills

The drill priors learned in the previous phase in [1] enabled
football-related movements but are not sufficient to solve the
entire football task. Therefore, in this phase, these high-level
football skills are learned. Both, [1] and [3] use self-play to
train the agents. For this, the results of the previous phases
are used to train a population of agents. In [1], teams of two
players are uniformly sampled with replacement from the
population, with the players of each team being two separate
instantiations of the same agent. During play, however, they
act independently of each other. This way, high-performing
policies are propagated through the population. In [3], on
the other hand, the opponents are sampled uniformly from
previous policies, as this led to better performance.

To enable transitions between the drill priors in [1], the
behavior of the agents is biased towards the drill priors
during self-play. By using KL regularization in the latent
space to penalize the difference between the football policy
and a mixture distribution of the n = 4 drill priors, they
receive the following loss regarding policy parameter θ and
hyper-parameters θh:

Lpriors(θ;β1:n) :=

E

[
T∑

t=1

DKL

(
πθ(·|ht)

∥∥∥∥∥
n∑

i=1

βiµ
i
(
·|h̃i

t

))] (11)

with ht being the observation-action history at time t from
the football policy πθ and h̃i

t the one from the prior µi.
The weights βi control the impact of each prior. Using
priors instead of shaping rewards for these tasks has the
advantage that they can adapt their influence to the current
context. However, additional shaping rewards are introduced
for higher goals, such as scoring and conceding goals. This
results in a surrogate RL objective for football J 0(θ; θh).
The authors did not include shaping rewards to encourage
team play, as the results show that performance is worse

than without these types of rewards. Finally, the surrogate
objective got regularized towards the priors:

J̄ 0(θ; θh) := J 0(θ; θh)− λLpriors(θ;β1:n) (12)

with step size λ, to learn the football task.
Similar to [1], in [3], policy distillation is used to enable

smooth transitions between the soccer and get-up skills.
Compared to [1], however, the abilities are mutually exclu-
sive, i.e. they are never executed in parallel but rather depend
on whether the robot is standing or lying on the ground. This
can also be seen in the objective:

Eξ [1[s ∈ U]Jf (πφ) + 1[s /∈ U]Jg(πθ)] (13)

where U are all the states where the agent is standing.
Jf (πφ) and Jg(πφ) are the training objectives that again
use KL regularization to adapt the football training objective
J (πφ) towards the individual teachers:

Jf (πφ) = (1− λf)J (πφ)− λfEξ [KL (πφ(·|s)||πf (·|s))]
(14)

Jg(πφ) = (1− λg)J (πφ)− λgEξ [KL (πφ(·|s)||πg(·|s))]
(15)

The weights λf and λg are continuously updated using
stochastic gradient descent to minimize the costs:

c(λf) = λf (Eξ [Q
πφ(s,a)]−Qf) (16)

c(λg) = λg(Eξ [Q
πφ(s,a)]−Qg) (17)

This allows the agent to outperform the teacher, as the weight
decreases to 0 when the agent’s predicted return exceeds the
corresponding threshold Qf or Qg , so the agent switches
from behavioral cloning of the teacher to pure RL on the
objective.

To evaluate the effects of self-play in [3], the authors set
up several matches of a self-play that plays against opponents
that are trained against different combinations of agents:

• An untrained agent
• An untrained agent and a soccer teacher (without a get-

up teacher)
• An untrained agent, a soccer teacher, and a 1v1 policy

trained with self-play
Looking at the results in Figure 8, it is clear that the self-
play agent performs better over time than the agents trained
against an untrained agent and a soccer teacher. But even
when the self-playing agent is included as an opponent
during training, this agent does not always beat him.

The authors of [1] did not perform experiments on the
effects of self-play.

IV. TRANSFER TO REAL ENVIRONMENT

As a final step, two of the approaches are deployed, and
evaluated on a real robot. In [2] and [3], the learned policies
are transferred to a real robot zero-shot. Both approaches
use system identification to reduce the sim-to-real gap. Ad-
ditionally, they use domain randomization to further increase
robustness on the real platform. In the following, we will
discuss in more detail how this is realized. While in [2] the

Fig. 8. Comparison of the self-play agent to the following opponents in [3]:
(top-left) untrained agent, (top-right) untrained agent and soccer teacher,
(bottom) untrained agent, soccer teacher, and 1v1 agent. Win fractions
across 100 matches during training for self-play agent (orange) vs. opponent
(blue).

focus is mainly on the quadruped robot ANYmal and only
slightly on the humanoid robot OP3 (see Figure 9), [3] uses
OP3 exclusively. Both approaches use an external MoCap
system to track the position of the robot(s) and the ball.

Compared to the other two papers, the approach described
in [1] is not transferred to a real environment.

(a) OP3 in simulation (b) OP3 in reality

Fig. 9. The humanoid football robot OP3 (Images from [3]).

A. System Identification

The first step in minimizing the discrepancy between
simulation and reality is to create a simulation that is as
close to the real world as possible.

In [2], they use the built-in actuators from MuJoCo to
model OP3. In [3], the actuator parameters are determined
by applying varying frequency sinusoidal control signals to
a motor with a known load. The parameters of the actuator
model are then optimized in the simulation to achieve the
resulting joint angle trajectories.

B. Domain Randomization and Perturbations

In addition to system identification, both of the approaches
use domain randomization and additional perturbations to

further reduce the sim-to-real gap. Domain Randomization
involves introducing different variations during simulation
training by changing certain parameters to improve the
adaptability of robotic systems to real-world conditions and
reduce performance differences caused by wear and tear,
environmental factors, or hardware discrepancies.

Some examples of the used perturbations are randomized
floor friction, joint angular offsets, variation of the orientation
and position of the IMU, attachment of randomly heavy
masses at randomly selected points on the robot torso, ran-
dom noise, and time delays in the simulated sensor readings,
and the application of impulses, random in strength, duration,
and position.

C. Regularization for Safe Behaviors

In [3], the trade-off between a sufficient range of motion
for playing football and moving the joints too rapidly,
which may damage them, is addressed. Therefore, additional
rewards have been added to reduce these robot breakages:

• Joint torque: negative reward, proportional to the mea-
sured torques in the knee joint

• Upright: positive reward for smaller tilt angles to pre-
vent the robot from falling over

V. LIMITATIONS AND FUTURE WORK

Each of the three approaches achieves its individual goal.
However, several limitations are not covered by the works.

First of all, all of the approaches use an external system
to track the current game state. This is very unrealistic
compared to real football, as the robots are omnipresent and
know where every game object is on the pitch. A human
player, on the other hand, would have to look around and
sometimes not be able to see the ball if it is obscured by
a player, for example. However, using the on-board robot
sensors for perception is a hard problem, as it would not only
require tracking all game objects, but it would also further
increase the sim-to-real gap, as moving sensors have much
more noise in reality.

Another limitation of the approaches is that they do not
encourage dribbling with the ball to pass to an opponent.
In the works, the ability to dribble is learned as a mid-level
skill, but scoring goals is the main reward of the high-level
skill. This leads to the players running to the ball and trying
to score a goal without moving with the ball to get a better
shot position towards the goal.

Several factors could be adjusted to increase the realism of
the football scenarios with regard to real football in future
works. First, combining the approaches of [1] and [3] to
enable team play in a real-world environment. The team
sizes could also be increased. In [1], decision-making is
very binary: should the robot shoot toward the goal, or
should it pass the ball to its teammate? By increasing the
size of the team, each player would have to decide which
of his teammates has the most promising position on the
pitch, allowing for many more tactical options during play.
Currently, the robots are only trained to score goals without
taking the score into account. In a real football match, tactics

change depending on the score, e.g. if the lead is high, the
team will defend more. This adaptation to the current state of
play could also be included in future work. Finally, the robots
used could be more and more adjusted to the physical form
of humans. OP3 has a height of 51 cm and has 20 degrees
of freedom. As larger robots with more degrees of freedom
are harder to control in reality due to the heavier limbs, it
would be advantageous to adapt the robot to a human to be
able to compete against a human team at some point.

VI. CONCLUSION

In this work, we compare three papers that use HRL to
teach humanoid robots to play football. The papers all have
a different global goal that they want to achieve. In [1] the
focus is on learning 2v2 team play in simulation, in [2] on
learning dribbling skills, and in [3] on learning goal-oriented
1v1 play in real scenarios.

[1] and [2] use MoCap data in combination with imitation
learning to achieve natural-looking behaviors. [3] combines
the learning of low-level and mid-level skills by training
two teacher policies, one for scoring goals and one for
getting up from the ground. In [1], the mid-level skills are
learned in the form of drill policies while reusing the low-
level controller, which are then distilled into transferable drill
priors. Similarly, in [2], task policies are learned, also reusing
the low-level controller. In [1] and [3], high-level skills are
learned to enable goal-oriented football play, by using self-
play between agents trained on the mid-level skills. Finally,
the results of [2] and [3] are transferred to a real robot zero-
shot, by using system identification, domain randomization,
and perturbations.

Overall, all three papers show promising results for achiev-
ing realistic football play using humanoid robots.

REFERENCES

[1] S. Liu, G. Lever, Z. Wang, J. Merel, S. Eslami, D. Hennes, W. M.
Czarnecki, Y. Tassa, S. Omidshafiei, A. Abdolmaleki, et al., “From
motor control to team play in simulated humanoid football,” arXiv
preprint arXiv:2105.12196, 2021.

[2] S. Bohez, S. Tunyasuvunakool, P. Brakel, F. Sadeghi, L. Hasenclever,
Y. Tassa, E. Parisotto, J. Humplik, T. Haarnoja, R. Hafner, et al.,
“Imitate and repurpose: Learning reusable robot movement skills from
human and animal behaviors,” arXiv preprint arXiv:2203.17138, 2022.

[3] T. Haarnoja, B. Moran, G. Lever, S. H. Huang, D. Tirumala,
M. Wulfmeier, J. Humplik, S. Tunyasuvunakool, N. Y. Siegel,
R. Hafner, et al., “Learning agile soccer skills for a bipedal robot with
deep reinforcement learning,” arXiv preprint arXiv:2304.13653, 2023.

[4] R. Bellman and R. Kalaba, “On adaptive control processes,” IRE
Transactions on Automatic Control, vol. 4, no. 2, pp. 1–9, 1959.

[5] L. Hasenclever, F. Pardo, R. Hadsell, N. Heess, and J. Merel, “Comic:
Complementary task learning & mimicry for reusable skills,” in Inter-
national Conference on Machine Learning. PMLR, 2020, pp. 4105–
4115.

