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Abstract

The principle of reinforcement learning(RL) algorithms is to achieve the goal by
maximizing the rewards from the environment. However, generally the definition
of dense reward is a complicated problem. Such as in the case of exploration
within multiple balls, it is not easy to find the best definition of dense rewards, and
the reward in finding simple one ball task can also not be scaled in the complex
task. The intrinsic reward, which is generated by the inner curiosity, enables
the agent to explore the environment itself, and thus is more adaptable to the
sparse reward scenarios. The Intrinsic Curiosity Module(ICM) is such a intrisic
reward generator, which was before shown to perform well on tasks of discrete
action space. Therefore, in continuous action space, we are also motivated to
build and evaluate the Intrinsic Curiosity Module(ICM) based on Proximal Policy
Optimization Algorithms (PPO) to yield the inner curiosity for enhancing the
exploration of robot-arm. Since no work with deep RL has been done on SL, we
have firstly tried to implement deep RL algorithms, namely Deep Deterministic
Policy Gradient(DDPG) and PPO, in SL with a simple task of finding one ball.
Then we evaluated and compared their performance in SL. Furthermore, on the
task of finding the optimal ball among multiple balls, we validated the effectiveness
of curiosity-driven exploration with PPO-based ICM in continuous action space.
Finally, we realized the task of reaching the optimal ball among multiple balls
while meanwhile avoiding the obstacles by enhancing exploration. Overall, the
algorithms we have investigated are DDPG, PPO and curious ICM based on PPO.

1 Introduction

1.1 Motivation

SL simulator[1] from is a powerful robot-arm evaluation environment developed by the IAS at
TU-Darmstadt. Currently it is available for many classical control methods such as PID control.
However, with respect to the generality to a complex environment or a problem not fully known,
all classical methods including "Linear Quadratic Regulator"(LQR) controller[2], are inferior to the
reinforcement learning(RL) method[3]. In SL, though reinforcement learning is possible through the
communication with MATLAB or Python, the most popular method in recent years, deep learning[4]
with reinforcement learning, is not yet able to be implemented in SL. Thus, our first aim is to
implement deep reinforcement learning methods in SL.

RL algorithms learn policies for achieving the goal by maximizing rewards provided by the environ-
ment. However, in many real world scenarios, extrinsic rewards from environment may be hard to
be shaped densly, only have sparse from or be missing at all, so that a shaped reward function can
not be formed. In such cases, there will be a problem, which is the agent will update its policy only
if it succeeds in finding the goal. Thus, a random exploration will be far from efficiency. Thus, an
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intrinsic reward is also necessary to be added as a part of the total reward to make the agent curious
for such cases. The curiosity, as the intrinsic reward, has been formulated differently in recent papers.
One way is to use "visitation counts"[5], which encourages the agent to visit novel states. Another
way is to use "prediction error"[6] as intrinsic rewards, which encourages the agent to perform
actions leading to a big prediction error of the actions’ consequence, while the error/uncertainty in
the agent’s prediction the consequence of its own actions should be reduced at the same time. A
successful prediction error model for curiosity has been proposed in 2017 as "Intrinsic Curiosity
Model"(ICM)[7]. Furthermore, an extension to even the case of no extrinsic reward by using only
ICM has been investigated[8], showing surprisingly good performance. Though algothrims working
also for continuous action space have been used in these two papers, none of them has reported an
evaluation of the exploration with ICM on a continuous action space. Thus, our second goal of this
paper is to enhance curiosity-driven exploration with ICM in a continuous action space.

1.2 Reinforcement Learning Algorithms

In recent years, many algorithms in reinforcement learning has been designed. Apart from typical
methods such as Q-Learning and SARSA[3], the “Deep Q Network”(DQN) algorithm[9] firstly
combined deep learning and reinforcement learning and was very successful due to the capability of
performing well on many Atari video games using raw pixels as input. However, these are all for the
applications in the case of discrete action space. The "Deep Deterministic Policy Gradient"(DDPG)
algorithm[10] in 2015 extended the high level performance firstly even to the tasks with high
dimensional, continuous action space. Results after training of 2.5 million steps turned to be
very good on many benchmark tasks, such as Pendulum. Meanwhile, the "Trust Region Policy
Optimization"(TRPO) algorithm[11], which also works for continuous action space, was shown
to be effective for optimizing large nonlinear policies such as neural network and to tend to give
monotonic improvement, with little tuning of hyperparameters. Furthermore, the "Proximal Policy
Optimization"(PPO) algorithm[12], suggests to have some of the benefits of TRPO. But it is simpler
to implement, more general, and has better sample complexity empirically.

1.3 Task Statement

For the implementation of deep reinforcement learning, We have defined our first task as making the
robot-arm in SL successfully learn to find a ball. Moreover, our task was later extended to a more
complex scene including multiple balls with different rewards, and the scene was further extended to
include multiple obstacles as well, though minor adjustment for collision check for each link is still
to be done in the future. The comprehensive environment in SL look like Figure 1.

Figure 1: A complex sample scene in SL

Though our ultimate goal in the future is to implement a deep reinforcement learning algorithm on
a real robot with high dimensional raw pixels as state information so that it can find the ball with
maximal reward in such a complex scene, as a first step, we only chose to use low dimensional states,
which are joint degrees, joint velocities, the cartesian position and velocity of the end-effector, to
test our implementation of deep learning algorithms in SL simulation. Besides, we defined the joint
acceleration as our action space. So, both state space and action space in our task are continuous,
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which motivates us to use DDPG and PPO as our algorithms and to compare them with each other.
TRPO is dumped due to its computational cost and complexity.

The organization of this paper is as followings: we introduced our simulation environment including
its communication with Python in Subsection 2.1. Then in Subsection 2.2, theories regarding to
DDPG, PPO and curiosity exploration with ICM were explained. In Section 3, experiments setup
including definition for different reward settings, the comparison result of DDPG and PPO in a
dense reward setting for finding simple one ball, the result of enhancing curiosity-driven exploration
with PPO-based ICM in sparse reward setting for finding optimal ball among multiple balls and the
result of achieving the optimal ball in the most complex scene including obstacles were respectively
explained. Finally, we made conclusions in Section 4.

2 Methods

The goal of SL is to have a common platform that allows for easy implementation, evaluation and
comparison of different robot evaluation platforms, experiments and learning algorithms. We have
chosen Barrett WAM in SL, which is a robot-arm with 7 degrees of freedom.

2.1 Structure of the System

The overall system has 2 main parts. One is the SL simulation environment programmed in C, another
one is the learning algorithm in Python. SL processes task management, robotics kinematic and
dynamic calculation, motor control, visualization and etc. All the data will be saved into and read from
the shared memory, which is used to interact with the algorithm in python. The deep reinforcement
learning algorithm is written in Python. As the world’s fastest growing programming language,
Python is suitable for implementing the algorithm of machine learning because of its readability,
versatility, easiness and possession of lots of packages, such as tensorflow, numpy, matplotlib and etc.

Figure 2: Communication flow between C and Python

2.2 Theory

The normal reinforcement learning considers an agent that interacts with an environment E in an
infinite horizon. At time step t, it sees an observation st, takes an action at which comes from a
stochastic policy distribution π(at|st) = P(at|st), receives then a reward rt with discount factor
γ, and finally goes to the next state st + 1. We further define the state value function V (st), the
state-action value function Q(st, at) and the advantage function A(st, at) as followings[3]:
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V (st) = Est+1:∞,at:∞

[ ∞∑
l=0

γlrt+l

]
(1)

Q(st, at) = Est+1:∞,at+1:∞

[ ∞∑
l=0

γlrt+l

]
(2)

A(st, at) = Q(st, at)− V (st) (3)

2.2.1 DDPG Algorithm

The crux of the DDPG algorithm is the architecture of actor and critic. There are two actors and two
critics, respectively for evaluation and target. The evaluation actor network π(s|θπ) learns the action
for the current state s, while the target actor network π′(s′|θπ′

) learns the action for the next state
s′. The evaluation critic network Q(s, a|θQ) learns the state-action value for the current state s and
action a, while the target critic network Q′(s′, a′|θQ′

) learns the action for the next state s′ and action
a′, which comes directly from target actor π′(s′|θπ′

). The DDPG algorithm also uses an exploration
strategy, which is to add an action noise N to the output of evaluation actor π(s|θπ) to explore more.
The noise usually can be set as OrnsteinUhlenbeckActionNoise.

To optimize all networks, the DDPG uses the following strategy: fisrtly to update the evaluation critic
by minimizing the loss L in equation 4, where N is the batch size. Then, update the evaluation actor
using the policy gradient ∇θµJ in equation 5, where J is the score function. Finally, θQ

′
and θµ

′

will be softly updated as equations 6 and 7.

L =
1

N

∑
i

(ri + γQ′(si+1, π
′(st+1|θπ

′
)|θQ

′
)−Q(si, ai|θQ))2 (4)

∇θµJ =
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θ
µ)|si (5)

θQ ← τθQ + (1− τ)θQ
′

(6)

θµ
′
← τθµ + (1− τ)θµ

′
(7)

2.2.2 PPO Algorithm

The PPO algorithm has also two networks. One is the state value function network V (s) which
outputs the state value, the other one is policy network π(s) which determines the action. An action
will be drawn from the Gaussian distribution πθ(a|s) with the mean of the output of π(s) and the
standard deviation of a noise also to be learned. Besides, the TD residual δt at time step t and the
generalized advantage estimator AGAE

t [13] are as followings, where λ stands for eligibility trace:

δt = rt + γV (st+1)− V (st) (8)

AGAE
t =

∞∑
l=0

(γλ)lδt+l (9)

In fact, if we have the correct value function V , then an unbiased estimator of advantage At will be
just Est+1

[δt]. So, the first update is to minimize the loss of network V (s), which equals to AGAE
t .

Then, the policy network π(s) will be learned through maximizing the following objective function
L(θ), where ε is a hyperparamter and rt(θ) is the ratio between old and new policy:

rt(θ) =
πθ(at|st)
πθold(at|st)

(10)

L(θ) = Et
[
min(rt(θ)A

GAE
t , clip(rt(θ), 1− ε, 1 + ε)AGAE

t )
]

(11)
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2.2.3 Curiosity-driven Exploration with ICM

ICM also has two parts. One is the inverse dynamics model, which is to learn the general feature φ(s)
of a state s. Inverse model takes the current state st and the next state st+1 as inputs, converts them
to their feature representation and finally outputs an action ât. The model will be updated through
the minimization of the loss function LI between the real action at and the output action ât of itself,
the inverse dynamics model. Another one is the forward dynamics model. Forward model takes
the current state st and the real action at as inputs and outputs the which is to learn the prediction
φ̂(st+1) of the feature of the next statest+1. The model will be updated through the minimization of
the loss function LI between the real feature φ(st+1) of the next state st+1 and the predicted feature
φ̂(st+1). Based on this, the intrinsic reward rit is defined as the difference between these two features.
The following equations show the definition of the intrinsic reward, where η is a scaling factor, and
the minimization of the total loss function. Finally, the output of ICM will be added to the extrinsic
reward as the total reward. The flow is shown in Figure 3.

rit =
η

2
||φ̂(st+1)− φ(st+1)||22 (12)

min
θP ,θI ,θF

[
−λEπ(st;θP )[

∑
t

rt] + (1− β)LI + βLF

]
(13)

Figure 3: Curiosity driven exploration flow with ICM

3 Experiments

To evaluate our implementation of deep reinforcement learning algorithms in SL and furthermore the
curiosity model’s ability to improve exploration, we have designed experiments as followings. The
following section will describe the details of the experimental setup, the reward setup of environments,
and the hyperparameters’ setup.

3.1 Experimental Setup

We evaluated the performances of the DDPG and PPO policy with and without the Intrinsic Curiosity
Module (ICM) qualitatively and quantitatively. For all experiments, an average result was taken by
10 evaluation episodes for each iteration, each of which trained networks for 5 episodes(2500 training
steps). Afterwards we calculate the average total reward and count the time of reaching the ball as the
evaluation of the results.

In Subsection 3.2, the minus-defined dense reward is the addition of the distance, velocity and
acceleration with different weights, respectively 15, 0.3 and 0.001. In Subsection 3.3, the respective
sparse reward is only be provided when the the robot arm reaches any of the balls in the environment.
In this case, there is no terminal if the robot arm reaches the goal, because we want to control the
end-effector finally stays at the optimal ball’s position as long as possible. In the case of Subsection
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3.4, the reward is also set to be sparse, only be positive when it reaches a ball or negative when
touches an obstacle.

Besides, β was set to be 1 in the case of ICM exploration. Because we have already used information
sufficient and low dimensional states, the inverse dynamics model for learning the feature space of
states was not necessary, i.e. the feature space could be the states itself. All common hyperparameters
of algorithms during the experiments are the same, which can be read from the following Table 1.

Table 1: Hyperparameters in DDPG, PPO and Curious ICM-PPO
Parameters DDPG PPO Curious ICM-PPO

Warmup steps 10000 - -
Maximal learning steps 600,000 600,000 600,000
Maximal steps per episode 500 500 500
Batch size 64 64 64
Action bound 20 20 20
Reward discount factor γ 0.99 0.99 0.99
Network Size of π(s) [200 200] [200 200] [200 200]
Network Size of Q(s, a) [200 200] - -
Network Size of Value Function - [200 200] [200 200]
Network Size of ICM Network - - [200 200]
Optimizer of π(s) RMSProp RMSProp RMSProp
Optimizer of Q(s, a) RMSProp - -
Optimizer of Value Function - RMSProp RMSProp
Optimizer of ICM Network - - RMSProp
Learning rate of π(s) 0.0003 0.0003 0.0003
Learning rate of Q(s, a) 0.0003 - -
Learning rate of Value Function - 0.0003 0.0003
Learning rate of ICM Network - - 0.0003
Update coefficient τQof Q′(s′, a′) 0.001 - -
Update coefficient τπ of π′(s′) 0.001 - -
Scaling factor η - - 2
Weight factor β - - 1
Clip factor ε - - 0.2

In Subsection 3.2, we compared the performance of DDPG and PPO for reaching a ball. The extrinsic
reward is dense reward. In Subsection 3.3, the PPO algorithm will face a bigger challenge, the sparse
extrinsic reward provided only by multiple balls with different rewards, which is expected to be
improved by ICM curiosity-driven exploration. In Subsection 3.4 we will use the curious ICM-PPO
agent to finish the most complex task, which aims to find the biggest ball among the multiple balls
and avoid the obstacles at the same time.

3.2 Performance in Dense Reward Setting

The DDPG and PPO are the two important reinforcement learning algorithms in the continuous
action domain. First of all, we validated the algorithms with understandable dense extrinsic reward,
to confirm if the algorithms can be used in a similar or more complex robot task. In comparison with
the performance of the DDPG agent against the PPO agent, we have plotted the results of average
total rewards with regard to the training steps in the Figure 4a below, and the results of the finished
times in each 10 episodes with regard to the training steps in the Figure 4b. Due to the time urgency,
each experiment was executed twice.

As the results are shown, all the groups are able to learn the skill as showing an increasing average
rewards. However, the PPO agent learned obviously much faster than DDPG and its reward plot in
Figure 4a had much less fluctuations. Moreover, we can see from Figure 4b that DDPG can not even
find the optimal trajectory within 600,000 training steps, while PPO finds the optimal solution around
230,000 training steps showing a convergence speed more than twice faster than DDPG. This could
be explained as it has been proposed in [12] that PPO has a characteristic of continuous improvement,
and in [14] that DDPG suffers from inefficiency in the case of RL problems with multidimensional
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(a) Comparison of average total reward (b) Comparison of finished times

Figure 4: Comparison between DDPG and PPO for finding simple one ball

continuous actions, where exploration can be particularly challenging, e.g. in robotics. Therefore, we
have attested this and prefer PPO algorithm for our further works.

3.3 Exploration in Sparse Reward Setting

Varying to a much higher degree of reward sparsity can verify the effect of curious ICM model.
Therefore, we performed the sparse extrinsic reward experiments with and without ICM for finding
the optimal ball among 3 balls to test the effect of adding curiosities. The results based on PPO are
shown in Figure 5a and Figure 5b, respectively for comparison of average extrinsic reward and ICM
forward dynamics’ loss LF . Due to the time urgency, each experiment was executed once, the goal
range for each ball was set to be 6 times wider than in Subsection 3.2, and the observed evaluation
was confined to the training steps at which the end-effector converged to the second biggest ball. For
more curiosity, only in this case we have set η=6.

(a) Comparison of average extrinsic reward (b) Loss function LF of ICM forward dynamics

Figure 5: Results of PPO and ICM-PPO in a scene including multiple balls

The Figure 5a demonstrated that ICM-PPO, which converged to the second biggest ball after 150,000
training steps, explored the space much more efficiently and faster than vanilla PPO, which performed
worse even after 250,000 steps. We indeed observed the end-effector tended to explore more during
the whole training process with ICM-PPO than with vanilla PPO. As seen from the Figure 5a, there
was an obvious fluctuation of LF in ICM-PPO between 20,000 steps and 40,000 steps, which led to a
better exploration at that time than vanilla PPO, also shown in the Figure 5a. Thus, combining ICM
as motivation for exploration had a better performance than PPO also in our continuous action space.
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Definitely, due to the not yet investigated uncertainty, we need run more experiments, more iterations
and in a more strict goal setting to finally affirm the superiority of ICM-PPO. But according to the
original ICM paper [7], ICM-integrated methods works surely better than the algorithms using only
sparse extrinsic rewards. So, our evaluation extending to the continuous action space, which shows a
similar tendency as in [7], is also likely to be reliable, though further experiments are necessary.

3.4 Exploration within Complex Scenes

After attesting the effectiveness of ICM-PPO, we have finally made a pretest on our ultimate task
which is the most complex scene as in the Figure 1 containing 3 balls and 3 obstacles. Because of not
having built a collision check function for each robot link in SL, we just simply used the collision
check only between the obstacle and end-effector, which must be improved and finished in the future.
Still, we got a satisfactory result of average total rewards as shown in the Figure 6.

Figure 6: Average total reward in a scene including multiple balls and obstacles

From the result of Figure 6, we can see that after 500,000 training steps the average reward has
climbed to over 12000, which shows the end-effector getting close to the ball with the maximal
reward. Also, we observed end-effector’s collisions in the first several training episodes in the SL
simulator, while later it became less and less. Furthermore, we actually indeed saw in the simulator
that the robot-arm guided itself safely to the neighbour of the ball with the maximal reward, while the
arm gradually abandoned the states near sub-optimal balls. We confirmed that the arm explored novel
and better states when the exploration loss of forward dynamics model changed much during the
evaluation. Overall, we can also say that the ICM also works well for the task of continuous action
space.

4 Conclusions

In this work, after building a step-wise communication interface between SL environment and Python,
we successfully implemented and compared the DDPG algorithm and the PPO algorithm on the task
of finding a desired ball. The PPO significantly outperformed the and DDPG in the case of a robot
arm with 7 degrees of freedom. Moreover, we demonstrated that the curiosity-driven exploration
ICM-integrated method enhanced the exploration of the robot arm also in a continuous action space
on the task of finding the optimal ball among multiple balls, and the curious ICM-PPO could be
applied further in the most complex environment including obstacles.

An interesting direction of future research is to implement the algorithms to the real robot. Then
somes aspects as followings need to be further considered: firstly, with the same low dimensional
state information as in our simulation, a collision check program in SL for all links of robot-arm need
to be fully developed. Secondly, a high-dimensional input will be the real case, which has to be dealt
with. Thirdly, the inverse dynamics model of the high dimensional space must be learned to acquire a
sufficiently good feature space for implementing ICM-exploration. Fourthly, the safety of the real
robot-arm during training and evaluation should be seriously considered as well.
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