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Today’s agenda! 

• Learn about Neural Networks!


• Covered Topics:

• Single-Layer Perceptrons

• Multi-Layer Perceptrons

• Backpropagation Algorithm


• Reading assignment: Bishop 5.1-5.3, or Murphy 16.5.1-4
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Questions which you need  
to be able to answer...

• How does logistic regression relate to neural networks?

• How do neural networks relate to the brain?

• What kind of functions can single layer neural networks learn?

• Why do two layers help?

• How many layers do you need to represent arbitrary functions?

• Why did they make such splash in the late 1980s?

• Why were Neural Networks abandoned in the 1970s? Why did that 

somewhat happen again in the mid-1990s?

• Why did they re-awaken in the 2010s?

• What is the biggest problem of neural networks?
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From Linear 
Classification to Single 
Layer Neural Networks

1. From Linear Classification to Single Layer Neural Networks  
2. Multi-Layer Perceptrons  
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Remember Logistic Regression?

• Model the class-posterior as: 
 

• Maximize the likelihood:
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The Neural Network Metaphor
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1011 neurons (processors), each with unknown 
computational power, and on average 
1000-10000 connections 



The Neural Network Metaphor
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Note: This is a VERY simplified sketch of 
a real neuron–the connection to biology is more 
metaphorical than realistic. But even these 
simple neurons can do amazing computation! 



Brief History of Neural Networks

• William James (1890): Describes (in words and figures) simple distributed 
networks and Hebbian Learning.


• McCulloch & Pitts (1943): Binary threshold units that perform logical 
operations (they proof universal computation!).


• Hebb (1949): Formulation of a physiological (local) learning rule

• Rosenblatt (1958): The Perceptron—a first real learning machine

• Widrow & Hoff (1960): ADALINE and the Widrow-Hoff supervised learning 

rule.

• Minsky & Papert (1969): The limitations of perceptron—the beginning of the 

“Neural Winter”

• [Outliers: v.d.Malsburg (1973): Selforganizing Maps, Grossberg (1980): 

Adaptive Resonance Theory, Hopfield (1982/84): Attractor Networks: A 
clean theory of pattern association and memory, Kohonen (1982): Self-
organizing maps].
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We can re-interpret it as a Neural Network!
• Single-layer network:
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Neural Networks
• Also called single-layer perceptron.

• 2 variants:


• If we use a linear output node, we get a linear regression function.

• If we use a sigmoid output node, we get something similar to logistic 

regression.

• In either case, a classification can be obtained by taking the sign.

• Nonetheless: At least classically, we don’t use maximum likelihood, but a 

different learning criterion.

• But the actual power comes from extensions:


• Multi-class case

• Multi-layer perceptron
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Multi-Class Network

• Can be used to do multidimensional linear regression.

• But also multi-class linear classification.

• Nonlinear extension is straightforward.
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• Supervised learning of the weights     :

•     training data points:

•     target values for each data point:

• Compute     outputs of the network:

• Minimize error function:

Least-Squares Techniques
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• Training a single-layer neural net with linear activation:
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• “Batch learning”: 
 
 
 
 

• The gradient is computed using all training data points: 
 
 

• Computationally expensive!

Gradient Descent
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• Sequential or pattern based update: 
 
 
 
 
 

• Computation of the gradient based on a single training data point: 
 

• More efficient, but the gradient can be “noisy”.

• Intermediate solution: Use small training “batches”.

Gradient Descent
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• Delta learning rule: 
 
 
 
 
 

• Other names:

• LMS rule (least mean squares)

• adaline rule

• Widrow-Hoff rule

Gradient Descent
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• Neural networks with non-linear, differentiable activation function (e.g. 
logistic networks): 
 
 
 

• Gradient descent: 
 
 

• Logistic neural network:

Gradient Descent
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• Modified delta rule:

Gradient Descent
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much more efficient!



Some Observations

• Once again, we are implicitly assuming a Gaussian distribution over the 
predictions:


• With a nonlinear activation function, the error function we minimize is non-
convex:

• Multiple local minima (often many).

• We may get trapped in poor local optima.
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p(tnk |xn,W,�) = N (tnk |yk(xn; W ),��1)



Multi-Layer 
Perceptrons

1. From Linear Classification to Single Layer Neural Networks 

2. Multi-Layer Perceptrons  
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Multi-Layer Perceptron
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Multi-Layer Perceptron

• Activation functions        :

• For example


• The hidden layer can have an arbitrary number of nodes    .

• There can also be multiple hidden layers.


• Universal approximators:

• A 2-layer network (1 hidden layer) can approximate any continuous 

function of a compact domain arbitrarily well! 
(assuming sufficient hidden nodes)
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Universal Approximation Theorem
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Kurt Hornik et. al., “Multilayer feedforward networks are universal approximators”, 1989 

Guido Montufar et.al., “On the Number of Linear Regions of Deep Neural Networks”, 2014 
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Gradient Descent
• Squared error:
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Multi-Layer Perceptron
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• Assuming linear activation                         :

Gradient Descent
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Multi-Layer Perceptron
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Gradient Descent
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Gradient Descent
• Intuitively:


• Step 1: Forward pass
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Gradient Descent
• Intuitively:


• Step 2: Backward pass
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Computational Graphs
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Wi bi

hi-1 z hi
g(x)+MatMul
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Output Neuron Types
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Sigmoid Neuron

 
 

Linear Neuron

 
 

Softmax Neuron

Slides by Michael Lutter



Hidden Neuron Types
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Sigmoid Neuron Tanh Neuron

 
 

 
 

ReLu Neuron

Slides by Michael Lutter



Gradient Descent
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Optimization Objective:

 

 

 
Cost Functions:
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Backpropagation

35
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Backpropagation
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Backpropagation Algorithm

• Multi-layer perceptrons are usually trained using back-propagation:

• Non-convex, many local optima.

• Can get stuck in poor local optima.

• The design of a working backprop algorithm is somewhat of a “black 

art”.

• Because of that, their use has diminished somewhat.


• Nonetheless:

• When these models work, they can work very well!
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Robot Navigation

• Neural network controlling the steering angle of a 4-wheeled robot:
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[LeCun]



From Data to Representations to Interpretations
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Learning Deep Image Feature Hierarchies
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Impact of Deep Learning in Computer Vision
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Status Quo – Image Classification
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MNIST
10  classes 
70k  Images 

0.20 %  Human Performance 
0.21 % Best Performance

CIFAR 10
10 	 classes 
60k 	 Images 

6.00 % 	 Human Performance 
4.41 %	 Best Performance

Imagenet
1000 	 classes 
1200k 	 Images 

5.10 % 	 Human Performance 
4.80 %	 Best Performance

Slides by 
Michael 
Lutter



Status Quo – Image Classification
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Anh Nguyen et.al., “Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable 
Images”, 2015



Why These Improvements in Performance?

44 [1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.



Theoretical Results on Deep Learning
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Questions which you need  
to be able to answer...

• How does logistic regression relate to neural networks?

• How do neural networks relate to the brain?

• What kind of functions can single layer neural networks learn?

• Why do two layers help?

• How many layers do you need to represent arbitrary functions?

• Why did they make such splash in the late 1980s?

• Why were Neural Networks abandoned in the 1970s? Why did that 

somewhat happen again in the mid-1990s?

• Why did they re-awaken in the 2010s?

• What is the biggest problem of neural networks?
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