
Neural Networks

Jan Peters

Filipe Veiga

Simone Parisi

1

Today’s agenda!

• Learn about Neural Networks!

• Covered Topics:

• Single-Layer Perceptrons

• Multi-Layer Perceptrons

• Backpropagation Algorithm

• Reading assignment: Bishop 5.1-5.3, or Murphy 16.5.1-4

2

Questions which you need
to be able to answer...

• How does logistic regression relate to neural networks?

• How do neural networks relate to the brain?

• What kind of functions can single layer neural networks learn?

• Why do two layers help?

• How many layers do you need to represent arbitrary functions?

• Why did they make such splash in the late 1980s?

• Why were Neural Networks abandoned in the 1970s? Why did that

somewhat happen again in the mid-1990s?

• Why did they re-awaken in the 2010s?

• What is the biggest problem of neural networks?

3 !

From Linear
Classification to Single
Layer Neural Networks

1. From Linear Classification to Single Layer Neural Networks
2. Multi-Layer Perceptrons

4

Remember Logistic Regression?

• Model the class-posterior as: 
 

• Maximize the likelihood:

5

p(C1|x) = �(wTx + w0)

Assumption

yi =
�

1, xi belongs to C2

0, xi belongs to C1p(Y |X;w, w0) =
NY

i=1

p(yi|xi;w, w0)

=
NY

i=1

p(C1|xi;w, w0)
1�yip(C2|xi;w, w0)

yi

=
NY

i=1

�(wT
xi + w0)

1�yi(1� �(wT
xi + w0))

yi

The Neural Network Metaphor

6

1011 neurons (processors), each with unknown
computational power, and on average
1000-10000 connections

The Neural Network Metaphor

7

Note: This is a VERY simplified sketch of
a real neuron–the connection to biology is more
metaphorical than realistic. But even these
simple neurons can do amazing computation!

Brief History of Neural Networks

• William James (1890): Describes (in words and figures) simple distributed
networks and Hebbian Learning.

• McCulloch & Pitts (1943): Binary threshold units that perform logical
operations (they proof universal computation!).

• Hebb (1949): Formulation of a physiological (local) learning rule

• Rosenblatt (1958): The Perceptron—a first real learning machine

• Widrow & Hoff (1960): ADALINE and the Widrow-Hoff supervised learning

rule.

• Minsky & Papert (1969): The limitations of perceptron—the beginning of the

“Neural Winter”

• [Outliers: v.d.Malsburg (1973): Selforganizing Maps, Grossberg (1980):

Adaptive Resonance Theory, Hopfield (1982/84): Attractor Networks: A
clean theory of pattern association and memory, Kohonen (1982): Self-
organizing maps].

8

We can re-interpret it as a Neural Network!
• Single-layer network:

9

=
d�

i=1

wixi + w0

x0 = 1 x1 x2 xd

· · ·
· · ·

w0

w1
w2

wd

y(x) output layer (here: single node)

weights

input layer

y(x) = wTx + w0

Linear outputs (linear
regression function):

y(x) = �(wTx + w0)

Logistic outputs:

Neural Networks
• Also called single-layer perceptron.

• 2 variants:

• If we use a linear output node, we get a linear regression function.

• If we use a sigmoid output node, we get something similar to logistic

regression.

• In either case, a classification can be obtained by taking the sign.

• Nonetheless: At least classically, we don’t use maximum likelihood, but a

different learning criterion.

• But the actual power comes from extensions:

• Multi-class case

• Multi-layer perceptron

10

Multi-Class Network

• Can be used to do multidimensional linear regression.

• But also multi-class linear classification.

• Nonlinear extension is straightforward.

11

x0 = 1 x1 x2 xd

· · ·
· · ·

y1(x) y2(x) · · ·

W10

yk(x) =
d�

i=0

Wkixi

yk(x) = �

�
d⇤

i=0

Wkixi

⇥
or

· · ·
yc(x)

Wcd

12

• Supervised learning of the weights :

• training data points:

• target values for each data point:

• Compute outputs of the network:

• Minimize error function:

Least-Squares Techniques

X = [x1, . . . ,xN]
Tk = [t1k, . . . , tNk]
yk(xn; W)

N
c

c

E(W) =
1
2

N�

n=1

c�

k=1

(yk(xn; W)� tnk)2

=
1
2

N⇤

n=1

c⇤

k=1

�
d⇤

i=1

Wki�i(xn)� tnk

⇥2

assume arbitrary feature transformation

W

• Training a single-layer neural net with linear activation:

13

En(W) =
1
2

c⇤

k=1

�
d⇤

i=1

Wki�i(xn)� tnk

⇥2

with

⇥En(W)
⇥Wlj

=

�
d⇤

i=1

Wli�i(xn)� tnl

⇥
�j(xn)

Gradient Descent

= (yl(xn)� tnl) �j(xn)

E(W) =
NX

n=1

En(W) =
1

2

NX

n=1

cX

k=1

dX

i=1

Wki�i(x
n)� tnk

!2

14

• “Batch learning”: 
 
 
 
 

• The gradient is computed using all training data points: 
 
 

• Computationally expensive!

Gradient Descent

W (t+1)
lj = W (t)

lj � �
⇥E(W)
⇥Wlj

����
W (t)

learning rate

�E(W)
�Wlj

=
N�

n=1

�En(W)
�Wlj

15

• Sequential or pattern based update: 
 
 
 
 
 

• Computation of the gradient based on a single training data point: 
 

• More efficient, but the gradient can be “noisy”.

• Intermediate solution: Use small training “batches”.

Gradient Descent

W (t+1)
lj = W (t)

lj � �
⇥En(W)

⇥Wlj

����
W (t)

E(W) =
N�

n=1

En(W)where learning rate
(smaller)

�En(W)
�Wlj

16

• Delta learning rule: 
 
 
 
 
 

• Other names:

• LMS rule (least mean squares)

• adaline rule

• Widrow-Hoff rule

Gradient Descent

W (t+1)
lj = W (t)

lj � �(yl(xn)� tnl)⇥j(xn)

= W (t)
lj � ⇥�n

l ⇤j(xn)

�n
l = yl(xn)� tnlwith

This is just like the  
algorithm for the 

classical perceptron!

Hence single-layer 
perceptron!

17

• Neural networks with non-linear, differentiable activation function (e.g.
logistic networks): 
 
 
 

• Gradient descent: 
 
 

• Logistic neural network:

Gradient Descent

yk(xn) = g(ak) = g

�
d⇤

i=1

Wki�i(xn)

⇥

⇥En(W)
⇥Wlj

= g�(al) (yl(xn)� tnl) �j(xn)

��(a) = �(a)(1� �(a))

18

• Modified delta rule:

Gradient Descent

= W (t)
lj � ⇥�n

l ⇤j(xn)

with

W (t+1)
lj = W (t)

lj � �g�(al)(yl(xn)� tnl)⇥j(xn)

�n
l = g�(al)(yl(xn)� tnl)

If you use the techniques
from Lecture 4, you can be

much more efficient!

Some Observations

• Once again, we are implicitly assuming a Gaussian distribution over the
predictions:

• With a nonlinear activation function, the error function we minimize is non-
convex:

• Multiple local minima (often many).

• We may get trapped in poor local optima.

19

p(tnk |xn,W,�) = N (tnk |yk(xn; W),��1)

Multi-Layer
Perceptrons

1. From Linear Classification to Single Layer Neural Networks

2. Multi-Layer Perceptrons

20

Multi-Layer Perceptron

21

x0 = 1 x1 x2 xd

· · ·

· · ·

y1(x) y2(x) · · ·

· · ·

· · ·

z0 = 1 z1

W (2)
10

W (1)
10

output layer

hidden layer

input layer

yc(x)

W (2)
ch

zh

W (1)
hd

yk(x) = g(2)

�

⇤
h⇧

i=0

W (2)
ki g(1)

�

⇤
d⇧

j=0

W (1)
ij xj

⇥

⌅

⇥

⌅

Multi-Layer Perceptron

• Activation functions :

• For example

• The hidden layer can have an arbitrary number of nodes .

• There can also be multiple hidden layers.

• Universal approximators:

• A 2-layer network (1 hidden layer) can approximate any continuous

function of a compact domain arbitrarily well! 
(assuming sufficient hidden nodes)

22

g(2)(a) = �(a), g(1)(a) = a

yk(x) = g(2)

�

⇤
h⇧

i=0

W (2)
ki g(1)

�

⇤
d⇧

j=0

W (1)
ij xj

⇥

⌅

⇥

⌅

g(k)

h

Universal Approximation Theorem

23

Kurt Hornik et. al., “Multilayer feedforward networks are universal approximators”, 1989

Guido Montufar et.al., “On the Number of Linear Regions of Deep Neural Networks”, 2014

Slides by Michael Lutter

Gradient Descent
• Squared error:

24

= g(2)

�
h⇤

i=0

W (2)
ki zi(xn)

⇥

yk(xn) = g(2)

�

⇤
h⇧

i=0

W (2)
ki g(1)

�

⇤
d⇧

j=0

W (1)
ij xn

j

⇥

⌅

⇥

⌅

zi(xn) = g(1)

�

⇤
d⇧

j=0

W (1)
ij xn

j

⇥

⌅with

E(W) =
NX

n=1

En(W) =
1

2

NX

n=1

cX

k=1

(yk(x
n)� tnk)

2

Multi-Layer Perceptron

25

x0 = 1 x1 x2 xd

· · ·

· · ·

y1(x) y2(x) · · ·

· · ·

· · ·

z0 = 1 z1

W (2)
10

W (1)
10

output layer

hidden layer

input layer

yc(x)

W (2)
ch

zh

W (1)
hd

yk(x) = g(2)

�

⇤
h⇧

i=0

W (2)
ki g(1)

�

⇤
d⇧

j=0

W (1)
ij xj

⇥

⌅

⇥

⌅

• Assuming linear activation :

Gradient Descent

26
�n
l = yl(xn)� tnlwith

En(W) =
1
2

c⇤

k=1

�
h⇤

i=1

W (2)
ki zi(xn)� tnk

⇥2

�En(W)

�W (2)
lj

=

�
h⇤

i=1

W (2)
li zi(xn)� tnl

⇥
zj(xn)

g(2)(a) = a

= (yl(xn)� tnl) zj(xn)

= �n
l zj(xn)

Multi-Layer Perceptron

27

x0 = 1 x1 x2 xd

· · ·

· · ·

y1(x) y2(x) · · ·

· · ·

· · ·

z0 = 1 z1

W (2)
10

W (1)
10

output layer

hidden layer

input layer

yc(x)

W (2)
ch

zh

W (1)
hd

yk(x) = g(2)

�

⇤
h⇧

i=0

W (2)
ki g(1)

�

⇤
d⇧

j=0

W (1)
ij xj

⇥

⌅

⇥

⌅

Gradient Descent

28

En(W) =
1
2

c⇧

k=1

�

⇤
h⇧

i=0

W (2)
ki g(1)

�

⇤
d⇧

j=0

W (1)
ij xn

j

⇥

⌅� tnk

⇥

⌅
2

En(W)

⇥W (1)
lm

= xn
mz�

l(x
n)

c�

k=1

�n
k W (2)

kl

�̂n
l =

c�

k=1

�n
k W (2)

klwith

= xn
mz�

l(x
n)�̂n

l

Gradient Descent
• Intuitively:

• Step 1: Forward pass

29

x0 = 1 x1 x2 xd

· · ·

· · ·

y1(x) y2(x) · · ·

· · ·

· · ·

z0 = 1 z1

W (2)
10

W (1)
10

yc(x)

W (2)
ch

zh

W (1)
hd

Forward propagation

Compute output 
unit activations:

yk(xn)

Compute hidden 
unit activations:

zi(xn)

Gradient Descent
• Intuitively:

• Step 2: Backward pass

30

x0 = 1 x1 x2 xd

· · ·

· · ·

y1(x) y2(x) · · ·

· · ·

· · ·

z0 = 1 z1

W (2)
10

W (1)
10

yc(x)

W (2)
ch

zh

W (1)
hd

Backward propagation 
“Backprop”

Compute output 
error:
�n
k

Compute hidden 
error:
�̂n
i

Computational Graphs

31

Wi bi

hi-1 z hi
g(x)+MatMul

Slides by Michael Lutter

Output Neuron Types

32

Sigmoid Neuron

Linear Neuron

Softmax Neuron

Slides by Michael Lutter

Hidden Neuron Types

33

Sigmoid Neuron Tanh Neuron

ReLu Neuron

Slides by Michael Lutter

Gradient Descent

34

Optimization Objective:

Cost Functions:

Slides by Michael Lutter

Backpropagation

35

 Slides by Michael Lutter

Wi bi

hi-1 u1 u2 hi
g(x)+MatMul

Backpropagation

36

Wi bi

hi-1 u1 u2 hi
g(x)+MatMul

Slides by Michael Lutter

Backpropagation Algorithm

• Multi-layer perceptrons are usually trained using back-propagation:

• Non-convex, many local optima.

• Can get stuck in poor local optima.

• The design of a working backprop algorithm is somewhat of a “black

art”.

• Because of that, their use has diminished somewhat.

• Nonetheless:

• When these models work, they can work very well!

37

Robot Navigation

• Neural network controlling the steering angle of a 4-wheeled robot:

38
[LeCun]

From Data to Representations to Interpretations

39

Learning Deep Image Feature Hierarchies

40

Impact of Deep Learning in Computer Vision

41

Status Quo – Image Classification

42

MNIST
10 classes
70k Images

0.20 % Human Performance
0.21 % Best Performance

CIFAR 10
10 	 classes
60k 	 Images

6.00 % 	 Human Performance
4.41 %	 Best Performance

Imagenet
1000 	 classes
1200k 	 Images

5.10 % 	 Human Performance
4.80 %	 Best Performance

Slides by
Michael
Lutter

Status Quo – Image Classification

43

Anh Nguyen et.al., “Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable
Images”, 2015

Why These Improvements in Performance?

44 [1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.

Theoretical Results on Deep Learning

45

[1] Cybenko. Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals, and Systems, 2 (4), 303-314, 1989.
[2] Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators, Neural Networks, 2(3), 359-366, 1989.
[3] Hornik. Approximation Capabilities of Multilayer Feedforward Networks, Neural Networks, 4(2), 251–257, 1991.
[4] Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930–945, 1993.
[5] Bruna and Mallat. Invariant scattering convolution networks. Trans. PAMI, 35(8):1872–1886, 2013.
[6] Wiatowski, Bölcskei. A mathematical theory of deep convolutional neural networks for feature extraction. arXiv 2015.
[7] Mallat. Understanding deep convolutional networks. Phil. Trans. R. Soc. A, 374(2065), 2016
[8] Bartlett and Maass. Vapnik-Chervonenkis dimension of neural nets. The handbook of brain theory and neural networks, pages 1188– 1192, 2003.
[9] Giryes, Sapiro, A Bronstein. Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy? arXiv:1504.08291.
[10] Sokolic. Margin Preservation of Deep Neural Networks, 2015
[11] Montufar. Geometric and Combinatorial Perspectives on Deep Neural Networks, 2015.
[12] Neyshabur. The Geometry of Optimization and Generalization in Neural Networks: A Path-based Approach, 2015.

Questions which you need
to be able to answer...

• How does logistic regression relate to neural networks?

• How do neural networks relate to the brain?

• What kind of functions can single layer neural networks learn?

• Why do two layers help?

• How many layers do you need to represent arbitrary functions?

• Why did they make such splash in the late 1980s?

• Why were Neural Networks abandoned in the 1970s? Why did that

somewhat happen again in the mid-1990s?

• Why did they re-awaken in the 2010s?

• What is the biggest problem of neural networks?

46 !

