
Machine Learning
Summer Semester 2018, Homework 2

Prof. Dr. J. Peters, D. Tanneberg, B. Belousov

Total points: 90 + 15 bonus
Due date: Wednesday, 30 May 2018 (before the lecture)
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Problem 2.1 Bayesian Decision Theory [20 Points]

In this exercise, we consider data generated by a mixture of two Gaussian distributions with parameters {µ1, σ1} and
{µ2, σ2}. Each Gaussian represents a class labeled C1 and C2, respectively.

a) Optimal Boundary [4 Points]

Explain in one short sentence what Bayesian Decision Theory is. What is its goal? What condition does hold at the
optimal decision boundary? When do we decide for class C1 over C2?

b) Decision Boundaries [8 Points]

If both classes have equal prior probabilities p (C1) = p (C2) and the same variance σ1 = σ2, derive the decision
boundary x∗ analytically as a function of the two means µ1 and µ2.

x∗ =
µ1 +µ2

2

c) Different Misclassification Costs [8 Points]

Assume µ1 > 0, µ1 = 2µ2, σ1 = σ2 and p (C1) = p (C2). If misclassifying sample x ∈ C2 as class C1 is four times
more expensive than the opposite, how does the decision boundary change? Derive the boundary analytically.
(There is no cost for correctly classifying samples.)

x∗ =
3µ2

2 + 2σ2 ln 4

2µ2
.
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Problem 2.2 Density Estimation [30 Points + 15 Bonus ]

In this exercise, you will use the datasets densEst1.txt and densEst2.txt. The datasets contain 2D data belonging to
two classes, C1 and C2.

a) Gaussian Maximum Likelihood Estimation [10 Points]

Derive the ML estimate for the mean and covariance of the multivariate Gaussian distribution. Start your deriva-
tions with the function you optimize. Assume that you can collect i.i.d data. (Hint: you can find many matrix
identities on the Matrix Cookbook (https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf) and at
http://en.wikipedia.org/wiki/Matrix_calculus.)

µ=
1
N

N
∑

i=1

x i

Σ=
1
N

N
∑

i=1

(x i −µ) (x i −µ)
T

b) Prior Probabilities [2 Points]

Compute the prior probability of each class from the dataset.

p (C1) = 0.24 and p (C2) = 0.76

c) Biased ML Estimate [5 Points]

Define the bias of an estimator and write how we can compute it. Then calculate the biased and unbiased estimates
of the conditional distribution p (x |Ci), assuming that each class can be modeled with a Gaussian distribution.
Which parameters have to be calculated? Show the final result and attach a snippet of your code. Do not use
existing functions, but rather implement the computations by yourself!

µ1 = [−0.45575151,−0.58567544] µ2 = [3.96283462,4.12475973] (6)

Σ1 = [[11.32184216,3.92665659][3.92665659,3.70421947]] (7)

Σ2 = [[4.57468033,−0.09674016], [−0.09674016,2.2481175]] (8)

Σbiased
1 = [[11.08597045,3.84485124], [3.84485124,3.62704823]] (9)

Σbiased
2 = [[4.54458375,−0.09610371], [−0.09610371,2.23332725]] (10)
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d) Class Density [5 Points]

Using the unbiased estimates from the previous question, fit a Gaussian distribution to the data of each class.
Generate a single plot showing the data points and the probability densities of each class. (Hint: use the contour
function for plotting the Gaussians.)

e) Posterior [8 Points]

In a single graph, plot the posterior distribution of each class p (Ci |x) and show the decision boundary.
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f) Bayesian Estimation [15 Bonus Points]

State the generic case of Bayesian linear regression with data < X , Y > and parameters θ . What do we assume
about the data, the model and the parameters?
Formulate the posterior distribution for your model parameters given the data, i.e., p (θ |X , Y ), and derive its mean
and covariance, assuming that the model of the output variable is a Gaussian distribution with a fixed variance.
What do we do when we want to predict a new point?
Which are the advantages of being Bayesian?
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Problem 2.3 Non-parametric Density Estimation [20 Points]

In this exercise, you will use the datasets nonParamTrain.txt for training and nonParamTest.txt for evaluating the
performance of your model.

a) Histogram [4 Points]

Compute and plot the histograms using 0.02, 0.5, 2.0 size bins of the training data. Intuitively, indicate which
bin size performs the best and explain why. Knowing only these three trials, would you be sure that the one you
picked is truly the best one? Attach the plot of the histograms and a snippet of your code.

b) Kernel Density Estimate [6 Points]

Compute the probability density estimate using a Gaussian kernel with σ = 0.03, σ = 0.2 and σ = 0.8 of the
training data. Compute the log-likelihood of the data for each case, compare them and show which parameter
performs the best. Generate a single plot with the different density estimates and attach it to your solutions. Plot
the densities in the interval x ∈ [−4, 8], attach a snippet of your code and comment the results.
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c) K-Nearest Neighbors [6 Points]

Estimate the probability density with the K-nearest neighbors method with K = 2, K = 8, K = 35. Generate a
single plot with the different density estimates and attach it to your solutions. Plot the densities in the interval
x ∈ [−4, 8], attach a snippet of your code and comment the results.

d) Comparison of the Non-Parametric Methods [4 Points]

Estimate the log-likelihood of the testing data using the KDE estimators and the K-NN estimators. Why do we need
to test them on a different data set? Compare the log-likelihoods of the estimators w.r.t. both the training and
testing sets in a table. Which estimator would you choose?
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Problem 2.4 Expectation Maximization [20 Points]

In this exercise, you will use the datasets gmm.txt. It contains data from a Gaussian Mixture Model with four 2-
dimensional Gaussian distributions.

a) Gaussian Mixture Update Rules [2 Points]

Define the model parameters and the update rules for your model. Specify the E- and M-steps of the algorithm.
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b) EM [18 Points]

Implement the Expectation Maximization algorithm for Gaussian Mixture Models. Initialize your model uniformly.
Generate plots at different iterations t i ∈ [1, 3,5,10, 30], showing the data and the mixture components, and plot
the log-likelihood for every iteration t i = 1 : 30. Attach a snippet of your code.
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