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Purpose of this Lecture

 Learn an alternative approach to imitation learning
* What is the best way to imitate a teacher?
 Learn its policy? Behavorial cloning
* Needs a lot of demonstrations to generalize the behavior

 Learn its intention / goals? Inverse Reinforcement Learning
* Inverse Optimal Control, Inverse Optimal Planning
« Determine the cost function of the teacher in order to obtain optimal behavior.

* More concise description of behavior



Bigger Picture

experience data demonstration data
D ={si,ai,ri,8i};_q1 N D ={si1.1i,a1.7,}i=1.. N
learn model learn value fct.  optimize policy learn policy  learn latent costs
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Behavioral Cloning

Actions




What may be wrong here? Remember ALVI //5‘

-

There are difficulties involved with training “on-the-fly” with real images. If the network
is not presented with sufficient vanability in its training exemplars to cover the conditions
1t is likely to encounter when it takes over driving from the human operator, it will not
develop a sufficiently robust sentation and will orm . In addition, the
network must not solely be shown examples of accurate driving, but also how to recover
(Le. return to the road center) once a mistake has been made. Partial initial training on

J

Disadvantages of Direct Imitation Learning
e Needs a lot of demonstrations to generalize
| High variability in the demonstrations

SiEmeoees Demonstrate how to recover from mistakes
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Motivation for inverse RL

Apprenticeship learning/Imitation learning through inverse RL

Presupposition: reward function provides the most succinct and
transferable definition of the task

Has enabled advancing the state of the art in various robotic domains
Modeling of other agents, both adversarial and cooperative

Scientific questions
Model animal and human behavior

E.qg., bee foraging, songbird vocalization. [See intro of Ng and Russell,
2000 for a brief overview.]
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More Crus







Inverse Reinforcement Learning
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Recovering Cost!

13

Feature vector

Cost jw'i:

Weighting/
VeClor

Ratliff, Bagnell, Zinkevich 2005
Ratliff, Bradley, Bagnell, Chestnutt, NIPS 2006
Silver, Bagnell, Stentz, RSS 2008



Recovering Cost!

14




Recovering Cost!

(&, High Cost) LFl
=) | carn F,

(™, Low Cost)
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Collect paths by teleoperation
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Training: Stay on the road

17



Test: Stay on the road
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Training: Avoid the Road

19



Test: Avoid the Road

20



example path




High-level picture

érobability distribution
over next states given
current state and
Describes desirability] Action

of being in a state. - /

Dynamics

Reward Function Reinforcement Controller/
r(s¢) Learning / Optimal Policy

Control

argmax By, » >, v'r(s)

] Prescribes action to
take for each state

Inverse RL:
« Given Policy and Model, can we recover R?
 More generally, given execution traces, can we
recover r?

22
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Problem setup: Behavioral Cloning

Input:
Teacher’s demonstrations: D = {s1.7;,a1.7}i=1..N
Trace of the teacher’s policy 7*(als)
And its “long-term behavior’ 1*(s)

Formulated as standard machine learning problem

FIX a policy class (neural network, decision tree, deep belief net, dynamical systems, ...

Estimate a policy 7w(a|s) from the training examples D
Problem:
There will always be an error in the estimation of the policy

Small error in the policy |:> possibly large error in long-term
behavior fi(s)

24



Problem setup: Inverse RL

Input:
Teacher’s demonstrations: D = {s1.7,;,a@1.7;}i=1.. N
Trace of the teacher’s policy 7% (a|s)
And its “long-term behavior’ 1t* ()
State and Action Space
Transition model: p(S¢11|S¢, at)
No reward function 7(S¢)
Inverse RL:

Can we recover 7(s¢) that explains the policy 7*(a|s) (and its long-
term behavior ?) 1u*(s)

Apprenticeship Learning
Can we use r(s;)to obtain a policy 7(a|s?

25



Inverse RL vs. Behavioral Cloning

Behavioral Cloning: Inverse RL:

Simple to implement Requires Planning /
_ Solving an MDP
No assumptions on the

model/MDP Hard for many interesting
| MDPs (e.g. high-DoF
We might not reproduce robots)

the long term behavior
Representation: Reward
Representation: Policy
Compact description
Hard to generalize
Easy to transfer to new
Needs many samples tasks

260



Basic principle

Find a reward function r*(s:) which explains the expert behavior

Assume expert is optimal w.r.t. to r*(s;)
l.e., find r*(s¢) such that
Bpw D207 (s0)|m] = Ep e 224 v 7" (se) 7], Y
In fact a convex feasibility problem, but many challenges:
1. lll-posed: r*(s;) = 0 is a solution, reward function ambiguity

2. Limited Data: We typically only observe expert traces rather than the
entire expert optimal policy --- how to compute left-hand side?

3. Optimality Assumption: Assumes the expert Is indeed optimal ---
otherwise Infeasible

) [ 4. Computation: assumes we can enumerate all policies
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Feature based reward function

Lets assume the reward function is linear in some features,

Le. r(s) = w! ¢(s), where ¢(s) is a n-dimensional feature vector

E Y A'r(s)ln| =E > ~w ¢(sy)|r
=0 ] | +=0 l

=w'E | > v'¢(sy)|r
| t=0 _
= w Y(7)

where 1 (7) IS the expected discounted feature vector of policy 71
Subbing into:  E, . D, Y (so)|n*] > Ep x D2, Y (se)|7], Vo

gives us: Find w* such that w*Ty(n*) > w*Ty(x), V¥

29




Feature based reward function

Epr [ 77" (50)7°] > By [S,4'7% (s0) ] , ¥

N
Find w* such that w*l(7*) > w*lap(mw), Vr

Feature expectations can be readily estimated from sample trajectories

Solves limited data challenge

The number of expert demonstrations required scales with the number of
features in the reward function.

The number of expert demonstration required does not depend on
Complexity of the expert’s optimal policy

Size of the state space

30



Basic principle

Find a reward function r*(s:) which explains the expert behavior

Assume expert is optimal w.r.t. to r*(s;)
l.e., find r*(s¢) such that
Bpw D207 (s0)|m] = Ep e 224 v 7" (se) 7], Y
In fact a convex feasibility problem, but many challenges:
1. lll-posed: r*(s;) = 0 is a solution, reward function ambiguity

2. Limited Data: We typically only observe expert traces rather than the
entire expert optimal policy --- how to compute left-hand side?

3. Optimality Assumption: Assumes the expert Is indeed optimal ---
otherwise Infeasible

31 4. Computation: assumes we can enumerate all policies



Constraint generation

Every policy has a corresponding feature expectation vector, which for
visualization purposes we assume to be 2D

A

o ()
7#(77(1)) ° © e
; © P (m2) ] ¢(1T3)

32 :




Constraint generation

Linear parametrization: We need to find a separating hyper-plane given
by w a2 4

R ()
""" oo Jurg
wip(m)/ T - w
@ ° ‘(') ~~~~~~~~
'7[)(71-1) © o) T
o w! ()
© @)
@)
’lP(?TQ) ’ 110(71—3)
> U

Scalar product w™y gives us the (positive or negative) distance to the
separating hyper-plane

33



lll-posed Problem

Standard max margin:

Smallest weight vector with predefined reward margin of 1

min wlw

w

s.t. whyp(n*) > whp(r)+1, Vn

34



Max. margin solution

V2 4

e (")

P(m) T - ij¢(W*)wT¢(W13)—
° . Tl .\.Q.\

@ N
© ® ¢(7T3) Tl
(@)
© (@)
o o o
P(ma)

Similar interpretation as a support vector machine

35



lll-posed Problem

Structured max margin:
Smallest weight vector

Margin depends on difference of policies m(7™, )

min w! w
S.t. wlp(r*) > whp(n) + m(n*,7), Vr

Justification: margin should be larger for policies that are very
different from 7.

Example for m(7™, ) :

Sum of minimum distances from generated path the
example path

36



Basic principle

Find a reward function r*(s:) which explains the expert behavior

Assume expert is optimal w.r.t. to r*(s;)
l.e., find r*(s¢) such that
Bpw D207 (s0)|m] = Ep e 224 v 7" (se) 7], Y
In fact a convex feasibility problem, but many challenges:
1. lll-posed: r*(s;) = 0 is a solution, reward function ambiguity

2. Limited Data: We typically only observe expert traces rather than the
entire expert optimal policy --- how to compute left-hand side?

3. Optimality Assumption: Assumes the expert Is indeed optimal ---
otherwise Infeasible

3/ 4. Computation: assumes we can enumerate all policies



Structured max margin solution

V2 y high loss

~

.\.;5{7;\.\
P(m) RS _
o ';. ~.amall 1(.)85#(7T )
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Expert suboptimality

Structured prediction max margin with slack variables:
Every constraint can be violated a bit

Minimize the amount of violation

mi? wlw + C¢
s.t. szp(w*) > wT¢(W) +m(r",m) — &, Vnm

Easy to extend to multiple MDPs

Resolved: access to 7% ambiguity, expert suboptimality

One challenge remains: very large number of constraints
Ratliff et. al. use subgradient methods.

In this lecture: constraint generation

39



Constraint generation

Initialize II = {} and then iterate k =1...

Solve
w®) = argmin,,, mgin w'w 4 O
.t wly(r*) > wl (D) + m(a*, 7)) —¢, vrl eIl

Find the most violated constraint
%) = max w™ Ta(n) + m(n*, 7)

Compute optimal policy for the current estimate of the reward function (+ loss
augmentation m), e.g., dynamic programming

Add 7% to set of policies TI

If no constraint violations were found, we are done.

40



Algorithm example run

(2

.'IIIIIIIIIIIIII‘ llll
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Suboptimal expert case

>

42

Can match expert by stochastically mixing between 3 policies

In practice: for any w* one of 7y, T, m3 outperforms 7* =  pick
one of them.

Generally: for k-dimensional feature space the user picks between
k+1 policies
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Classical Approach to Statistical Modeling:
"The Principle of Maximum Entropy”

Premise: Statistical modeling should
be performed with the least
commitment possible.

* Predict using the probabillity
distribution minimally committed/
maximally uncertain/highest
Shannon entropy....

* ...Subject to it agrees with known
constraints

e “almost all” distributions are close
to the MaxEnt one

» Uncertainty allows proper treatment
44 of suboptimal demonstrations!



Maximum-entropy approach to inference

What is the maximum entropy distribution with given 1st and 2nd
order and moments?

argmax, — Z p(x) log p(x
Entropy
S.t. Zp(ac)x = myq, Zp(as)lﬂ = mo, ZP@) =
XT XT xZr
Solution:

p(x) o exp(A1x + Aox?), where A1 o are lagrangian multipliers

That’s a Gaussian! ... which is of course well known that a
Gaussian has maximum entropy of all distributions with given mean
and variance

45



Maximum-entropy approach to IRL [ziebart2008]

Maximize entropy over paths with a given feature expectation
argmax,, — Z p(7) log p(T

s.t. ZP(TW(T) =(r*), Y p(r)=1

T

Solution:  p(T) o exp(w ¥ (7))

w IS now a lagrangian multiplier

We obtain a soft-max distribution over trajectories

Return of the trajectories: R(7T) = w’ Zq/ d(s) = wh (1)
Problem: Does not take system dynamics into account

Trajectory could have huge return, but is very unlikely due to
46 system dynamics



Maximum-Causal-entropy IRL [ziebart 2010]

Maximize entropy of the policy with a given feature expectation

argmax. - Z e Z mi(als) log m(als) Max. Caus. Ent
t,a a
s.t. Vit : Sj Sj we(s)o(s) = (™), Z m(als) = 1,Vs  Match Features
t S a

Mt(sl) — Z Ht—1 (S)ﬂ't_l (a‘s)p(sl‘sj CL), State distribution

consistency

s,a

State distribution at time step t has to be consistent with:
state distribution and policy at time step t-1

system dynamics

47



Maximum-Causal-entropy IRL [ziebart 2010]

Solution: m(als) x exp (wl ¢(s) + E[Vi11(s)]s, al)
Vi(s) is again a Lagrangian multiplier
If we say w’ ¢(s) is the reward, this is a soft-max over the Q-function
mi(als) oc exp (Q(s, a; w))
This is still a convex problem:
Solution can be obtained by optimizing dual function

Can be done (relatively) efficiently

48
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Reward function parameterizing the policy class

Alternatively, we can assume the policy is soft-max in a Q-function
exp (aQ* (s, a; 7))
> o €xp (@Q*(s,a/; 7))

where @* is the optimal Q-function for reward function r(s), i.e.,
V*(s;r) = max Q*(s,a;r)

Q" (s,a;7) = r(s) + E[V*(s;1)|s, a]

7Tt(G’|S; T, O{) —

Then we can evaluate the likelihood of seeing a set of state-action pairs as
follows:

log p(D|r, o) Zlogw (a;]ss; 7, @)

Is equivalent to “a smarter Behavior Cloning!

50



Reward function parameterizing the policy class

Ziebart's approach can also be shown to be equivalent!
Can be extended to Bayesian setup:

Put prior on parameters of reward function

p(D|r, a)p(r, )
p(D)

Ramachandran and Amir, AAAI2007: MCMC method to sample from this distribution

p(’l", O“D) —

Neu and Szepesvari, UAI2007: gradient method to optimize the likelihood [MAP]

ol



Open Directions

.- Open directions:
. Active inverse RL,
. Inverse RL with minmax control
. Inverse RL with partial observability
. Inverse RL with learning stages (rather than observing optimal policy)
. Many more ...

. Are you Iinterested? We may have an excellent thesis for you!

52
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| ecture outline

e Case studies:

58

. (1) Highway driving,

. (2) Crusher,

. (3) Parking lot navigation,

- (4) Route inference,

. (5) Human path planning,

. (6) Human inverse planning,
. (7) Quadruped locomotion

. (8) Helicopter Acrobatics



Highway driving

priving simulator

Teacher in Training World Learned Policy in Testing World

Driving simulator

Auto-pilot Auto-pilot
| Manual | Manual
OffRoad| Left|  Middie| Right OffRoad OffRoad| Lef|  Middie] Right| OffRoad
alpha: 0.00 accel: 0.00 alpha: 0.01 accel: 0.00
0] 40| 60| 100| 200| 0] 40| 60| 100| 200|
Center Center
Quit Quit
- Input:
- Dynamics model / Simulator Py (X1 | Xi, Uy) [Abbeel and Ng 2004]

. Teacher’s demonstration: 1 minute in “training world”

60

Note: R* is unknown.

Reward features: 5 features corresponding to lanes/shoulders; 10 features
corresponding to presence of other car in current lane at different distances
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Parking lot navigation
2 AL AR

= Reward function trades off:

= Staying “on-road,”

= Forward vs. reverse driving,

= Amount of switching between forward and reverse,
= Lane keeping,

= On-road vs. off-road,

63 Curvature of paths. [Abbeel et al., IROS 08]



Experimental setup

= Run our apprenticeship learning algorithm to find the reward
function.

= Receive “test parking lot” map + starting point and destination.

= Find the trajectory that maximizes the learned reward function
for navigating the test parking lot.

04



Nice driving style
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Sloppy driving-style

66

QuickTime™ and a
JVT/AVC Coding decompressor
are needed to see this picture.




"‘Don’t mind reverse” driving-style

QuickTime™ and a
JVT/AVC Coding decompressor
are needed to see this picture.

6/



Human path planning

= Reward features:
= Time to destination
« (Forward acceleration)?
=« (Sideways acceleration)?
= (Rotational acceleration)?

= Integral (angular error)?

/4

f

N, ‘ 4
Target 2 Start Point Target 1
I 1

& >
Target 4

TargetS Target3

N N

[IMombaur, Truong, Laumond, 2009]



Experimental Setup

/5




Human path planning

76

Target 2

/7

Target 1

= Result;
= Time to destination: 1
» (Forward acceleration)? 1.2
=« (Sideways acceleration)? 1.7
= (Rotational acceleration)? 0.7

=« Integral (angular error)? 5.2

Tzvarget 4

B

TargetS Target3

N N

[IMombaur, Truong, Laumond, 2009]
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Transfer to a Humanoid

)
[

&3
g
l:‘/ . .1

79



Goal Inference

= Observe partial paths, predict goal. Goal could be either A,
B, or C.

= + HMM-like extension: goal can change (with some

probability over time). C A
..... I .
C A

| B

[Baker, Saxe, Tenenbaum, 2009]
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Goal Inference
(a)

Example conditions

1y ; g ” § i : 5
3 7 101113 3 7 101113 3 7 101113 3 7 101113 3 7 101113 3 7 101113
Judgment point  Judgment point  Judgment point  Judgment point  Judgment point  Judgment point

,.... ._L'l

Model

'y

!
bt

- v
. P
’ ' v «‘.

....‘s . @

’ . ’ P ‘ ) ’
03 7 101113 03 7 101113 03 7 101113 03 7 101113 03 7 101113 03 7 101113
Judgment point  Judgment point  Judgment point  Judgment point  Judgment point  Judgment point

P(GoallActions) 3
o
(&3]

o0
=

[Baker, Saxe, Tenenbaum, 2009]



Quadruped

s Reward function trades off 25 features.

82

Hierarchical max margin [Kolter, Abbeel & Ng, 2008]



Experimental setup

= Demonstrate path across the “training terrain”

= Run the apprenticeship learning algorithm to find the
reward function

= Receive “testing terrain”---height map.

= Find the optimal policy with respect to the learned reward
83 function for crossing the testing terrain.



Little Dog: CMU Team

Ratliff + al, 2007



flight

. How does helicopter dynamics work
. Autonomous helicopter setup

- Application of inverse RL to autonomous helicopter flight

85



Autonomous helicopter setup

,_ | Send out
On-Board Inertial controls to

Measurements helicopter
Unit (IMU) data

1.Kalman filter
2.Feedback controller




Helicopter dynamics

. 4 control inputs:

. Main rotor collective pitch
. Main rotor cyclic pitch (roll and pitch)

. Tall rotor collective pitch

87




Experimental setup for the helicopter *
AN

1. Our expert pilot demonstrates the airshow several times.

R A0 4 “—
N Vi > - ———
P ne AT Rl = CEET—

2. Learn (by solving a joint optimization problem):
 Reward function---trajectory.
* Dynamics model---trajectory-specific local model.

3. Fly autonomously:

. nertial sensing + vision-based position sensing =2 (extended)
Kalman filter

 Receding horizon differential dynamic programming (DDP)
feedback controller (20Hz)

« Learning to fly new aerobatics takes < 1 hour

88



Results!



Summary

What you should know:

=

B

90

Why is inverse RL useful / better than direct imitation learning?
Algorithmic Challenges in IRL

Different methods that use IRL, all are linear in features

Why maximum margin?

Why max. entropy?
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Integrated Projektpraktikum

Lernende Roboter

il

4 Lernende Roboter: A
Integriertes Projekt Teil 1
Literature Review and
Simulation Studies

\_ /

-

\_

Lernende Roboter: A
Integriertes Projekt Teil 2
Evaluation and Submission
to a Conference
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How does It fit In your course plan?

[ Lernende Roboter ]

il

4 Lernende Roboter: A
Integriertes Projekt Teil 1
Literature Review and
Simulation Studies

\_ /

4 Lernende Roboter: A
Integriertes Projekt Teil 2
Evaluation and Submission

to a Conference

\_ /




Starting at the Autonomous Systems Labs
“Taster course” as scientist

Among the most important questions ever:
continue the research road to a Ph.D. (=Dr.)?

The personal and professional advantages are enormous!

An exciting life:

follow your ideas & dreams...
actively acquire knowledge and refine 1it...
enjoy international conferences and visits with collaborators around the world...

However, it ain’ t for everybody!

Your Master’ s thesis will already decide on your chances!

ODo you wanna figure out whether there is aresearcher in YOU?



Basic |ldea: Be a researcher

Mini-Class

* The lecture “Robot Learning” serves as
— background!

* We give you a few suggestions on platforms
and algorithms.

Your idea becomes your project! This can
only be fun!

Your creativity is what will make it an
amazing experience for both you & us!



Simulation

| x — O bioroblinaxis

=




Simulation




Write a Scientific Paper
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What we offer....

We offer you a glimpse how life as a researcher in robot learning is like!

« Use the knowledge from the robot learning lecture right away!!!

» Decide what problem you are interested in and implement it in our simulator.

« Write a “Scientific Paper” as a team!

« Have a mini-conference at the semester’ s end...

 Perfect start for your Masters or Bachelors Theses.

You are getting a taste how research life is like!



What we also offer....

Master and Bachelor thesis or also smaller projects

 For possible projects, see our homepage!

* Interested in your own topic? Just talk to us!
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http://www.ias.tu-darmstadt.de/Main/CurrentTheses

How does It fit In your course plan?

Related Classes:
* Improve Foundations: Robotik 1 (WS) + Robotik 2 (SoSe)

« Useful Techniques: Optimierung statischer und dynamischer Systeme

* More (un-)supervised learning:
* Maschinelles Lernen: Statistische Methoden (SoSe),
* Maschinelles Lernen: Statistische Methoden 2 (WS),
* Maschinelles Lernen: Symbolische Ansatze (WS).

* More Autonomous Systems:
* Intelligente Multi-Agent Systeme (SoSe) (New Lecture!)



Your way to the thesis...

Theses:

 Our class brings you right to B.Sc. or M.Sc. Thesis level (checkout our
homepage)

* If you want to do your Ph.D. (=Dr) in Robot Learning, our classes plus
all of the above are guaranteed to be optimal.

 Currently 19 Thesis are supervised by the Autonomous Systems Labs
 Many Master and Bachelor Theses end up in a Publication!



How does It fit In your course plan?

*B.Sc. / M.Sc. Informatik:
« Computational Engineering (see Modulhandbuch), Not DKE

* If you are strongly interested in machine learning you should:
» Take ML.: Statistical Methods for HCS credit

« Take ML: Symbolische Methoden for DKE credit
« Take RL for CE credit

* M.Sc. in Autonome Systeme



