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Purpose of this Lecture

• Learn an alternative approach to imitation learning

• What is the best way to imitate a teacher?

• Learn its policy?          Behavorial cloning

• Needs a lot of demonstrations to generalize the behavior

• Learn its intention / goals? Inverse Reinforcement Learning

• Inverse Optimal Control, Inverse Optimal Planning

• Determine the cost function of the teacher in order to obtain optimal  behavior. 

• More concise description of behavior
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Bigger Picture
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Outline of the Lecture

1.Introduction

I. Comparison to Behavioral Cloning

2.Categories of IRL

I. Maximum Margin

II. Feature Matching by Max. Entropy

III. Policy parametrized by rewards

3.Applications

4.Conclusion
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Behavioral Cloning

X

States

U

Actions
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What may be wrong here? Remember ALVINN?

Disadvantages of Direct Imitation Learning

• Needs a lot of demonstrations to generalize

• High variability in the demonstrations

• Demonstrate how to recover from mistakes
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Apprenticeship learning/Imitation learning through inverse RL

Presupposition: reward function provides the most succinct and 

transferable definition of the task

Has enabled advancing the state of the art in various robotic domains

Modeling of other agents, both adversarial and cooperative

Scientific questions

Model animal and human behavior

E.g., bee foraging, songbird vocalization.  [See intro of Ng and Russell, 

2000 for a brief overview.]

Motivation for inverse RL
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Crusher

RSS 2008: Dave Silver and Drew Bagnell8

Meet Crusher...
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More Crusher pictures...

9
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More Crusher pictures...
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Inverse Reinforcement Learning
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Recovering Cost!
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Recovering Cost!
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Recovering Cost!
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Collect paths by teleoperation
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Training: Stay on the road
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Test: Stay on the road



19

Training: Avoid the Road
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Test: Avoid the Road 



2121
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High-level picture

Dynamics  

Reward Function Reinforcement

Learning / Optimal 

Control

Controller/

Policy 

Prescribes action to 

take for each state

Probability distribution 

over next states given 

current state and 

actionDescribes desirability 

of being in a state.  

Inverse RL: 

• Given Policy and Model, can we recover R?

• More generally, given execution traces, can we          

recover r?
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Input: 

Teacher’s demonstrations: 

Trace of the teacher’s policy

And its “long-term behavior”  

Formulated as standard machine learning problem

Fix a policy class (neural network, decision tree, deep belief net, dynamical systems, … 

Estimate a policy               from the training examples  

Problem:

There will always be an error in the estimation of the policy

Small error in the policy        possibly large error in long-term 

behavior

Problem setup: Behavioral Cloning
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Input: 

Teacher’s demonstrations: 

Trace of the teacher’s policy

And its “long-term behavior”  

State and Action Space

Transition model:

No reward function 

Inverse RL: 

Can we recover that explains the policy (and its long-

term behavior           ?)

Apprenticeship Learning

Can we use to obtain a policy ?

Problem setup: Inverse RL
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Behavioral Cloning:

Simple to implement

No assumptions on the 

model/MDP

We might not reproduce 

the long term behavior

Representation: Policy

Hard to generalize

Needs many samples

Inverse RL vs. Behavioral Cloning

Inverse RL:

Requires Planning / 

Solving an MDP

Hard for many interesting 

MDPs (e.g. high-DoF 

robots)

Representation: Reward

Compact description

Easy to transfer to new 

tasks
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Find a reward function which explains the expert behavior

Assume expert is optimal w.r.t. to 

I.e., find            such that

In fact a convex feasibility problem, but many challenges:

1. Ill-posed: is a solution, reward function ambiguity

2. Limited Data: We typically only observe expert traces rather than the 

entire expert optimal policy --- how to compute left-hand side?

3. Optimality Assumption: Assumes the expert is indeed optimal ---

otherwise infeasible

4. Computation: assumes we can enumerate all policies

Basic principle
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Lets assume the reward function is linear in some features, 

where          is the expected discounted feature vector of policy 

Subbing into:

gives us:  

Feature based reward function
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Feature based reward function

Feature expectations can be readily estimated from sample trajectories

Solves limited data challenge

The number of expert demonstrations required scales with the number of 

features in the reward function.

The number of expert demonstration required does not depend on

Complexity of the expert’s optimal policy

Size of the state space
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Find a reward function which explains the expert behavior

Assume expert is optimal w.r.t. to 

I.e., find            such that

In fact a convex feasibility problem, but many challenges:

1. Ill-posed: is a solution, reward function ambiguity

2. Limited Data: We typically only observe expert traces rather than the 

entire expert optimal policy --- how to compute left-hand side?

3. Optimality Assumption: Assumes the expert is indeed optimal ---

otherwise infeasible

4. Computation: assumes we can enumerate all policies

Basic principle
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Every policy has a corresponding feature expectation vector, which for 

visualization purposes we assume to be 2D

Constraint generation
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Linear parametrization: We need to find a separating hyper-plane given 

by

Scalar product            gives us the (positive or negative) distance to the 

separating hyper-plane 

Constraint generation



34

Standard max margin:

Smallest weight vector with predefined reward margin of 1

Ill-posed Problem
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Max. margin solution

Similar interpretation as a support vector machine
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Structured max margin:

Smallest weight vector

Margin depends on difference of policies

Justification: margin should be larger for policies that are very 

different from     .

Example for                 :

Sum of minimum distances from generated path the 

example path 

Ill-posed Problem
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Find a reward function which explains the expert behavior

Assume expert is optimal w.r.t. to 

I.e., find            such that

In fact a convex feasibility problem, but many challenges:

1. Ill-posed: is a solution, reward function ambiguity

2. Limited Data: We typically only observe expert traces rather than the 

entire expert optimal policy --- how to compute left-hand side?

3. Optimality Assumption: Assumes the expert is indeed optimal ---

otherwise infeasible

4. Computation: assumes we can enumerate all policies

Basic principle



38

Structured max margin solution
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Structured prediction max margin with slack variables:

Every constraint can be violated a bit

Minimize the amount of violation

Easy to extend to multiple MDPs 

Resolved: access to     , ambiguity, expert suboptimality

One challenge remains: very large number of constraints

Ratliff et. al. use subgradient methods.

In this lecture: constraint generation

Expert suboptimality
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Initialize and then iterate k = 1…

Solve

Find the most violated constraint

Compute optimal policy for the current estimate of the reward function (+ loss 

augmentation m), e.g., dynamic programming

Add to set of policies  

If no constraint violations were found, we are done.

Constraint generation
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Algorithm example run

w(1)

w(2)

w(3)
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Suboptimal expert case

Can match expert by stochastically mixing between 3 policies

In practice: for any w* one of                    outperforms      pick 

one of them.

Generally: for k-dimensional feature space the user picks between 

k+1 policies
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Classical Approach to Statistical Modeling: 

"The Principle of Maximum Entropy”

Premise: Statistical modeling should 

be performed with the least 

commitment possible.

• Predict using the probability 

distribution minimally committed/ 

maximally uncertain/highest 

Shannon entropy....

• ...subject to it agrees with known 

constraints

• “almost all” distributions are close 

to the MaxEnt one

• Uncertainty allows proper treatment 

of suboptimal demonstrations!
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Maximum-entropy approach to inference

What is the maximum entropy distribution with given 1st and 2nd

order and moments?

Solution:

That’s a Gaussian! … which is of course well known that a 

Gaussian has maximum entropy of all distributions with given mean 

and variance
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Maximum-entropy approach to IRL [Ziebart 2008]

Maximize entropy over paths with a given feature expectation

Solution:

w is now a lagrangian multiplier

We obtain a soft-max distribution over trajectories

Return of the trajectories:

Problem: Does not take system dynamics into account

Trajectory could have huge return, but is very unlikely due to 

system dynamics
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Maximum-Causal-entropy IRL [Ziebart 2010]

Maximize entropy of the policy with a given feature expectation

State distribution at time step t has to be consistent with:

• state distribution and policy at time step t-1

• system dynamics 

Max. Caus. Ent

Match Features

State distribution 

consistency
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Maximum-Causal-entropy IRL [Ziebart 2010]

Solution: 

is again a Lagrangian multiplier

If we say              is the reward, this is a soft-max over the Q-function

This is still a convex problem:

Solution can be obtained by optimizing dual function

Can be done (relatively) efficiently
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Alternatively, we can assume the policy is soft-max in a Q-function

where        is the optimal Q-function for reward function , i.e., 

Then we can evaluate the likelihood of seeing a set of state-action pairs as 

follows:

Is equivalent to “a smarter” Behavior Cloning!

Reward function parameterizing the policy class
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Ziebart’s approach can also be shown to be equivalent!

Can be extended to Bayesian setup:

Put prior on parameters of reward function

• Ramachandran and Amir, AAAI2007: MCMC method to sample from this distribution

• Neu and Szepesvari, UAI2007: gradient method to optimize the likelihood [MAP]

Reward function parameterizing the policy class
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• Open directions: 

• Active inverse RL, 

• Inverse RL with minmax control

• Inverse RL with partial observability 

• Inverse RL with learning stages (rather than observing optimal policy)

• Many more … 

• Are you interested? We may have an excellent thesis for you!

Open Directions
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• Case studies: 

• (1) Highway driving, 

• (2) Crusher, 

• (3) Parking lot navigation, 

• (4) Route inference, 

• (5) Human path planning, 

• (6) Human inverse planning, 

• (7) Quadruped locomotion

• (8) Helicopter Acrobatics

Lecture outline
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Highway driving

Teacher in Training World Learned Policy in Testing World

• Input: 

• Dynamics model / Simulator   Pxu(xt+1 | xt, ut)

• Teacher’s demonstration: 1 minute in “training world”

• Note: R* is unknown.

• Reward features: 5 features corresponding to lanes/shoulders; 10 features 

corresponding to presence of other car in current lane at different distances

[Abbeel and Ng 2004]
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Max margin
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Max-margin
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Parking lot navigation

[Abbeel et al., IROS 08]

 Reward function trades off: 

 Staying “on-road,”

 Forward vs. reverse driving,

 Amount of switching between forward and reverse, 

 Lane keeping,

 On-road vs. off-road,

 Curvature of paths.
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 Demonstrate parking lot navigation on “train parking lots.”

 Run our apprenticeship learning algorithm to find the reward 

function.

 Receive “test parking lot” map + starting point and destination. 

 Find the trajectory that maximizes the learned reward function

for navigating the test parking lot.

Experimental setup



65

Nice driving style
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QuickTime™ and a
JVT/AVC Coding decompressor
are needed to see this picture.

Sloppy driving-style
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QuickTime™ and a
JVT/AVC Coding decompressor
are needed to see this picture.

“Don’t mind reverse” driving-style
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 Reward features:

 Time to destination

 (Forward acceleration)2

 (Sideways acceleration)2

 (Rotational acceleration)2

 Integral (angular error)2

Human path planning

[Mombaur, Truong, Laumond, 2009]
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Experimental Setup
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 Result:

 Time to destination: 1

 (Forward acceleration)2 1.2

 (Sideways acceleration)2 1.7

 (Rotational acceleration)2 0.7

 Integral (angular error)2 5.2

Human path planning

[Mombaur, Truong, Laumond, 2009]
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Human path planning
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Human path planning
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Transfer to a Humanoid
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 Observe partial paths, predict goal.  Goal could be either A, 

B, or C.

 + HMM-like extension: goal can change (with some 

probability over time).

Goal inference

[Baker, Saxe, Tenenbaum, 2009]
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 Observe partial paths, predict goal.  Goal could be either A, 

B, or C.

Goal inference

[Baker, Saxe, Tenenbaum, 2009]
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 Reward function trades off 25 features.

Quadruped

Hierarchical max margin [Kolter, Abbeel & Ng, 2008]
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 Demonstrate path across the “training terrain”

 Run the apprenticeship learning algorithm to find the 

reward function

 Receive “testing terrain”---height map. 

 Find the optimal policy with respect to the learned reward 

function for crossing the testing terrain.

Experimental setup
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QuickTime™ and a
JVT/AVC Coding decompressor
are needed to see this picture.

Little Dog: CMU Team

Ratliff + al, 2007
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• How does helicopter dynamics work

• Autonomous helicopter setup

• Application of inverse RL to autonomous helicopter flight

Remainder of lecture: extreme helicopter 

flight
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Autonomous helicopter setup

On-Board Inertial 

Measurements 

Unit (IMU) data

Send out 

controls to 

helicopter

1.Kalman filter

2.Feedback controller

Position 

data
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• 4 control inputs:

• Main rotor collective pitch

• Main rotor cyclic pitch (roll and pitch)

• Tail rotor collective pitch

Helicopter dynamics
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1. Our expert pilot demonstrates the airshow several times.

2. Learn (by solving a joint optimization problem):

• Reward function---trajectory.

• Dynamics model---trajectory-specific local model.

3. Fly autonomously:

• Inertial sensing + vision-based position sensing (extended) 

Kalman filter

• Receding horizon differential dynamic programming (DDP) 

feedback controller (20Hz)

• Learning to fly new aerobatics takes < 1 hour

Experimental setup for the helicopter
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Results!

89

QuickTime™ and a
JVT/AVC Coding decompressor
are needed to see this picture.



90

What you should know:

Why is inverse RL useful / better than direct imitation learning?

Algorithmic Challenges in IRL

Different methods that use IRL, all are linear in features

Why maximum margin?

Why max. entropy?

Summary
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Integrated Projektpraktikum

Lernende Roboter

Lernende Roboter: 

Integriertes Projekt Teil 1

Literature Review and 

Simulation Studies

Lernende Roboter: 

Integriertes Projekt Teil 2

Evaluation and Submission 

to a Conference



How does it fit in your course plan? 

Lernende Roboter

Lernende Roboter: 

Integriertes Projekt Teil 1

Literature Review and 

Simulation Studies

Lernende Roboter: 

Integriertes Projekt Teil 2

Evaluation and Submission 

to a Conference



Starting at the Autonomous Systems Labs

“Taster course”as scientist

Among the most important questions ever: 

continue the research road to a Ph.D. (=Dr.)?

The personal and professional advantages are enormous!

An exciting life: 

follow your ideas & dreams...

actively acquire knowledge and refine it...

enjoy international conferences and visits with collaborators around the world...

However, it ain’t for everybody!

Your Master’s thesis will already decide on your chances!

Do you wanna figure out whether there is a researcher in YOU?  



Basic Idea: Be a researcher

Mini-Class

• The lecture “Robot Learning” serves as 

background!

• We give you a few suggestions on platforms 

and algorithms. 

Your idea becomes your project! This can 

only be fun!

Your creativity is what will make it an 

amazing experience for both you & us!



Simulation



Simulation



Write a Scientific Paper



Do a mini-conference!



What we offer....

We offer you a glimpse how life as a researcher in robot learning is like!

• Use the knowledge from the robot learning lecture right away!!!

• Decide what problem you are interested in and implement it in our simulator. 

• Write a “Scientific Paper” as a team!

• Have a mini-conference at the semester’s end...

• Perfect start for your Masters or Bachelors Theses. 

You are getting a taste how research life is like!

!



What we also offer....

Master and Bachelor thesis or also smaller projects

• For possible projects, see our homepage!

• Interested in your own topic? Just talk to us!

http://www.ias.tu-darmstadt.de/Main/CurrentTheses


How does it fit in your course plan? 

Related Classes:

• Improve Foundations: Robotik 1 (WS) + Robotik 2 (SoSe)

• Useful Techniques: Optimierung statischer und dynamischer Systeme

• More (un-)supervised learning: 

• Maschinelles Lernen: Statistische Methoden (SoSe), 

• Maschinelles Lernen: Statistische Methoden 2 (WS), 

• Maschinelles Lernen: Symbolische Ansätze (WS).

• More Autonomous Systems:

• Intelligente Multi-Agent Systeme (SoSe) (New Lecture!)



Your way to the thesis…

Theses: 

• Our class brings you right to B.Sc. or M.Sc. Thesis level (checkout our 

homepage)

• If you want to do your Ph.D. (=Dr) in Robot Learning, our classes plus 

all of the above are guaranteed to be optimal.

• Currently 19 Thesis are supervised by the Autonomous Systems Labs

• Many Master and Bachelor Theses end up in a Publication!



How does it fit in your course plan? 

• B.Sc. / M.Sc. Informatik:

• Computational Engineering (see Modulhandbuch), Not DKE

• If you are strongly interested in machine learning you should: 

• Take ML: Statistical Methods for HCS credit

• Take ML: Symbolische Methoden for DKE credit

• Take RL for CE credit

• M.Sc. in Autonome Systeme


