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What we have seen from the policy gradients

• Policy Search is a powerful and practical alternative to value function 

and model-based methods.

• Policy gradients have dominated this area for a long time and solidly 

working methods exist.

• They still need a lot of samples and we need to tune the learning rate
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Outline of the Lecture

1. Introduction 

2. Policy Updates by Weighted Maximum Likelihood

3. Relative Entropy Policy Search (REPS)

4. REPS for Contextual Policy Search

5. Learning Versatile Solutions

6. Sequencing Movement Primitives
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Success Matching Principle

Success-Matching: Policy update learn to reproduce successful outcomes

“When learning from a set of their own trials in iterated decision problems, 

humans attempt to match not the best taken action but the reward-

weighted frequency of their actions and outcomes” (Arrow, 1958).
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Episode-Based Sucess Matching

Iterate:

Sample and evaluate parameters:

Compute „success probability“ for each sample

transform reward in a non-negative weight (improper probability distribution)

Compute „Success“ weighted  policy on the samples

Fit new parametric policy that best approximates
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Episode-Based Sucess Matching
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2 Open issues:

How to fit the policy ? 

How to compute ? 
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Outline of the Lecture

1. Introduction 

2. Policy Updates by Weighted Maximum Likelihood

3. Relative Entropy Policy Search (REPS)

4. REPS for Contextual Policy Search

5. Conclusion



Policy Fitting

Problem: We want to find a parametric distribution that best fits 

the distribution 

We can do that by minimizing:

The fitting of the policy is obtained by a weighted maximum 

likelihood estimate

Closed form solutions exists, no learning rates
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We sampled from

the old policy



Weighted Maximum Likelihood Solutions…

For a Gaussian policy:                  =

But more general: Also for mixture models, GPs and so on…
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Weighted mean Weighted covariance



Difference to policy gradients

Weighted Maximum Likelihood:

I.e.: Set 

Solve in closed form for 

Policy Gradients: 
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So where are the weights coming from?

We need to transform the returns in an improper probability distribution

Simple Way: Exponential transformation

temperature of the distribution

Often set by heuristics, e.g.: 

Can be justified from different view-points

EM-Algorithms: PoWER, Reward-Weighted Regression

Optimal Control: PI2

Relative Entropy Policy Search11

Computing the weights...



Some notes on the exponential transformation

In stochastic environments, we do not optimize the expected reward 

any more as…

The objective gets „risk attracted“

For moderately stochastic environments it still works well
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Exponential Transformation



Example for a 2D parameter space:
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Illustration on weighted ML



15

Underactuated Swing-Up

• swing heavy pendulum up

• motor torques limited, Policy: DMPs

• reward function

(Schaal, NIPS 1997; Atkeson, ICML 1997)
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Underactuated Swing-Up

(Peters & Schaal, IROS 2006; Peters & Schaal, ICML 2007)
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Ball in the Cup
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Ball-in-a-Cup

Reward function:

Policy: DMPs
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Policy Search: Choosing the step size

What is a good desired distribution for the policy update?

How can we choose the exploration-exploitation tradeoff?

Again use a metric to control the step-size of the update

Small Beta High Beta Moderate Beta



Relative entropy as metric between two policies

We get the following optimization problem:

Policy Update is formulated as constrained optimization problem
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Relative Entropy Policy Search

Maximize Reward

It‘s a distribution

Stay close to the old policy



We get the following optimization problem:

Which has the following analytic solution:

Thats exactly sucess matching with exponential transformation!

Scalingfactor :

• Automatically chosen from optimization (Lagrange Multiplier)

• Specified by KL-bound
23

Relative Entropy Policy Search

Maximize Reward

It‘s a distribution

Stay close to the old policy



Getting the Lagrangian multipliers

How to get      :

Solve dual optimization problem:

Dual function:

Minimize:    

Log-sum-exp softmax structure

Optimized by standard optimization tools 

(e.g. trust region algorithms)
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Results

Comparison on simulated Ball In The Cup
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Contextual Policy Search

Contextual Policy Search

Context describes objectives of the task (fixed before task

execution)

E.g.: Target location to throw a ball
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Contextual Policy Search

Contextual Policy Search

Context describes objectives of the task (fixed before task

execution)

E.g.: Target location to throw a ball

We now want to learn an upper level policy that adapts

to the context
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Data-set used for policy update

Goal: maximize expected reward
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Contextual Policy Search

Maximize Reward

It‘s a distribution

Stay close to the data

Reproduce given context

distribution

Optimize over the joint distribution:                                   

Problems:

• Context distribution can not be freely chosen by the algorithm

• Infinite amount of contraints

• For each context, we need many parameter vector samples
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Matching Feature Averages

Maximize Reward

It‘s a distribution

Stay close to the data

Reproduce given context

feature averages

Instead of matching the context distribution exactly, 

we can match only certain feature averages (moments) of the distribution
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Matching Feature Averages

Reproduce given context

feature averages

What does that mean? Example:

Match first and second order moment

Equivalent to matching mean and variance

Exact for Gaussian distributions
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Matching Feature Averages

Maximize Reward

It‘s a distribution

Stay close to the data

Reproduce given context

feature averages

Closed form solution:

We automatically get a baseline for the returns

Again given by Lagrangian multipliers
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Matching Feature Averages

Maximize Reward

It‘s a distribution

Stay close to the data

Reproduce given context

feature averages

Match Mean and Variancee.g.,
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Matching Feature Averages

Maximize Reward

It‘s a distribution

Stay close to the data

Reproduce given context

feature averages

Match Mean and Variancee.g.,



Getting the Lagrangian multipliers

How to get           :

Solve dual optimization problem:

Dual function:

Minimize:

Integral is over the context-parameter space

We can use samples instead of many samples          per 

context   



Contextual Policies with weighted ML

Estimate parametric policy :

If                                                     is Gaussian:
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• X … input data matrix (including 1 for the bias)

• D … diagional weighting matrix

• A …. Parameter matrix

Just standard weighted linear regression…



Table tennis experiments
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[Kupscik, Neumann et al, submitted, 2013]



Table tennis experiments

REPS with learned forward 

models

• Complex behavior can be 

learned within 100 episodes
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Table tennis experiments
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Outline of the Lecture

1. Introduction 

2. Policy Updates by Weighted Maximum Likelihood

3. Relative Entropy Policy Search (REPS)

4. REPS for Contextual Policy Search

5. Learning Versatile Solutions

6. Sequencing Movement Primitives



41

Versatile Solutions: Illustration
re

w
a
rd

Many motor-tasks have multiple solutions:

More difficult policy search problem

We want to find all these solutions

Illustration:
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Illustration

Current Formulation:

Iteration 0 Iteration 3 Iteration 6

Policy averages over several modes.

Iteration 9
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Illustration

We want to find both solutions!
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Introduce Hierarchy

Upper-level policy as combination of options

• Selection of the option: Gating-policy

• Selection of the parameters: Option-policy

Gating-Policy

Option-Policies
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“Naive” Hierarchical Approach

Maximize reward

Distribution

Reproduce Context-Features

Stay close to the “data”

? Versatile Solutions
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Illustration

“Naive” Approach:

Iteration 3 Iteration 6

Multiple Options, BUT no separation

Iteration 9Iteration 0
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Learning versatile Options
Options should represent distinct solutions.

Limit the overlap of the options

High entropy of                 high overlap

Limit the entropy         less overlap

Entropy
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Hierarchical REPS (HiREPS)

Maximize reward

Distribution

Reproduce Context-Features

Stay close to the “data”, no wild 

exploration

Versatile Solutions
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HiREPS

Learning of versatile, distinct solutions due to separation of 

options.

Iteration 3 Iteration 6 Iteration 9Iteration 0
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Tetherball
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String

Pole

Barrett 

WAM

Target-Zone

2 Options
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Tetherball



53

Tetherball

HiREPS learns distinct solutions.
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Results:

Finds several solutions

Improved convergence, no averaging over different solutions



Video
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Sequencing of Building Blocks

Many motor tasks require a sequence of elemental building blocks to fullfill the task

The context of later building blocks depends on the execution of previous ones

We need to learn the long-term effects of the building blocks

Sequential Robot-Hockey Task: place target-puck in reward zone ‚3‘ after three shoots
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Sequencing of Building Blocks

Goal: Sequence several building blocks k with parameters , 

React to the outcome of the previous action

Introduce K decision steps

For each decision step, learn individual upper-level policy

Maximize the expected return over all decision steps

Context distributions:   is specified by the previous policies
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Sequential REPS

How to compute the policy                ?    

Exploit: Maximize reward

Explore: Stay close to

old exploration policy

Estimate a distribution

Reproduce context distribution

... Encodes long-term reward

Solution:
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Video



Conclusion

Probabilisitic Policy Search Methods:

Policy update reduces to weighted maximum likelihood estimates of

the parameters

Any type of structured policy can be used (e.g. mixture model)

Weights are specified by exponential transformation of the returns

REPS optimizes the temperature of this transformation to match a 

desired Kullback-Leibler divergence

Contextual policy search can be used for for multi-task learning
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Bigger Picture



Wrap-Up: Model-Based
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Model Complexity: Very High

Learn forward model 

Need to be able to do dynamic programming (e.g. LQR)

Small modelling error can have a big effect on the policy

Scalability: Poor (with some positive exceptions)

Learning high-dimensional (or discontinous) models is very 

hard

Data-Efficiency: Excellent

Use every transition to learn model

Model can be reused for different tasks

Other Limitations:

Distance between two policies is hard to control

Huge computation times



Wrap-Up: Value Based
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Model Complexity: OK

Learn Q-Function 

Small function approximation error can have a big effect on the 

policy

Scalability: Poor (with some positive exceptions)

Function approximation in high-dimensional state spaces is 

difficult

Policy is hard to obtain in high-dimensional action spaces

Data-Efficiency: OK (online TD learning) to good (batch methods)

Batch: Reuse every transition

Online: Every transition is just used once

Other Limitations:

Policy update is again unbounded, might lead to oscillations



Wrap-Up: Step-Based Policy Search
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Model Complexity: None (no approximation errors)

Need to evaluate reward to come 

Scalability: Good 

Parametrized polices are a compact representation that allow 

learning also for high-D robots

Only works for a medium amount of parameters (a few 

hundred)

Data-Efficiency: Poor

Use every state action pair with reward to come

High variance in reward to come due to exploration in action 

space

Other Limitations:

Mainly used for learning single trajectories (e.g. DMPs)



Wrap-Up: Episode-Based Policy Search
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Model Complexity: None (no approximation errors)

Need to evaluate return for each trajectory

Scalability: Good 

Parametrized policies 

Only works for a small amount of parameters (around hundred)

Data-Efficiency: Poor

Each rollout is just one sample

High variance in returns in case of stochastic environments

Other Limitations:

Mainly used for learning single trajectories (e.g. DMPs)


