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American election:

CHRIS
* Clinton was model-based, and used strong

ATKE SO \ predictive models of who would vote and how they
Humanoids 20160

* Trump did not use any models.




Purpose of this Lecture

Often, learning a good model is too hard

=»The optimization inherent in optimal control is prone to model
errors, as the controller may achieve the objective only
because model errors get exploited

=»0Optimal control methods based on linearization of the
dynamics work only for moderately non-linear tasks

=»Model-free approaches are needed that do not make any
assumption on the structure of the model

Classical Reinforcement Learning:

=»Solve the optimal control problem by learning the value
function, not the model!
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Markov Decision Processes (MDP)

Classical reinforcement learning is typically formulated
for the infinite horizon objective

Infinite Horizon: maximize discounted accumulated
reward

J‘Ti' — 41[14),73,71' [Zio@r(sta a't)]

0<~v<1 Y
... discount faﬁt&res-off long term vs. immediate reward



Value functions and State-Action Value <
Functions j

Refresher: Value function and state-action value function can be
computed iteratively

VT(s) =Er {’F(s, a) +yEp [V7(s)] IS}

= [ m(als) ( s,a) +7f73(s’|s,a)v7“(s’)d8’)da

Q"(s,a) = 7(s,a) + VEp.- |Q"(s',a)[5,a

=r(s,a) +7/P(3'\s,a)/W(a’\s’)Q”(s',a’)da'dS'



Finding an optimal value function

Bellman Equation of optimality

V*(s) = maxgq (fr(s, a) +YEp [V*(s’)‘s, a,} )

:‘%rating the Bellman Equation converges to the optimal value
function V ™and is called value iteration

Alternatively we can also iterate Q-functions...

Q*(Sa a’) — T(Sv a’) T P [maxa/ Q* (8,7 a’)‘s, CL]
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Value-based Reinforcement Learning

Classical Reinforcement Learning
Updates the value function based on samples
D = {8@', a;,7;, 8;}1:1...1\1
We do not have a model and we do not want to learn it
Use the samples to update Q-function (or V-function)
Lets start simple:

Discrete states/actions ® Tabular Q-function



Temporal difference learning

Given a transitiona:, 7, 5:41) , we want to update the V-
function

Lf(St)
e Estimate of the current value:

A

. V(st) =ri +9V(st41)
* 1-step prediction of the current value:

* 1-step prediction error (called temporal difference (TD)
errof)t = Tt + YV (st41) — V(se)

Upsate SurTpAt yalugwith the tempgral differepee erygr



Temporal difference learning

The TD error
575 = T¢ -+ ”)/V(St_|_1) — V(St)
compares the one-time step lookahead prediction

A

V(se) =1 + vV (8141)

with the current estimate of the value fuldtipn

25 V(s¢) > V(sgthan V(si$ increased
25 V(s;) thdn(s;) is ddc¢feased




Dopamine as TD-error?

Temporal difference error signals can be
measured in the brain of monkeys

Unpredicted liquid Reward-preadicting sound
.: | : I -I.!ii-::l:-::gl:." . -t i
1o 05 o 08 10 05 | 0 05 1.0s
& b A
Ligquid sound Liquid
reward

Monkey brains seem to have it...



Algorithmic Description of TD Learning =

Init: V;(s) < 0

Repeat{ = ¢ + 1
Observe transition (8¢, Gt,Tt, St41)
Compute TD error 0y = 74 + 7Vt(5t+1) — Vt(St)
Update V-Function Vii1(sy) = Vi(sy) + ady

until convergence of V

=»Used to compute Value function of behavior policy

=»Sample-based version of policy evaluation
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So far: Policy evaluation with TD methods

Policy Evaluation:
Estimate the Value Function V'™

Policy Improvement:

Update the Policy

Can we also do the policy improvement step with samples?

Yes, but we need to enforce exploration!

) = { 1 —e+¢/|A|, if a = argmax,, Q" (s,a’)

Epsilon-Greedy Policyta|s ¢/| A, otherwise

_ _ exp(BQ(s,a))
Soft-Max Policy: m(als) = S exp(fQ(s, a’))

=)o not always take greedy action

1



Temporal difference learning for control - -/

Update equations for learning the Q-fuflxtiomn)
Qra1(8e,ar) = Qe(se,a) + ady, 0 =1 + vQi(Spr1,a7) — Qu(Se, ay)
Two different methods to estimate
Q-learning: a; = argmax,Q¢(S¢11,a)
Estimates Q-function of optimal policy
Off-policy samples: Qa7 75 at41
SARSA: a7 = ajywhere  aiy1 ~ m(alsiy1)
Estimates Q-function of exploration policy
On-policy samples

]_ Note: The policy for generating the actions depends on the Q-
~— function B»on-stationarv policv
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Approximating the Value Function

In the continuous case, we need to approximate the V-function
(except for LQR)

Lets keep it simple, we use a linear model to represent the V-

function
V7(s) = Vi(s) = ¢ (s)w
w
Hgl can we find the parameters ?

Again with Temporal Difference Learning



TD-learning with Function Approximati

Derivation:

Use the recursive definition of V-function:

MSE(w) ~ MSEgs(w) = 1/N S, (V7(s:) - Vw(s,,;))z
With V7 (s) = By [r(s,a) + Ep [Va,,,(5')]s,a]|

—r'>ootstrapping (BS): Use the old approximation to get the
target values for a new approximation

How can we minimize this function ?

Lets use stochastic gradient descent
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Consider an expected error function,
Ey=BEylew ()] ~ 1/N 3L, ew(w), @~ p(x)

We can find a local minimum of E by Gradient descent:
dE,,
We41 — Wk — Oékm = WE — Ok Zi:l dw

Stochastic Gradient Descent does the gradient update already
after a single sample

dey(r)
dw
Converges under the stochastic approximation conditions

@) o0
E o = 00, E a; < 00
k=1 k=1

Wri41 — W — Ok



Temporal difference learning

Stochastic gradient descent on our error function MSE,

MSEpgs ¢ (w) = 1/NZ ( si))Q

—1/N Z (i + YV, (81) — V(1))

1=1

T
Update rule (for current time step t) a )
dMSEgg

dw .

Wit1 = W + 04(”'“(8157 a) + YV, (St41) — wt(St))¢T(8t)

= w; + 04(5tng(st)

Wit] = Wi + Oy

with 0r = (8¢, at) + Ve, (St41) — Vo, (8¢)



Temporal difference learning

TD with function approximation
Wi = Wt + Q5t¢T(St)
Difference to discrete algorithm:

= TD-error is correlated with the feature vector

= Equivalent if tabular feature coding is used,d@,;) = e;

Similar update rules can be obtained for SARSA and Q-

learning -
Wiy] = Wt T @(T(St; at) + ’)/th(SHl, a,?) — th(st; at))qb (Sta at)

Qu(s,a) =~ ¢' (s,a)w

where

2



Temporal difference learning

Some remarks on temporal difference learning:
= |ts not a proper stochastic gradient descent!!

=» Why? Target valuek?””(s) change after each
parameter update! .
V7(s) W

We ignore the fact that also depends on

= Side note: This ,ignorance” actually introduces a bias In
our optimization, such that we are optimizing a different
objective  than the MSE

= In certain cases, we also get divergence (e.qg. off-policy
samples)
=

= TD-learning is very fast in terms of computation time
) O(Rbeatdiespanbutehess datiaeffieleaion withdemhosa wifibechses:
judtstieeEy e camparison, JMLR, in press



Sucessful examples

Linear function approximation

Tetris, Go

Non-linear function approximation

TD Gammon (Worldchampion level)

Atari Games (learning from raw pixel
input)

. TDLGAMMOH.EXE
File Options Help

o

It's your turn.
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Batch-Mode Reinforcement Learning

Online methods are typically data-inefficient as they use each
data point only once

- /
D = {Sia a;,T;, S@'}_
1=1...N

Can we re-use the whole ,,batch” of data to increase data-
efficiency?

* Least-Squares Temporal Difference (LSTD) Learning

:r> Fitted Q-lteration

Computationally much more expensive then TD-learning!



N

Least-Squares Temporal Difference (LSTD)

Lets minimize the bootstrapped MSE objective (MSE,.)
N

MSEgs = 1 /NZ (fr(si, i) + Vo (85) — Vw(sz-))Q

1=1

Least-Squares Solution:

w=(PTP®) DT (R+ P w,q)

with @ = [p(s1), d(s2),. .., P(sn)]"
O = [¢p(s]), d(sh), ..., ()]




Least-Squares Temporal Difference (LSTD)

Least-Squares Solution:
W = ((I)T(I))_I(I)T(R —+ q/é[)’wold)

W

(I —~(®7®) '®7d') w

(®TP) o7 (® — v®')w = (®TP) TR
T (& — 7P ) w



Least-Squares Temporal Difference (LSTD)

LSTD solution:
w=(®T(®—1®'))  ®TR
Same solution as convergence point of TD-learning

One shot! No iterations necessary for policy evaluation

LSQ: Adaptation for learning the Q-function

Policy Evaluation:

@ — {¢(817 a’l)? ¢(827 a2), R ¢(8N, a,N)]T Estimate the Value Function V7

T
@, — |:¢(827 af2)7 ¢(837 a’?))) LR ¢(SN+].7 a’N‘|_]-)] Policy Improvement:

Update the Policy o

Z>sed for Least-Squares Policy Iteration (LSPI)

Lagoudakis and Parr, Least-Squares Policy Iteration, /IMLR
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Learning to Ride a Bicycle

State space:= [0,0,w, &, o, Y]

¢hgle of handlebar, w vertical angle of bike, angle to goal
Action space: 5 discrete actions (torque applied to handle,
displacement of rider)

Feature space: 20 basis functions.. -
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Fitted Q-iteration

In Batch-Mode RL it is also much easier to use non-linear
function approximators

* Many of them only exists in the batch setup, e.q.
regression trees

* No catastrophic forgetting, e.q., for neural networks.

* Strong divergence problems, fixed for Neural Networks by
ensuring that there is a goal state where the Q-Function value
IS always zero (see Lange et al. below).

Fitted Q-iteration uses non-linear function approximators for
approximate value iteration.

rnst, Geurts and Wehenkel, Tree-Based Batch Mode Reinforcement Learning, JMLR 2005
ange, Gabel and Riedmiller. Batch Reinforcement Learning, Reinforcement Learning: State of the Art

3



Fitted Q-iteration

] /
Given: DatasetD) = {Siaaiariasi}. .
1=1...

Algorithm: A A
1 1
Initialize Q[O] (s, dnput@ata: X = .
T o
fork=1tolL L SN ON
Generate target values: q,Ek] = r; + ymaxe Q¥ U(s!, a’)
Learn new Q-function: Q*!(s,a) « Regress(X, g*))
end

= |Like Value-lteration, but we use supervised learning methods to
approximate
the Q-function at each iteration k



Fitted Q-iteration

Some Remarks:

= Regression does the expectation for us
Q¥ (s,a) ~ Ep [r(s,a) + ymaxe QF (s, a’)]

= The max operator is still hard to solve for continous action spaces

For continuous actions, see: Neumann and Peters, Fitted Q-iteration by
Advantage weighted regression, NIPS, 2008



Case Study |: Learning Defense

e L]

L
1
L

Within the RL framework, we model the ADB learning task
as a terminal state problem with both terminal goal S™ and
failure states §™. Intermediate steps are punished by con-
stant costs of ¢ = 0.05, whereas J(s) =0.0 for s € §* and
J(s)=1.0for s € §~ by definition (cf. Eq. 8).
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Dueling Behavior
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Case Study Il: Learning Motor Speeds
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Case Study lll: Learning to Dribble
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Value Function Methods

= ... have been the driving reinforcement learning approach in
the 1990s.

= You can do loads of cool things with them: Learn Chess at
professional level, learn Backgammon and Checkers at
Grandmaster-Level ... and winning the Robot Soccer Cup
with a minimum of man power.

So, why are they not always the method of choice?

=»You need to fill-up you state-action space up with sufficient
samples.

=» Another curse of dimensionality with an exponential
explosion.

3 = Errors in the Value function approximation might have a
~— catastrophic effect on the policv. can be verv hard to control
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