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The Bigger Picture: How to learn policies
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Purpose of this Lecture

Often, learning a good model is too hard

The optimization inherent in optimal control is prone to model 
errors, as the controller may achieve the objective only 
because model errors get exploited

Optimal control methods based on linearization of the 
dynamics work only for moderately non-linear tasks

Model-free approaches are needed that do not make any 
assumption on the structure of the model

Classical Reinforcement Learning:

Solve the optimal control problem by learning the value 
function, not the model!
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Outline of the Lecture

1. Quick recap of dynamic programming

2. Reinforcement Learning with Temporal 
Differences

3. Value Function Approximation

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks
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Markov Decision Processes (MDP)

Classical reinforcement learning is typically formulated 
for the infinite horizon objective

Infinite Horizon: maximize discounted accumulated 
reward

 

… discount factorTrades-off long term vs. immediate reward



Value functions and State-Action Value 
Functions

Refresher: Value function and state-action value function can be 
computed iteratively
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Bellman Equation of optimality

Iterating the Bellman Equation converges to the optimal value 
function       and is called value iteration

Alternatively we can also iterate Q-functions…
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Finding an optimal value function
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2. Reinforcement Learning with Temporal 
Differences

3. Value Function Approximation

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks



Classical Reinforcement Learning

Updates the value function based on samples

We do not have a model and we do not want to learn it

Use the samples to update Q-function (or V-function)

Lets start simple:

Discrete states/actions      Tabular Q-function

1
0

Value-based Reinforcement Learning



Temporal difference learning
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Given a transition                       , we want to update the V-
function

• Estimate of the current value:

• 1-step prediction of the current value:

• 1-step prediction error (called temporal difference (TD) 
error)

Update current value with the temporal difference error



Temporal difference learning
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The TD error 

compares the one-time step lookahead prediction 

with the current estimate of the value function

if                          than        is increased

if        than        is decreased
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Dopamine as TD-error?

Monkey brains seem to have it...

Temporal difference error signals can be 
measured in the brain of monkeys



Algorithmic Description of TD Learning

Init: 

Repeat

Observe transition

Compute TD error

Update V-Function

until convergence of V

Used to compute Value function of behavior policy

Sample-based version of policy evaluation

1
4



Temporal difference learning for control
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So far: Policy evaluation with TD methods

Can we also do the policy improvement step with samples?

Yes, but we need to enforce exploration!

      Epsilon-Greedy Policy:

Soft-Max Policy:

Do not always take greedy action 



Temporal difference learning for control
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Update equations for learning the Q-function  

Two different methods to estimate 

Q-learning:

Estimates Q-function of optimal policy

Off-policy samples: 

SARSA:          , where  

Estimates Q-function of exploration policy

On-policy samples

Note: The policy for generating the actions depends on the Q-
function     non-stationary policy
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Approximating the Value Function

In the continuous case, we need to approximate the V-function 
(except for LQR)

Lets keep it simple, we use a linear model to represent the V-
function

How can we find the parameters      ?

Again with Temporal Difference Learning



TD-learning with Function Approximation 

Derivation:

Use the recursive definition of V-function:

with 

Bootstrapping (BS): Use the old approximation to get the 
target values for a new approximation

How can we minimize this function ? 

Lets use stochastic gradient descent

1
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Refresher: Stochastic Gradient Descent

Consider an expected error function, 

We can find a local minimum of E by Gradient descent:

Stochastic Gradient Descent does the gradient update already 
after a single sample

Converges under the stochastic approximation conditions

2
0



Temporal difference learning

Stochastic gradient descent on our error function MSEBS 

Update rule (for current time step t,     )

with                                          



Temporal difference learning

2
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TD with function approximation

Difference to discrete algorithm: 

TD-error is correlated with the feature vector

Equivalent if tabular feature coding is used, i.e., 

Similar update rules can be obtained for SARSA and Q-
learning

where 



Temporal difference learning
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Some remarks on temporal difference learning:

Its not a proper stochastic gradient descent!!

Why? Target values              change after each 
parameter update!

We ignore the fact that   also depends on

Side note: This „ignorance“ actually introduces a bias in 
our optimization, such that we are optimizing a different 
objective than the MSE

In certain cases, we also get divergence (e.g. off-policy 
samples)

TD-learning is very fast in terms of computation time 
O(#features), but not data-efficient          each sample is 
just used once!

Dann, Neumann, Peters: Policy Evaluation with Temporal Differences: 
A survey and comparison, JMLR, in press



Sucessful examples
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Linear function approximation

Tetris, Go

Non-linear function approximation

TD Gammon (Worldchampion level)

Atari Games (learning from raw pixel 
input)
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Outline of the Lecture

1. Quick recap of dynamic programming

2. Value function approximation

3. Reinforcement Learning with Temporal 
Differences

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks



Batch-Mode Reinforcement Learning

Online methods are typically data-inefficient as they use each 
data point only once

Can we re-use the whole „batch“ of data to increase data-
efficiency?

• Least-Squares Temporal Difference (LSTD)  Learning

• Fitted Q-Iteration

Computationally much more expensive then TD-learning!

2
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Least-Squares Temporal Difference (LSTD)
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Lets minimize the bootstrapped MSE objective (MSEBS)

Least-Squares Solution:

with



Least-Squares Temporal Difference (LSTD)
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Least-Squares Solution:

Fixed Point: In case of convergence, we want to have

 



Least-Squares Temporal Difference (LSTD)
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LSTD solution:

Same solution as convergence point of TD-learning

One shot! No iterations necessary for policy evaluation

LSQ: Adaptation for learning the Q-function

Used for Least-Squares Policy Iteration (LSPI)
 
Lagoudakis and Parr, Least-Squares Policy Iteration, JMLR



State space:
   angle of handlebar,     vertical angle of bike,    angle to goal

Action space: 5 discrete actions (torque applied to handle, 
displacement of rider)
Feature space: 20 basis functions…

3
0

Learning to Ride a Bicycle 
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Fitted Q-iteration

In Batch-Mode RL it is also much easier to use non-linear 
function approximators

• Many of them only exists in the batch setup, e.g. 
regression trees

• No catastrophic forgetting, e.g., for neural networks.

•    Strong divergence problems, fixed for Neural Networks by 
ensuring that there is a goal state where the Q-Function value 
is always zero (see Lange et al. below).

Fitted Q-iteration uses non-linear function approximators for 
approximate value iteration.

Ernst, Geurts and Wehenkel, Tree-Based Batch Mode Reinforcement Learning, JMLR 2005
Lange, Gabel and Riedmiller. Batch Reinforcement Learning, Reinforcement Learning: State of the Art
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Fitted Q-iteration

Given: Dataset 

Algorithm:

Initialize     , input data:  

for k = 1 to L

Generate target values:

Learn new Q-function:

end 

 Like Value-Iteration, but we use supervised learning methods to 
approximate      
 the Q-function at each iteration k
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Fitted Q-iteration

Some Remarks: 

  Regression does the expectation for us 

  The max operator is still hard to solve for continous action spaces

For continuous actions, see: Neumann and Peters, Fitted Q-iteration by 
Advantage weighted regression, NIPS, 2008
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Case Study I: Learning Defense
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Success
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Dueling Behavior
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Case Study II: Learning Motor Speeds
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Case Study III: Learning to Dribble
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Value Function Methods

 ... have been the driving reinforcement learning approach in 
the 1990s.

 You can do loads of cool things with them: Learn Chess at 
professional level, learn Backgammon and Checkers at 
Grandmaster-Level ... and winning the Robot Soccer Cup 
with a minimum of man power.

So, why are they not always the method of choice?

You need to fill-up you state-action space up with sufficient 
samples.

 Another curse of dimensionality with an exponential 
explosion.

 Errors in the Value function approximation might have a 
catastrophic    effect on the policy, can be very hard to control

 However, it scales better as we only need samples at relevant 
locations.
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