Reinforcement Learning Part 2:
Value Function Methods

Jan Peters
Gerhard Neumann

] . . . w;ﬁf*ﬂi‘
The Bigger Picture: How to learn policies .

experience data demonstration data
D ={si,@i1i, 8}, N D = {s1.1i,a1.7,i }i=1..N
learn model Igarn value f§t. optimize policy learn policy learn latent costs
P(s'|s, a) m(al|s) m(al|s) r(s, a)
r(s,a) l
_ o |
_Jdynamic prog. = dynamic prog.
- i £ V(s)
o (n = o 0
@ as @ |
o o - policy
a = m(a|s)
1 |
:
=

Policy Search

Inverse RL

-
N
W
-

American election:

CHRIS
* Clinton was model-based, and used strong

ATKE SO \ predictive models of who would vote and how they
Humanoids 20160

* Trump did not use any models.

Purpose of this Lecture

Often, learning a good model is too hard

=»The optimization inherent in optimal control is prone to model
errors, as the controller may achieve the objective only
because model errors get exploited

=»0Optimal control methods based on linearization of the
dynamics work only for moderately non-linear tasks

=»Model-free approaches are needed that do not make any
assumption on the structure of the model

Classical Reinforcement Learning:

=»Solve the optimal control problem by learning the value
function, not the model!

4

Outline of the Lecture

1. Quick recap of dynamic programming

2. Reinforcement Learning with Temporal
Differences

3. Value Function Approximation
4. Batch Reinforcement Learning Methods

_east-Squares Temporal Difference Learning

-itted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks

Markov Decision Processes (MDP)

Classical reinforcement learning is typically formulated
for the infinite horizon objective

Infinite Horizon: maximize discounted accumulated
reward

J‘Ti' — 41[14),73,71' [Zio@r(sta a't)]

0<~v<1 Y
... discount faﬁt&res-off long term vs. immediate reward

Value functions and State-Action Value <
Functions j

Refresher: Value function and state-action value function can be
computed iteratively

VT(s) =Er {’F(s, a) +yEp [V7(s)] IS}

= [m(als) (s,a) +7f73(s’|s,a)v7“(s’)d8’)da

Q"(s,a) = 7(s,a) + VEp.- |Q"(s',a)[5,a

=r(s,a) +7/P(3'\s,a)/W(a’\s’)Q”(s',a’)da'dS'

Finding an optimal value function

Bellman Equation of optimality

V*(s) = maxgq (fr(s, a) +YEp [V*(s’)‘s, a,})

:‘%rating the Bellman Equation converges to the optimal value
function V ™and is called value iteration

Alternatively we can also iterate Q-functions...

Q*(Sa a’) — T(Sv a’) T P [maxa/ Q* (8,7 a’)‘s, CL]

Outline of the Lecture

1. Quick recap of dynamic programming

2. Reinforcement Learning with Temporal
Differences

3. Value Function Approximation
4. Batch Reinforcement Learning Methods

_east-Squares Temporal Difference Learning

-itted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks

Value-based Reinforcement Learning

Classical Reinforcement Learning
Updates the value function based on samples
D = {8@', a;,7;, 8;}1:1...1\1
We do not have a model and we do not want to learn it
Use the samples to update Q-function (or V-function)
Lets start simple:

Discrete states/actions ® Tabular Q-function

Temporal difference learning

Given a transitiona:, 7, 5:41) , we want to update the V-
function

Lf(St)
e Estimate of the current value:

A

. V(st) =ri +9V(st41)
* 1-step prediction of the current value:

* 1-step prediction error (called temporal difference (TD)
errof)t = Tt + YV (st41) — V(se)

Upsate SurTpAt yalugwith the tempgral differepee erygr

Temporal difference learning

The TD error
575 = T¢ -+ ”)/V(St_|_1) — V(St)
compares the one-time step lookahead prediction

A

V(se) =1 + vV (8141)

with the current estimate of the value fuldtipn

25 V(s¢) > V(sgthan V(si$ increased
25 V(s;) thdn(s;) is ddc¢feased

Dopamine as TD-error?

Temporal difference error signals can be
measured in the brain of monkeys

Unpredicted liquid Reward-preadicting sound
.: | : I -I.!ii-::l:-::gl:." . -t i
1o 05 o 08 10 05 | 0 05 1.0s
& b A
Ligquid sound Liquid
reward

Monkey brains seem to have it...

Algorithmic Description of TD Learning =

Init: V;(s) < 0

Repeat{ = ¢ + 1
Observe transition (8¢, Gt,Tt, St41)
Compute TD error 0y = 74 + 7Vt(5t+1) — Vt(St)
Update V-Function Vii1(sy) = Vi(sy) + ady

until convergence of V

=»Used to compute Value function of behavior policy

=»Sample-based version of policy evaluation

-Q/f)-;‘>x "““\‘1
[/ .]]

AN 2 Y24
7 il
A -

T \

Temporal difference learning for controlggfé?%f 7

\ Ty
2 DO

—

So far: Policy evaluation with TD methods

Policy Evaluation:
Estimate the Value Function V'™

Policy Improvement:

Update the Policy

Can we also do the policy improvement step with samples?

Yes, but we need to enforce exploration!

) = { 1 —e+¢/|A|, if a = argmax,, Q" (s,a’)

Epsilon-Greedy Policyta|s ¢/| A, otherwise

_ _ exp(BQ(s,a))
Soft-Max Policy: m(als) = S exp(fQ(s, a’))

=)o not always take greedy action

1

Temporal difference learning for control - -/

Update equations for learning the Q-fuflxtiomn)
Qra1(8e,ar) = Qe(se,a) + ady, 0 =1 + vQi(Spr1,a7) — Qu(Se, ay)
Two different methods to estimate
Q-learning: a; = argmax,Q¢(S¢11,a)
Estimates Q-function of optimal policy
Off-policy samples: Qa7 75 at41
SARSA: a7 = ajywhere aiy1 ~ m(alsiy1)
Estimates Q-function of exploration policy
On-policy samples

]_ Note: The policy for generating the actions depends on the Q-
~— function B»on-stationarv policv

-

Outline of the Lecture

1. Quick recap of dynamic programming

2. Reinforcement Learning with Temporal
Differences

3. Value Function Approximation
4. Batch Reinforcement Learning Methods

_east-Squares Temporal Difference Learning

-itted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks

Approximating the Value Function

In the continuous case, we need to approximate the V-function
(except for LQR)

Lets keep it simple, we use a linear model to represent the V-

function
V7(s) = Vi(s) = ¢ (s)w
w
Hgl can we find the parameters ?

Again with Temporal Difference Learning

TD-learning with Function Approximati

Derivation:

Use the recursive definition of V-function:

MSE(w) ~ MSEgs(w) = 1/N S, (V7(s:) - Vw(s,,;))z
With V7 (s) = By [r(s,a) + Ep [Va,,,(5')]s,a]|

—r'>ootstrapping (BS): Use the old approximation to get the
target values for a new approximation

How can we minimize this function ?

Lets use stochastic gradient descent

]
b J P tan b |)
78\N S N2 9N
[[' N/ e "/
[| Ll = N 1 Ll ﬁf{_‘l
T F/ C iy D |
[|) s N |
[l e N ‘n /
I p L N = 7
e — \ S—— - !

Consider an expected error function,
Ey=BEylew ()] ~ 1/N 3L, ew(w), @~ p(x)

We can find a local minimum of E by Gradient descent:
dE,,
We41 — Wk — Oékm = WE — Ok Zi:l dw

Stochastic Gradient Descent does the gradient update already
after a single sample

dey(r)
dw
Converges under the stochastic approximation conditions

@) o0
E o = 00, E a; < 00
k=1 k=1

Wri41 — W — Ok

Temporal difference learning

Stochastic gradient descent on our error function MSE,

MSEpgs ¢ (w) = 1/NZ (si))Q

—1/N Z (i + YV, (81) — V(1))

1=1

T
Update rule (for current time step t) a)
dMSEgg

dw .

Wit1 = W + 04(”'“(8157 a) + YV, (St41) — wt(St))¢T(8t)

= w; + 04(5tng(st)

Wit] = Wi + Oy

with 0r = (8¢, at) + Ve, (St41) — Vo, (8¢)

Temporal difference learning

TD with function approximation
Wi = Wt + Q5t¢T(St)
Difference to discrete algorithm:

= TD-error is correlated with the feature vector

= Equivalent if tabular feature coding is used,d@,;) = e;

Similar update rules can be obtained for SARSA and Q-

learning -
Wiy] = Wt T @(T(St; at) + ’)/th(SHl, a,?) — th(st; at))qb (Sta at)

Qu(s,a) =~ ¢' (s,a)w

where

2

Temporal difference learning

Some remarks on temporal difference learning:
= |ts not a proper stochastic gradient descent!!

=» Why? Target valuek?””(s) change after each
parameter update! .
V7(s) W

We ignore the fact that also depends on

= Side note: This ,ignorance” actually introduces a bias In
our optimization, such that we are optimizing a different
objective than the MSE

= In certain cases, we also get divergence (e.qg. off-policy
samples)
=

= TD-learning is very fast in terms of computation time
) O(Rbeatdiespanbutehess datiaeffieleaion withdemhosa wifibechses:
judtstieeEy e camparison, JMLR, in press

Sucessful examples

Linear function approximation

Tetris, Go

Non-linear function approximation

TD Gammon (Worldchampion level)

Atari Games (learning from raw pixel
input)

. TDLGAMMOH.EXE
File Options Help

o

It's your turn.

Outline of the Lecture

1. Quick recap of dynamic programming
2. Value function approximation

3. Reinforcement Learning with Temporal
Differences

4. Batch Reinforcement Learning Methods
_east-Squares Temporal Difference Learning
-itted Q-lteration

5. Robot Application: Robot Soccer

Final Remarks

Batch-Mode Reinforcement Learning

Online methods are typically data-inefficient as they use each
data point only once

- /
D = {Sia a;,T;, S@'}_
1=1...N

Can we re-use the whole ,,batch” of data to increase data-
efficiency?

* Least-Squares Temporal Difference (LSTD) Learning

:r> Fitted Q-lteration

Computationally much more expensive then TD-learning!

N

Least-Squares Temporal Difference (LSTD)

Lets minimize the bootstrapped MSE objective (MSE,.)
N

MSEgs = 1 /NZ (fr(si, i) + Vo (85) — Vw(sz-))Q

1=1

Least-Squares Solution:

w=(PTP®) DT (R+ P w,q)

with @ = [p(s1), d(s2),. .., P(sn)]"
O = [¢p(s]), d(sh), ..., ()]

Least-Squares Temporal Difference (LSTD)

Least-Squares Solution:
W = ((I)T(I))_I(I)T(R —+ q/é[)’wold)

W

(I —~(®7®) '®7d') w

(®TP) o7 (® — v®')w = (®TP) TR
T (& — 7P) w

Least-Squares Temporal Difference (LSTD)

LSTD solution:
w=(®T(®—1®')) ®TR
Same solution as convergence point of TD-learning

One shot! No iterations necessary for policy evaluation

LSQ: Adaptation for learning the Q-function

Policy Evaluation:

@ — {¢(817 a’l)? ¢(827 a2), R ¢(8N, a,N)]T Estimate the Value Function V7

T
@, — |:¢(827 af2)7 ¢(837 a’?))) LR ¢(SN+].7 a’N‘|_]-)] Policy Improvement:

Update the Policy o

Z>sed for Least-Squares Policy Iteration (LSPI)

Lagoudakis and Parr, Least-Squares Policy Iteration, /IMLR

) (1)

Learning to Ride a Bicycle

State space:= [0,0,w, &, o, Y]

¢hgle of handlebar, w vertical angle of bike, angle to goal
Action space: 5 discrete actions (torque applied to handle,
displacement of rider)

Feature space: 20 basis functions.. -
(1, w, W, w*, W= ww, 0, 6, 02, 0%, 66, w0, wef-’ w20, 1, =, Pl ., D Pl)T

o
|

: : : : : : : : : : : 200 Eth iteration
crash) ———a=
1L | Starting [) '
_ Position /
0.9 il \ I, T d___-!r
oF-------- L I|. . . T T T . T
1 5 1 —
0.8F 1 | al
I| I|
|
o 071 2nd iteration (crash) '
@
Q
ER —200 5th and 7th
b iteration b
2 05 \
2 ,
8 04r 4th and 8th
DL_ _4(]0_ _;-'- [[[ITEI'EII'I'.'IF'I .
03 [/’J
0.2F /
0.1 —600 /*’"
01 :.
' \ 1st iteration
| | | | | | | | | | | \-H_ -
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of training episodes -B00 : : : : : .
=200 0 200 400 600 800 1000

|
1200

Fitted Q-iteration

In Batch-Mode RL it is also much easier to use non-linear
function approximators

* Many of them only exists in the batch setup, e.q.
regression trees

* No catastrophic forgetting, e.q., for neural networks.

* Strong divergence problems, fixed for Neural Networks by
ensuring that there is a goal state where the Q-Function value
IS always zero (see Lange et al. below).

Fitted Q-iteration uses non-linear function approximators for
approximate value iteration.

rnst, Geurts and Wehenkel, Tree-Based Batch Mode Reinforcement Learning, JMLR 2005
ange, Gabel and Riedmiller. Batch Reinforcement Learning, Reinforcement Learning: State of the Art

3

Fitted Q-iteration

] /
Given: DatasetD) = {Siaaiariasi}. .
1=1...

Algorithm: A A
1 1
Initialize Q[O] (s, dnput@ata: X = .
T o
fork=1tolL L SN ON
Generate target values: q,Ek] = r; + ymaxe Q¥ U(s!, a’)
Learn new Q-function: Q*!(s,a) « Regress(X, g*))
end

= |Like Value-lteration, but we use supervised learning methods to
approximate
the Q-function at each iteration k

Fitted Q-iteration

Some Remarks:

= Regression does the expectation for us
Q¥ (s,a) ~ Ep [r(s,a) + ymaxe QF (s, a’)]

= The max operator is still hard to solve for continous action spaces

For continuous actions, see: Neumann and Peters, Fitted Q-iteration by
Advantage weighted regression, NIPS, 2008

Case Study |: Learning Defense

e L]

L
1
L

Within the RL framework, we model the ADB learning task
as a terminal state problem with both terminal goal S™ and
failure states §™. Intermediate steps are punished by con-
stant costs of ¢ = 0.05, whereas J(s) =0.0 for s € §* and
J(s)=1.0for s € §~ by definition (cf. Eq. 8).

Success

50 Hand-Coded Policy
1 52.9%
47.1%
40%
3% | Semi-
I "
80%% 207 | Failure
70% - Failure
%% -
605 - Successeas Failures
. 100%
a0% 89.0% Learned
. | Policy
40% 80% (after 30,000
308 Success episodes)
" — = Sami-Success _
60%
508 Semi-Failure
Failure
102 P e = -l 40%
™ B e, Whemy e e L e P Sagge ey
0% 1 . - - 5 0,
2
0 500 1000 1500 2000 11.0%
Training Episodes 0 Failure
LR T

Successas Failures

Dueling Behavior

o o
e g
!

=
(.

- —'.-l 5
N .
i AN iy, Plaver {with
e o gt L R = ' |
- -_-__ '_': '-'-: — o " -"'-.1_'!::__:"1"-.': :..I:: 5 '_I R . E ' O the 1'|E_ t.]

Equ—Cosi Lines
2l e gj_ﬁe-c::ly Mowve

=
B

L13 e & Ball
origntalion
rection

=
L

0= =
-]

Costs=To=-G

Case Study Il: Learning Motor Speeds

20

Wheel Velocity | —
Wheel Velocity 2—
15+ Wheel Velocity 3—

il L L b i | - F
I[}- T]] i LV, i

. b N T

#
i T d v i
W e LR LT R R T
| L
r 0
1 'J
* 4
. d)
L] i
LY i
" i
= . .
1
A i
i
[[]
i , &=
il 5 ® i
B L) I|' [] IlIIJIJII '-|.|pl
i 1 Wyl Cl I
p nil 'I.;] :

0 if |y — w| <4,

c(s,a,s! =c(s) = {[} 01 else

| W)

Case Study lll: Learning to Dribble

2000 1

15001

1000 1

3001

'S'I:H.] ! ! T . T 1
-500 0 500 1000 1500 2000

1.0, ifs'e S,
Qe (5 @) = { 0.01, ifs'e ST,

0.01 4+ min; O(s', b), else

Value Function Methods

= ... have been the driving reinforcement learning approach in
the 1990s.

= You can do loads of cool things with them: Learn Chess at
professional level, learn Backgammon and Checkers at
Grandmaster-Level ... and winning the Robot Soccer Cup
with a minimum of man power.

So, why are they not always the method of choice?

=»You need to fill-up you state-action space up with sufficient
samples.

=» Another curse of dimensionality with an exponential
explosion.

3 = Errors in the Value function approximation might have a
~— catastrophic effect on the policv. can be verv hard to control

	Reinforcement Learning Part 2: Value Function Methods
	The Bigger Picture: How to learn policies
	Slide 3
	Purpose of this Lecture
	Outline of the Lecture
	Markov Decision Processes (MDP)
	Value functions and State-Action Value Functions
	Finding an optimal value function
	Outline of the Lecture
	Value-based Reinforcement Learning
	Temporal difference learning
	Temporal difference learning
	Dopamine as TD-error?
	Algorithmic Description of TD Learning
	Temporal difference learning for control
	Temporal difference learning for control
	Outline of the Lecture
	Approximating the Value Function
	TD-learning with Function Approximation
	Refresher: Stochastic Gradient Descent
	Temporal difference learning
	Temporal difference learning
	Temporal difference learning
	Sucessful examples
	Outline of the Lecture
	Batch-Mode Reinforcement Learning
	Least-Squares Temporal Difference (LSTD)
	Least-Squares Temporal Difference (LSTD)
	Least-Squares Temporal Difference (LSTD)
	Learning to Ride a Bicycle
	Fitted Q-iteration
	Fitted Q-iteration
	Fitted Q-iteration
	Case Study I: Learning Defense
	Success
	Dueling Behavior
	Case Study II: Learning Motor Speeds
	Case Study III: Learning to Dribble
	Value Function Methods

