
1

Reinforcement Learning Part 2:

Value Function Methods

Jan Peters
Gerhard Neumann

The Bigger Picture: How to learn policies

2. 3.1. 4.

3

CHRIS
ATKESON

Humanoids 2016

4

Purpose of this Lecture

Often, learning a good model is too hard

The optimization inherent in optimal control is prone to model
errors, as the controller may achieve the objective only
because model errors get exploited

Optimal control methods based on linearization of the
dynamics work only for moderately non-linear tasks

Model-free approaches are needed that do not make any
assumption on the structure of the model

Classical Reinforcement Learning:

Solve the optimal control problem by learning the value
function, not the model!

5

Outline of the Lecture

1. Quick recap of dynamic programming

2. Reinforcement Learning with Temporal
Differences

3. Value Function Approximation

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks

6

Markov Decision Processes (MDP)

Classical reinforcement learning is typically formulated
for the infinite horizon objective

Infinite Horizon: maximize discounted accumulated
reward

… discount factorTrades-off long term vs. immediate reward

Value functions and State-Action Value
Functions

Refresher: Value function and state-action value function can be
computed iteratively

7

Bellman Equation of optimality

Iterating the Bellman Equation converges to the optimal value
function and is called value iteration

Alternatively we can also iterate Q-functions…

8

Finding an optimal value function

9

Outline of the Lecture

1. Quick recap of dynamic programming

2. Reinforcement Learning with Temporal
Differences

3. Value Function Approximation

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks

Classical Reinforcement Learning

Updates the value function based on samples

We do not have a model and we do not want to learn it

Use the samples to update Q-function (or V-function)

Lets start simple:

Discrete states/actions Tabular Q-function

1
0

Value-based Reinforcement Learning

Temporal difference learning

1
1

Given a transition , we want to update the V-
function

• Estimate of the current value:

• 1-step prediction of the current value:

• 1-step prediction error (called temporal difference (TD)
error)

Update current value with the temporal difference error

Temporal difference learning

1
2

The TD error

compares the one-time step lookahead prediction

with the current estimate of the value function

if than is increased

if than is decreased

1
3

Dopamine as TD-error?

Monkey brains seem to have it...

Temporal difference error signals can be
measured in the brain of monkeys

Algorithmic Description of TD Learning

Init:

Repeat

Observe transition

Compute TD error

Update V-Function

until convergence of V

Used to compute Value function of behavior policy

Sample-based version of policy evaluation

1
4

Temporal difference learning for control

1
5

So far: Policy evaluation with TD methods

Can we also do the policy improvement step with samples?

Yes, but we need to enforce exploration!

 Epsilon-Greedy Policy:

Soft-Max Policy:

Do not always take greedy action

Temporal difference learning for control

1
6

Update equations for learning the Q-function

Two different methods to estimate

Q-learning:

Estimates Q-function of optimal policy

Off-policy samples:

SARSA: , where

Estimates Q-function of exploration policy

On-policy samples

Note: The policy for generating the actions depends on the Q-
function non-stationary policy

1
7

Outline of the Lecture

1. Quick recap of dynamic programming

2. Reinforcement Learning with Temporal
Differences

3. Value Function Approximation

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks

1
8

Approximating the Value Function

In the continuous case, we need to approximate the V-function
(except for LQR)

Lets keep it simple, we use a linear model to represent the V-
function

How can we find the parameters ?

Again with Temporal Difference Learning

TD-learning with Function Approximation

Derivation:

Use the recursive definition of V-function:

with

Bootstrapping (BS): Use the old approximation to get the
target values for a new approximation

How can we minimize this function ?

Lets use stochastic gradient descent

1
9

Refresher: Stochastic Gradient Descent

Consider an expected error function,

We can find a local minimum of E by Gradient descent:

Stochastic Gradient Descent does the gradient update already
after a single sample

Converges under the stochastic approximation conditions

2
0

Temporal difference learning

Stochastic gradient descent on our error function MSEBS

Update rule (for current time step t,)

with

Temporal difference learning

2
2

TD with function approximation

Difference to discrete algorithm:

TD-error is correlated with the feature vector

Equivalent if tabular feature coding is used, i.e.,

Similar update rules can be obtained for SARSA and Q-
learning

where

Temporal difference learning

2
3

Some remarks on temporal difference learning:

Its not a proper stochastic gradient descent!!

Why? Target values change after each
parameter update!

We ignore the fact that also depends on

Side note: This „ignorance“ actually introduces a bias in
our optimization, such that we are optimizing a different
objective than the MSE

In certain cases, we also get divergence (e.g. off-policy
samples)

TD-learning is very fast in terms of computation time
O(#features), but not data-efficient each sample is
just used once!

Dann, Neumann, Peters: Policy Evaluation with Temporal Differences:
A survey and comparison, JMLR, in press

Sucessful examples

2
4

Linear function approximation

Tetris, Go

Non-linear function approximation

TD Gammon (Worldchampion level)

Atari Games (learning from raw pixel
input)

2
5

Outline of the Lecture

1. Quick recap of dynamic programming

2. Value function approximation

3. Reinforcement Learning with Temporal
Differences

4. Batch Reinforcement Learning Methods

Least-Squares Temporal Difference Learning

Fitted Q-Iteration

5. Robot Application: Robot Soccer

Final Remarks

Batch-Mode Reinforcement Learning

Online methods are typically data-inefficient as they use each
data point only once

Can we re-use the whole „batch“ of data to increase data-
efficiency?

• Least-Squares Temporal Difference (LSTD) Learning

• Fitted Q-Iteration

Computationally much more expensive then TD-learning!

2
6

Least-Squares Temporal Difference (LSTD)

2
7

Lets minimize the bootstrapped MSE objective (MSEBS)

Least-Squares Solution:

with

Least-Squares Temporal Difference (LSTD)

2
8

Least-Squares Solution:

Fixed Point: In case of convergence, we want to have

Least-Squares Temporal Difference (LSTD)

2
9

LSTD solution:

Same solution as convergence point of TD-learning

One shot! No iterations necessary for policy evaluation

LSQ: Adaptation for learning the Q-function

Used for Least-Squares Policy Iteration (LSPI)

Lagoudakis and Parr, Least-Squares Policy Iteration, JMLR

State space:
 angle of handlebar, vertical angle of bike, angle to goal

Action space: 5 discrete actions (torque applied to handle,
displacement of rider)
Feature space: 20 basis functions…

3
0

Learning to Ride a Bicycle

3
1

Fitted Q-iteration

In Batch-Mode RL it is also much easier to use non-linear
function approximators

• Many of them only exists in the batch setup, e.g.
regression trees

• No catastrophic forgetting, e.g., for neural networks.

• Strong divergence problems, fixed for Neural Networks by
ensuring that there is a goal state where the Q-Function value
is always zero (see Lange et al. below).

Fitted Q-iteration uses non-linear function approximators for
approximate value iteration.

Ernst, Geurts and Wehenkel, Tree-Based Batch Mode Reinforcement Learning, JMLR 2005
Lange, Gabel and Riedmiller. Batch Reinforcement Learning, Reinforcement Learning: State of the Art

3
2

Fitted Q-iteration

Given: Dataset

Algorithm:

Initialize , input data:

for k = 1 to L

Generate target values:

Learn new Q-function:

end

 Like Value-Iteration, but we use supervised learning methods to
approximate
 the Q-function at each iteration k

3
3

Fitted Q-iteration

Some Remarks:

 Regression does the expectation for us

 The max operator is still hard to solve for continous action spaces

For continuous actions, see: Neumann and Peters, Fitted Q-iteration by
Advantage weighted regression, NIPS, 2008

3
4

Case Study I: Learning Defense

3
5

Success

3
6

Dueling Behavior

3
7

Case Study II: Learning Motor Speeds

3
8

Case Study III: Learning to Dribble

3
9

Value Function Methods

 ... have been the driving reinforcement learning approach in
the 1990s.

 You can do loads of cool things with them: Learn Chess at
professional level, learn Backgammon and Checkers at
Grandmaster-Level ... and winning the Robot Soccer Cup
with a minimum of man power.

So, why are they not always the method of choice?

You need to fill-up you state-action space up with sufficient
samples.

 Another curse of dimensionality with an exponential
explosion.

 Errors in the Value function approximation might have a
catastrophic effect on the policy, can be very hard to control

 However, it scales better as we only need samples at relevant
locations.

	Reinforcement Learning Part 2: Value Function Methods
	The Bigger Picture: How to learn policies
	Slide 3
	Purpose of this Lecture
	Outline of the Lecture
	Markov Decision Processes (MDP)
	Value functions and State-Action Value Functions
	Finding an optimal value function
	Outline of the Lecture
	Value-based Reinforcement Learning
	Temporal difference learning
	Temporal difference learning
	Dopamine as TD-error?
	Algorithmic Description of TD Learning
	Temporal difference learning for control
	Temporal difference learning for control
	Outline of the Lecture
	Approximating the Value Function
	TD-learning with Function Approximation
	Refresher: Stochastic Gradient Descent
	Temporal difference learning
	Temporal difference learning
	Temporal difference learning
	Sucessful examples
	Outline of the Lecture
	Batch-Mode Reinforcement Learning
	Least-Squares Temporal Difference (LSTD)
	Least-Squares Temporal Difference (LSTD)
	Least-Squares Temporal Difference (LSTD)
	Learning to Ride a Bicycle
	Fitted Q-iteration
	Fitted Q-iteration
	Fitted Q-iteration
	Case Study I: Learning Defense
	Success
	Dueling Behavior
	Case Study II: Learning Motor Speeds
	Case Study III: Learning to Dribble
	Value Function Methods

