Feedforward Control

- Feedforward control assumes \(q \approx q_d \) and \(\dot{q} \approx \dot{q}_d \)

- Hence, we have

\[
 u = u_{\text{FF}}(q_d, \dot{q}_d, \ddot{q}_d) + u_{\text{FB}}
\]

with feedforward torque prediction using an inverse dynamics model

\[
 u_{\text{FF}} = M(q)\ddot{q} + c(q, \dot{q}) + g(q)
\]

and a linear PD control law for feedback

\[
 u_{\text{FB}} = K_P(q_{\text{des}} - q) + K_D(\dot{q}_{\text{des}} - \dot{q})
\]
Feedforward Control

\[T \]

\[q_d, \dot{q}_d, \ddot{q}_d \]

\[\text{Inverse Dynamics} \]

\[q, \dot{q} \]

\[u \]

\[\text{Dynamics} \]
Feedforward Control

Key on feedforward control (FF) …

- FF can be done with less real-time computation as feedforward terms can often be pre-computed.

- FF is generally more stable - even with bad models or approximate models

- Only when you have a very good model, you should prefer Model-based Feedback Control.

- In practice, FF is often more important…
Content of this Lecture

1. What is a robot?

2. Modeling Robots
 - Kinematics
 - Dynamics

3. Representing Trajectories
 - Splines

4. Control in Joint Space
 - Linear Control
 - Model-based Control

5. Control in Task Space
 - Inverse Kinematics
 - Differential Inverse Kinematics
Assume your plan is in a task space...

I.e., we want the end-effector to follow a specific trajectory \(\mathbf{x}(t) \)

- Typically given in Cartesian coordinates
- Eventually also orientation

\[
x_d, \dot{x}_d, \ddot{x}_d \\
\]

\[
q, \dot{q}, \ddot{q} \\
\]

\[
x, \dot{x}, \ddot{x} \\
\]
Why don’t we try it this way?
Inverse Kinematics (IK)

What do we want to have?

- Inverse Kinematics: A mapping from task space to configuration

If I want my center of gravity in the middle what joint angles do I need?

$$q = f^{-1}(x)$$
Example 1 - revisited

As $x = q_1 + q_2$

we have

$q_1 = h$
$q_2 = x - h$

for any $h \in \mathbb{R}$

⇒ We have infinitely many solutions!!! Yikes!
Example 2 - revisited

We can solve for θ_1 and θ_2 and get

$$\theta_2 = \cos^{-1}\left(\frac{x^2 + y^2 - \alpha_1^2 - \alpha_2^2}{2\alpha_1\alpha_2} \right)$$

$$\theta_1 = \tan^{-1}\left(\frac{y}{x} \right) - \tan^{-1}\left(\frac{\alpha_2 \sin \theta_2}{\alpha_1 + \alpha_2 \cos \theta_2} \right)$$

\Rightarrow **BUT:** There is more than one solution!

\Rightarrow **This is not a function!**
Problems with Inverse Kinematics

Multiple solutions even for non-redundant robots (Example 2)

Redundancy results in infinitely many solutions.

» Often only numerical solutions are possible!

» **Note:** Industrial robots are often built to have invertible kinematics!

» Block diagram in the start is among the most common approaches.
Content of this Lecture

1. What is a robot?

2. Modeling Robots
 - Kinematics
 - Dynamics

3. Representing Trajectories
 - Splines

4. Control in Joint Space
 - Linear Control
 - Model-based Control

5. Control in Task Space
 - Inverse Kinematics
 - Differential Inverse Kinematics
Differential Inverse Kinematics

Inverse kinematics:
\[q_d = f^{-1}(x_d) \]
- Not computable as we have an infinite amount of solutions

Differential inverse kinematics:
\[\dot{q}_t = h(x_d, q_t) \]
- Given current joint positions, compute joint velocities that minimizes the task space error
- Computable
Differential Inverse Kinematics

Differential inverse kinematics:

\[\dot{q}_t = h(x_d, q_t) \]

How can we use this for control?

1. Integrate \(\dot{q}_t \) and directly use it for joint space control

2. Iterate differential IK algorithm to find \(q_d \)

\[q_{k+1} = q_k + h(x_d, q_k) \]

and plan trajectory to reach \(q_d \)
Numerical Solution: Jacobian Transpose

⇒ Minimize the task-space error

\[E = \frac{1}{2} (\mathbf{x} - f(\mathbf{q}))^T (\mathbf{x} - f(\mathbf{q})) \]

⇒ Gradient always points in the direction of steepest ascent

\[
\frac{dE}{dq} = - (\mathbf{x} - f(\mathbf{q}))^T \frac{df(\mathbf{q})}{dq} \\
= - (\mathbf{x} - f(\mathbf{q}))^T \mathbf{J}(\mathbf{q})
\]
Minimize error per gradient descent

- Follow negative gradient with a certain step size γ

$$\dot{q} = -\gamma \left(\frac{dE}{dq} \right)^T = \gamma J(q)^T(x - f(q))$$

$$= \gamma J(q)^T e$$

- Known as Jacobian Transpose Method
Note:
- This diagram is limited to joint space controllers that require no accelerations (e.g., PD control with gravity compensation).
- If you add additional differentiation (less pleasant than integration), you can use other joint space control laws.
Assume that we are not so far from our solution manifold.

Take smallest step \dot{q} that has a desired task space velocity

$$\dot{x} = \eta(x_d - f(q)) = \eta e$$

Yields the following optimization problem

$$\min \dot{q}^T \dot{q} \quad \text{s.t.} \quad J(q)\dot{q} = \dot{x}$$

Solution: (right) pseudo-inverse

$$\dot{q} = J(q)^T(J(q)J(q)^T)^{-1}\dot{x}$$

$$= \eta J(q)^\dagger e$$
Task-Prioritization with Null-Space Movements

Execute another task \dot{q}_0 simultaneously in the “Null-Space”

- For example, “push” robot to a rest-posture

 $$\dot{q}_0 = K_P (q_{\text{rest}} - q)$$

- Take step that has smallest distance to “base” task

 $$\min_{\dot{q}} (\dot{q} - \dot{q}_0)^T (\dot{q} - \dot{q}_0), \quad \text{s.t.} \quad \dot{x} = J(q)\dot{q}$$

- Solution:

 $$\dot{q} = J^\dagger \dot{x} + (I - J^\dagger J) \dot{q}_0$$

- Null-Space:

 $$(I - J^\dagger J)$$

- All movements \dot{q}_{null} that do not contradict the constraint

 $$\dot{x} = J(q)(\dot{q} + \dot{q}_{\text{null}}) \text{ or } J(q)\dot{q}_{\text{null}} = 0$$
More advanced solutions

Similarly, we can also use a acceleration formulation

Solution: \(\ddot{q} = J^+(\ddot{x} - \dot{J}\dot{q}) + (I - J^+J)\ddot{q}_0 \)

There is a whole class of operational space control laws that can be derived from

\[
\begin{align*}
\min \quad & (u - u_0)^T(u - u_0) \\
\text{s.t.} \quad & A(q, \dot{q}, t)\ddot{q} = \dot{b}(q, \dot{q}, t) \\
& u_0 = g(q, \dot{q}, t) \\
& M(q)\ddot{q} = u + c(q, \dot{q}) + g(q)
\end{align*}
\]

- The resolved acceleration control law with a model-based control law can be derived from this framework.
- For an up-to-date and conclusive treatment, see
Singularity Problems

Problem: However, the inversion in the pseudo-inverse

\[J^\dagger = J^T (JJ^T)^{-1} \]

can be problematic.

In the case of singularities, \(JJ^T \) cannot be inverted!
Damped Pseudo Inverse

Numerically more stable solution:

- Find a tradeoff between minimizing the error and keeping the joint movement small
 \[
 \min_q (\dot{x} - J(q)\dot{q})^T (\dot{x} - J(q)\dot{q}) + \lambda \dot{q}^T \dot{q}
 \]

- Regularization constant \(\lambda \)

- Damped Pseudo Inverse Solution
 \[
 \dot{q} = J^T (J J^T + \lambda I)^{-1} \dot{x} = J^{\dagger}(\lambda) \dot{x}
 \]

- Works much better for singularities
Ask questions...

Q & A?