Reinforcement Learning Part |;
Discrete State-Action Optimal Control
...with Learned Models

Jan Peters
Gerhard Neumann

Guilherme Maeda

Motivation for optimal decision making in robotics

Typically, imitation is not enough 1) \

Imperfect demonstrations

Correspondance problem

We can not demonstrate everything

Hence, we need self-improvment!

_ Exploration Reward
The robot explores by trial and error

We give evaluative feedback jl> reward

Today, we are going to look at the problem of how to take optimal
decision that maximize the reward

Note:
2 reward = - cost
Max(reward) = Min(cost)

Outline of the Lecture

1. Introduction
- Example of Discrete State-Action Control
* Formalization of Optimal Control as Markov Decision Process
2. Finite-Horizon Optimal Control
* Value lteration with a For-Loop
3. Infinite Horizon Value Iteration
* Value lteration with a Repeat-Until-Loop
4. Infinite Horizon Policy Iteration
* Policy Evaluation: Generate the value function for a fixed policy
* Policy Improvement: Compute a better policy

llustration of basic idea...

Leeds¥it K
Freston'e * J ' -
Dublin O Sl

a Geoningent -, '
Y Manchester. Rotherhar S S Eremen il Hamburg

L Norwich . , > EMMmen
Birmingham» e Amsterdam i : Hasan
? oSwWich .) alafald’ " i
Te! : = PISe)
ESwansea '
d ~

Cardiff Bristy o VAR \) . ! A - : . : ! . F
o ' Frankfurt

You have won L Al
a BGSt-Paper = quc ; \,am,.‘:n. Nurnb.e 3

e 82 * Hellbronn
"'® NS L

1Caen
1 Y

Award in e Imne,' ':'r‘.Lm | ‘_JIA-SF-l:t;gartA Munche.
Madrid! Nante .. Dy A SR f\b"-:_,l—h'

. ~ Adilano
noble o

" Verona

What is the N

Toulouse Mor‘tpélher

L)

- A Corss ~0 Santander Pau s o S -
¢ Gidn 'y 0 : - o Dragugnan
Optimal A e S N i

Viao . VItonans b,l'.‘*.l.’
9o 2 '

Curanse

\quia

Parpignan

o Icy o Y Qi 4 J --.,' E' dan #1s Barcalar e 83 Bani

Llejda »

2 Naaolw : =0

Collectit? gl O/ 7 -

Palermo, Messn:

» *

e Catania

Dynamic

Programming

"An optimal sequence of controls in a
multistage optimigation problem bas the
property that whatever the initial itage,

state and controls are, the remaining

controls must constitute an optimal
sequence of decizions for the remaining
probllem with itage and istate resulling
brom previous controlsi considered as
initial conditions.”

Richard Bellman, Dynamic Programming, 1957

Dynamic Programming

Sdea 1: 94 the optimal sclution L broken in samall parts,
each part must be optimal

Ydea 2: reuse sclutions that were already computed (we
will store them as UV or Q)

Let’s

ry this

—xample!

Let’s

ry this

—xample!

Markov Decision Problems (MDP)

A (non-stationary) MDP is defined by:

* jtsstatespace s € S

its action spacea € A
its transition dynamics Py (S 1|S¢, ay)
its reward function (s, a)

and its initial state probabilities ,uo(S)

Markov property:
E(St+1|8t7 a’t7 St—17 a’t—17 e) — ll)t(St_|_1|St, at)

9 * TJransition dynamics depends on only on the current time step

Outline of the Lecture

1. Introduction
- Example of Discrete State-Action Control
- Formalization of Optimal Control as Markov Decision Process
2. Finite-Horizon Optimal Control
» VValue lteration with a For-Loop
3. Infinite Horizon Value lteration
* Value Iteration with a Repeat-Until-Loop
4. Infinite Horizon Policy Iteration
* Policy Evaluation: Generate the value function for a fixed policy
* Policy Improvement: Compute a better policy

10

-inite Horizon Objective

11

The goal of the agent is to find a policy W(G\S) that maximizes its
expected return /. for a finite time horizon

Finite Horizon T: Accumulated expected reward for T steps

S =By, Por [Zt 1 Tt(St, at) ‘H“T(ST)}

r7(ST) ... final reward

Algorithmic Description of Value Iteration

Init: Vi(s) < rp(s),t="T
Repeat + = ¢ — 1
Compute Q-Function for time step t (for each state action pair)
Qi (s,a) =ri(s,a) + 2 Pi(s']s,a) Vi, (s)
Compute V-Function for time step t (for each state)
Vi (s) = max, Qf (s, a)
Untilt=1
Return: Optimal policy for each time step

m; (s) = argmax,Q; (s, a)

[check animation] 1 2

Value lteration for

-INite Horizon

So how does dynamic programming work now?

=» Start with last layer... (no transition)

Vr(s) = rr(s)

= |terate backwards in time
Vi"(s) = maxg (Tt(Su a;) + Ep [V{ll(stﬂﬂst, at])

= The optimal value function/policy for time step t is obtained after
T —t -+ 1 iterations

Vi (sr)

13

:> Vi_i(s7-1)

—

:,> Vi*(s1)

What does a finite life-time T imply?

In the finite horizon case, the time index is part of the state
=» [t matters, how many time steps are left
= We can only visit each state (including time index) once!
= We have a layered / multi stage decision problem
= The optimal policy is time-dependent

i (als) = m*(als,)

= The reward function and the transition model can be time-

dependent, i.e.,
ri(s,a) and Pi(St11|S¢t, at)

14

Outline of the Lecture

1. Introduction
- Example of Discrete State-Action Control
- Formalization of Optimal Control as Markov Decision Process
2. Finite-Horizon Optimal Control
* Value lteration with a For-Loop
3. Infinite Horizon Value lteration
* Value lteration with a Repeat-Until-Loop
4. Infinite Horizon Policy Iteration
* Policy Evaluation: Generate the value function for a fixed policy
* Policy Improvement: Compute a better policy

15

Markov Decision Problems (MDP)

A stationary MDP is defined by:

* jtsstatespace s € S

its action spacea € A
its transition dynamics P(St+1 ’St, at)
its reward function (s, a) ri(s,a) and Py(S¢+1|St, ar)

and its initial state probabilities ,uo(S)

ri(s,a) and Pi(Sii1]8¢, ar)
Markov property:

P(St—l—1|3ta a¢, St—1,At—1, - - .) — P(St—|—1|3ta at)

1 6 * Transition dynamics depends on only on the current time step

S0 what’s special for an infinite horizon,
..e., when you live forever?

In the infinite horizon case, the time index is not part of the state

= Your robot lives for all it does, it does not matter, how many time
steps are left

= optimal policy is time-independent 7 (als) = 7*(als)

= The reward function and the transition model can no longer be
time-dependent.

= There is a single, stationary value function for all times.

= We have two different approaches to learning:

1. Value lteration: Use value iteration from before, choose a large T for which
the value function converges.

1 7 2. Policy lteration: Learn a value function for the current policy. Then update
the policy and learn a new value function. Repeat.

Optimality Objective

The goal of the agent is to find an optimal policy 7T that
maximizes its expected long term reward J_

T* — argmaXWJm Jﬂ' — 43#0,77,77 [Zfio ’ytT(St, a’t)]

+ 0 <~y <1 ...discount factor
» Discount Factor trades-off long term vs. immediate reward

 Time Horizon: Infinite

18

—xample:

1 .2

States: s, s

wo State

Problem

Actions: red (¢!) and blue (g3 edges

Transition:
P(st|st, a

P(st|s?, a

Rewards: 7(s') =1, r(s*)

Policy: What is the optimal infinite horizon policy?

19

~~~~~



How do we find an optimal policy?

Policy Evaluation:

Typica"y done iteratively: Estimate the Value Function V'™
Policy Improvement:
° PO“Cy Evaluation: Update the Policy

Estimate quality of states (and actions) with current policy

« Policy Improvement:

mprove policy by taking actions with the highest quality

Such iterations are called Policy lteration

= will lead to the Bellman Equation = solved by Value Iteration

20



Value functions and State-Action Value Functions

Value function V™ (s):

Long-term reward for state s when following policyr(a|s)

V7(s) = Epax | X520 77 (s, ar)ls0 = 8|

= Quality measure for state s

,How good* is it to be in state s under policy(a|s) ?

21



Value functions

An lllustration...
Policy always goes directly to the star
Going through puddles is punished

22




Value functions and State-Action Value Functions
Q-function Q™ (s, a):

Long-term reward for taking actiong in state s and subsequently
following policy 7(als)

Q7 (s, @) = Ep «| 37°1'7(s1, a1)|s0 = 5, a0 = a
=% Quality measure for taking action a in state S

,How good* is it to take action a in state s under policy 7(a|s) ?

23



Value functions and State-Action Value

.. and can be easily computed from each other
Computing V-Function from Q-Function
Vi(s) =Ex [QW(Sa a)\s} = /ﬂ(a\s)Q”(s, a)da

Computing Q-Function from V-Function

Q™(s.a) = (s, a) + 1Ep |V7(s)

s,a}

=r(s,a) +7/P(s’|s,a)V”(s’)ds’

24




Value functions and State-Action Value Functions

... both functions can also be estimated recursively

V™(s) = En [r(s, a) + yEp [V7(s')] |8]

= [7(als) (r(s,a) —I-'ny(s’]s,a)V”(s’)ds’)da

Q"(s,a) = 7(s,a) + 1Ep.- |Q"(s',a)[s,a

=r(s,a) —|—fy/73(s’]s,a)/W(&’]S’)Q”(s’,a’)da'ds’

= |f | know the value of the next state s’ | can compute the value of the
current state

Iterating these equations converges to the true V or Q function

25



Algorithmic Description of Policy Evaluation

Simplification: For discrete states....
Init: V"(s) < 0,Vs and k =0
Repeat
Compute Q-Function (for each state action pair)
Qrr1(s,a) =7(s,a) +v3 ., P(s']s,a)V7(s)
Compute V-Function (for each state)
kﬂ+1(5) — Za m(als) z+1(57 a)
k=k+1

until convergence

26 This algorithm is called Dynamic Programming!



—xample:

1 .2

States: s, s

wo State

Problem

Actions: red ( ¢!) and blue ( g3 edges

Transition:
P(st|st, a

P(st|s?, a

Rewards: 7(s') =1, r(s*)

Policy Evaluation: What is the value function of the uniform

policy?

= HOMEWORK!

2/

~~~~~


Outline of the Lecture

1. Introduction
- Example of Discrete State-Action Control
- Formalization of Optimal Control as Markov Decision Process
2. Finite-Horizon Optimal Control
* Value lteration with a For-Loop
3. Infinite Horizon Value lteration
* Value Iteration with a Repeat-Until-Loop
4. Infinite Horizon Policy Iteration
» Policy Evaluation: Generate the value function for a fixed policy
» Policy Improvement: Compute a better policy

28

How do we find an optimal policy?

Policy Evaluation:

Typica"y done iteratively: Estimate the Value Function V'™

Policy Improvement:

° POIicy Evaluation: Update the Policy

Estimate quality of states (and actions) with current policy
* Policy Improvement:

Improve policy by taking actions with the highest quality

For all states: 1, if a = argmax_, Q7 (s, a’)
m(a|s) = .
0, otherwise

lterating Policy Evaluation and Policy Improvement converges to the
optimal policy and is called Policy Iteration

29

Algorithmic Description of Policy lteration

Init: V"(s) <— 0,7 < uniform
Repeat
Repeat £ =Lk + 1
Compute Q-Function (for each state action pair)
ir1(s,a) =7(s,a) 72, P(s']s,a) VT ()
Compute V-Function (for each state)

kﬂ+1(5) — Zaﬂ-(a|8) Z+1(3,a)

until convergence of V
: - TT /
1, if @ = argmax, Q" (s, a’) actions based on values of

TmTa|s) = .
(a]s) { 0, otherwise ‘ a suboptimal policy!
until convergence of policy 30

These are the optimal

Value iteration

Can we also stop policy evaluation before convergence and perform a
policy update?

Yes! We will still converge to the optimal policy !

,Extreme” case: Stop policy evaluation after 1 iteration

V*(s) = maxg (fr(s, a) +vEp [V*(s')|s, a)

This equation is called the Bellman Equation

lterating this equation computes the value functionV ™ (8) of the
optimal policy

31

Value lteration

Alternatively we can also iterate Q-functions...
Q*(s,a) =r(s,a) +vyEp maxe Q*(s',a’)|s, a]

Small side note:

Computing optimal V-Function from optimal Q-Function
V*(s) = maxqg Q* (s, a)
Computing optimal Q-Function from optimal V-Function

Q*(s,a) =r(s,a) +yEp [V*(s')

S, a,]

32

Algorithmic Description of Value Iteration

Init: V" (s) < 0
Repeat =Lk + 1
Compute Q-Function (for each state action pair)
Qis1(s,a) =7(s,a) +v3_y P(s']s,a)Vi(s))
Compute V-Function (for each state)

py1(s) = max, Q4 (s, a)

until convergence of V

[check animation]

33

—xample: Value lteration

- The Two state example.

) HOMEWORK!

34

Wrap-Up: Dynamic Programming

To compute an optimal policy we can either do.. @
Policy Iteration: V7(s) =Ex [(s,a) +~vEp [V™(s')] |3]
Policy Evaluation: A
S

Policy Improvement:

(als) = {

1, if @ = argmax, Q™ (s,a’)
0, otherwise

~
terate: V" (s) = maxg (7(s,a) + 7Ep [V*(s)

Y <)

Get optimal policy after convergence:

Value lteration:

. - * /
(als) = { 1, if @ = argmax_, Q*(s,a’)

0, otherwise

35

Outline of the Lecture

1. Introduction
- Example of Discrete State-Action Control
- Formalization of Optimal Control as Markov Decision Process
2. Finite-Horizon Optimal Control
3. Infinite Horizon Value-Functions
» Policy Evaluation for a fixed policy
4. Computing an Optimal Policy for Any Value Function
* Policy Improvement

« Value iteration

36

Wrap-Up: Dynamic Programming

We now know how to compute optimal policies for both objectives
(finite and infinite horizon)

Cool, thats all we need. Lets go home...

Wait, there is a catch!

Unfortunately, we can only do this in 2 cases
* Discrete Systems

Easy: integrals turn into sums
...but the world is not discrete!

- Linear Systems, Quadratic Reward, Gaussian Noise (LQR) (next
lecture)

... but the world is not linear!

37

Wrap-Up: Dynamic Programming

In all other cases, we have to use approximations!
Why?
1. Representation of the V-function:
How to represent V in continuous state spaces?
2. We need to solve:

maxg Q% (S, a) : difficult in continuous action spaces

Lp [V* (s') ‘ S, a] : difficult for arbitrary functions V and
models P

We will hear about that in the next lectures....!

38

he Bigger Picture: How to learn policies

experience data demonstration data
— Jc ol ‘
D ={siairisi}t, . n D ={si1.1i,a1.7i}i=1..N

'

earn mode
P(s'|s, a)
r(s,a) |

'
policy
m(als)

dynamic proqg.

o

-
=
F—
©
@

-

Model-free RL
Policy Search

. Next Lecture 2. 3.

learn value fct. optimize policy learn policy
V(s) m(als) m(als)

N

learn latent costs

r(s,a)
dynamilc prog.
V(s)

'

- policy
m(als)

Inverse R

»

Discrete State-Action
Optimal Control: Summary

What you should know...

= What is a MDP, a value function and a state-action value function...

= What is policy evaluation, policy improvement, policy iteration and
value iteration

=® The Bellman equation

=® Differences of finite and infinite horizon objectives

= Why is it difficult?

