Classical Robotics in Nutshell

Jan Peters
Gerhard Neumann

Purpose of this Lecture

= \What you need to know about robotics!

= |mportant robotics background in a nutshell!

= |n order to understand robot learning, we have to understand the problems
first

=» Essentials are starred...

-
A

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4., Gontrol in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

What is a Robot?

A robot is a reprogrammable multifunctional manipulator
designed to move material, parts, tools, or specialized

devices through variable programmed motions for the
performance of a variety of tasks.

Robotics Institute of America

A computer is just amputee robot

G. Randlov

%\:&e’ﬁr .ﬁ;@) “{“ﬁ:

HONQ:

—

Modeling: What are the Degrees of Freedom

2 types of joints:
= revolute
= prismatic

Revolute Prismatic

[N
2D @ i

[e
3D /i%l/ S

| & 3'21\.4"
Modeling: What are the Degrees of Freedom? * ©

Revolute joints

" i\\\\"ﬁ: ‘,‘.: 1\‘6
Modeling: What are the Degrees of Freedom 5;/‘?»" .
7% ‘N

Prismatic Joints

Workspace

The workspace Is the reachable space with the
end-effector

Basic lerminology

Joints: q [rad]

AL
Task/Endeffector space: r[m]

State (robot and environment): S

9

Basic lerminology

Actions: Uu/q

* |n general: Can be velocities, accelerations or torques
* |nrobotics: they are always in some way mapped to torques

(Control) Policy:
» Deterministic u = 7(s)
+ Stochastic u ~ 7(ul|s)

) ¢

10

Block Diagram of Complete System

Xds Xds

A4 flda dd Desired values

Joint Angles

—
Trajectory |—»| Control Dynamics
—>
T — T —

q,q, 9

——p| Kinematics

4/®5<75&

Task Space, End-Effector

11

Motor Commands/
Torques

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4., Gontrol in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

12

Kinematics

= 7 , Little Dog
| L. i Balance Control Experiments
i TG With Opertional Space Control

University of Southern California

k 5 - | | ' 4, March 2006
‘- Where is my hand/endeffector Where is my center
& what is it’s orientation? of gravity?

What do we want to have?

Forward Kinematics: A mapping from joint space to task space

113 x = f(q)

—xample 1:

Prismatic

Robot with 2 DoF

What are the forward kinematics X = f (Q) ?

ot
I

T =q1+ g2

14

—xample 2: Rotary Robot with 2 Dol

What are the forward kinematics X = f (Q) ?

Y
A

. @ = Zo
]
G
r = xIo9=aicosl+ as COS(91 . m 92)
Yy = Y9 = aisin 61 + a- sin(91 am 92)

15

What does a “Rotation” mean”?

A rotation is a transformation of Can we write the transformation
coordinate frames as matrix multiplication?

=» \Ne want a matrix such that

Yo i h)) ')
. LI =R(o) | T
o Y1 - Yo |
Which matrix fulfills this?
T =» \\Ne know that:
L A A 0
; = | o | RO
sin 0 :
1 —smH . 0
\9 y [cos 0] o R(O)ey
p gy T ®» Hence, we have
Op, 01 - 0 . 0 -
| > COS — S1n
cos R(Q) —)
16 sinf cosf@

Rotations in 3D

Rotations in 3D require rotating about any axis:

20

y 21 Rm(e):

1 0 0
0O cosf) —sinfb
0O sinf coséb

cos@ 0 sinf |

0 1 0
—sinf) 0 cos6 |
cos —sinf 0
sinf cosf O
0 0 1

It’s just like 2D, just add an identity for the axis around which you are rotating.

17

More about Rotations ...

Rotations can be stacked:

p° = Rp p° = R)p°=RIR
p = Rp* | R =RR!
Other basic facts: Orthonormality!

R '=R! det{R} =1

18

Representation of

Rotations

Euler Angles: Roll-Pitch-Yaw Representation

A <0

-

) Roll

Yaw

Lo

Common in

Roll 4

derospace...

a N) A
i
|/
y

Yo

Ry

}2%¢}{%9}im¢

C¢ ——8¢ 0 i

S¢
0
CopCo
SpCh

Co
0

—8¢Cqhy T CpSSqp
CHCop T SpSeSe
CoSq)

0
1

S0 I 1 0
0 0 C¢
0 sy

S¢Sy T CpSeCy

—CpSyy T SpSeCy

CoCy)

Problems with Euler Angles:

Not Unique: Many angles result in the

same rotation
Hard to quantify differences between two
Euler Angles

0
Cep

Cés S ... short form for sin(¢), cos(o)

Representation of Rotations

Other Types of Representations:
* Angle-Axis
* Unit-Quaternion

X axis

(toward viewe

Solves the problems of singularities with the Euler Angles
« FEasier to compute differences of orientations

 Important if we want to control the orientation of the end-effector

See Siciliano or Spong Textbook!

20

Homogeneous [ransformations

= Translations alone are easy

=® (Combining Translation and Rotation is a mess...

p0:50_|_p1

p’ =46"+ R)(6' + R,(6° + R;p’)))

=® ..but atrick solves this mess: Homogeneous Transformations!

p’ =46+ Rip

=» Hence, we have: 150 = H?H% ..

21

p
1

R

0
1

H" 'p"

50' 'pl'
1 1

0
~ 1
4x4 Transformationmatrix

—xample 2 - revisited!

ClT —81 0 ai1Cy
; 0 ais
A _ 51 €1 151
L 0 0 1 0
0 0 O L
i Co —859 0 a2C9 |
B so co 0 a9sy
7 ~ o A2= 10 0 1 o
I L0001
. H)=A
Link a; 87 dz HZ 0 1
1 |ai| 00|06 H; = A, A,
2 a9 0 0 ;

22

Typical Robot Description:
Denavit Hartenberg

Denavit-Hartenberg Description:

=» Just four steps with Homogeneous
Transformations!

A; = Rot, g Trans, 4. Trans, ., Rot; o,
[cp, —sg. 0011 0O O][1 OO0 a|[1 O 0 0]
B sg, c¢cp, 0 0O 0O 1 0 O 0O 1 0 O 0 ca;, —Sa; O
B O 0 1 0 0 0 1 d; 0 0 1 0 0 Sa; Cop O
0 o o 1fL0O0O0 1T JLOO0OO0O 1T][O O 0 1
 Co, —S0.Ca; S0,5a; @iCp, |
B Sp. Co,Ca;, —CO,Sa; QiSg,
N 0 Sa, Cay; d;
0 0 0 I

xcercise: SCARA

- -

o
s S
=)
| XK XK © X
Slo o xS
. -
SO 0 OO
i
STROEOESNE
4
.m1234
—

24

Differential Forward Kinematics

Sometimes, we are interested in the velocityx or accelerationx

Remember chain rule from high school?

| . d df (q) dq .
Velocity: = — — =J
elocity B = (q) g df (9)q
J(q) = %{;’) ... Jacoblan
Acceleration: X = J(q)q + J(Q)Fl
\2+2=4

25

—xample 1 - revisited

260

g1 T g2
g1 + g2
11,1}

—xamples 2 - revisited

3
|

o = a1 cos By + ag cos(fy + 62)

Yo = a1 8in 0y + ag sin(f; + 02)

N4

N4

- —a;sin(0,) — agsin(f; + 60,)
- ajcos(0y) + azcos(0y + 63)

— a9 Siﬂ(@l T 92)

+as cos(61 + 05)

—a1 Sln 9191 — a9 sin(91 T 92)(91 T 92)
a1 COS 919.1 + a9 COS(91 + 92)(91 + 92)

Singularities

=® \What happens when | stretch out my arm?

T —(a1 + &2) Siﬂ(@l) — a9 Sin(ﬁl) 9.1
Y (a1 + ag) cos(6y) +ascos(q) 0

=® The columns of the Jacobian get linearly dependent

=® | lose a degree of freedom and

(o) detJ =0

=® These positions are called Singularities!

28

Computing the Jacobians

Two ways are common:

=® Analytical Jacobians are easier to understand (as before) and can be
derived by symbolic differentiation. However, the representation of the
rotation matrix can cause “representational singularities”

=® Geometric Jacobians are derived from geometric insight (more

contrived), can be implemented easier and do not have “representational
singularities”.

= Main difference: How the Jacobian for the orientation is represented

See the Spong or Siciliano Textbook...

29

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4., Gontrol in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

30

Block Diagram of Complete System

Xdy Xdy Xd

qdaqdaqd

Trajectory

_>

—>>
_>

31

Control

q,q, 9

Dynamics

—

Kinematics

X, X, X

Dynamics

Goal: Obtain a forward dynamics model

q=f(q,q u)

Essential equations:

1. Forces F; (Kraft):

mass 1-@ = ZFZ

1. Torques 7; (Drehmoment):

Inertia@: E T;
)

32

What forces are there?

= Gravity: Fgrav = mg

= Friction

® Stiction: Fitiction = —Cssgn(dj)

® Damping (Viscous Friction): Fyamping = — DT
=® Springs:

=® Example: Spring-Damper System

mi = K(xeq —x) — Do

33

What torques are there?

= Gravity T gravity = mgl
=® Friction just as before.
= Virtual Forces:

=® (Centripetal

= Coriolis forces

34

(General Form

Dynamics are usually denoted in this form:

u = M(q)q +c(q,q) +g(q)

* Motor commands: u
« Joint positions, velocities and accelerations: q, q, g
* Mass matrix: M (q)

» Coriolis forces and Centripetal forces: ¢(q, q)

- Gravity: g(q)

35

Where do | get these Forces/Torques from?

Friction? No general recipe!

Rigid body forces u = M(q)q + c(q,q) + g(q)?
= Newton-Euler’s Method

1. Manually by Force Dissection (“Freischneiden”, see Technical
Mechanics 1)

2. Can be formalized nicely! See Oskar’s class for details...

= |[agrangian Method

36

Short break - time for feedback?

| appreciate FEEDBACK!

\

| Who is that guy In
the front and why
IS he talking so

-

Jnough

Y

37 fuettern!

. Too slow?
Too fast?] " Too much
8) fun? ’
? Not |

er Prof hat ‘ne Meise. Meine duerfen Sie

Newton-Euler's Method manually:
-orce Dissection (“Freischneiden”)

F

Cable
Winch

38 ~-

Environment is static

ma: = ()
JO0 =0
Disk rolls
mz = ()

JO =rFsina— S

Mass is pulled

mr =G — S
Jo =0

INntuition:

Lagrangian Method

For a Single Particle System:
« Dynamics m§j = f—mg
 Kinetic Energy. K = %m:ﬁ

- Potential Energy P = mgy

39

> We define the Lagrangian £ = I — P and note

Lagrange’s Approach d oL or
dt 8y 8y J
This can be done for any robot!

Lagrangian for Robots

For robots?

1. Determine the Kinetic Energy

K = %mvT'v-{—%wTIw.

mn

o4 D [midi(@)" Jo.(@) + Ju (@) Ri(@)LiRi(a)" T (9)] 4
1=1

2. Determine the Potential Energy
P = Z P, = ZgTrm-mi.
i=1 1=1

3. Use Lagrange’s Approach

40 Problem? Very expensive O(n3)!

Newton-Euler vs. Lagrange

When should | use Newton-Euler vs. Lagrange?

* Newton-Euler manually? For complex systems with pulleys, etc.
« Lagrange manually? Best for most robots?
« Lagrange computationally? It’s O(n3), so no!

* Newton-Euler computationally? It’s O(n), so yeah!

41

(General Form

=® Dynamics are usually denoted in this form:
u = M(q)q + c(q,q) +g(a)

B Inverse dynamics model u = f(q, q, q)

=» From this equation we can already build a robot simulator
m) Forward dynamics model ¢ = f(q, q, u)

Compute accelerations q = M_l(Q)(u —c(q,9) — g(q)

¢ ¢
/ qdr, q= / qQdr
0 0

Integrate g

42

)

W

How to integrate”

How can we integrateq =

43

t
/ ddr,
0

—xample 1 - revisited

—p

44

Acting Force

miTy = Uy — Ug
moTo = U
Joints Position
1 = ({1
To = (q11+Qq2

S

mi +mg M2

Dynamics

qd1 (73]
g2 U2

—xample 2 - revisited

U1

45

m1l2 + J1 +ma(IF + 12, + 21142 cos 02) + J2]6;

:mz(lgz + [1l5 cOS 92) - J2]92

Inertial Forces

2m2l1l9291 92 sin 92 Coriolis Forces

2m2l1l929.f sin 0o Centripetal Forces

m19glqy1 cos b1 + mag(li cos 1 + 12 cos(61 + 02)
[mg(lgz l1l42 cos 62) Jz]él Gravity
(m2l§2 + J2)62 Inertial Forces

mialil 4262 sin 65 Centripetal Forces

mQngz COS(91 -+ 92)
Gravity

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4., Gontrol in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

46

Block Diagram of Complete System

Trajectory qq(t), 4a(t), da(?)

« Specifies the joint positions, velocities and accelerations for
each instant of time t

» Used to specify the desired movement plan
* |nherently includes velocities and accelerations

X4, X4,Xyg Desired Joint Trajectory

.l .4
q
_> u .I
Trajectory [—»| Control |—»{ Dynamics —q> Kinematics
] A,
T ——

q,9,9 ‘

47

Movement Plans

How to represent
trajectories ?

= Representation with via-
points

Initial
configuration

A

Obstacle

J Dhstacle

i

B

48

Typical Joint Space Trajectory
I I [

SN
(&)

Angle (deg)
N w w S
(&)} o (&)} o
| I [

n
o
[

-
(&)
|

-
o
|

(&)
I

1 ! ! ! 1 ! 1 !
2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Time (sec)

Inal
configuration

Trajectory of a single

What do we need”?

Look once again at the mathematical model of a robot:

&

q

= M '(q)u

t t
/ qdr, q= / qdr
0 0

=® Our motor commands can only influence the acceleration!
=® The velocities and positions are just integrals of the

dcce

eration.

= Any tra;

ectory representation must be twice differentiable!

The positions and velocities cannot jump.
= We can use polynomials!

49

Cubic Splines

How do guarantee no jumps in pos. and vel.?

45

Angle (deg)
- - n N) (&) I
)) o (3] o a o
T T T T

(63}
T

Typical Joint Space Trajectory
| I |

Time (sec)

4 free parameters

q(t) =Cag + ait + ast* + ast

g(t) = a1+ 2ast+ 3a3t2

Solve using Boundary Conditions

L B G 7[w] [
0 1 2t 3t(2) al o U0
Loty t7 t3 az | | ay
0 1 2t 375%__&3_ | Uf |

Problems with Cubic Splines

Trajectory Built of Multiple Cubic Segments

90 T T T T
80
70
, POINtS
Initial A WAy A
configuration /\X\ 60 -

[s)

Obstacle ﬁ
o 50

D Obstacle ?C»

. <C

Via-points

Final
configurati 30

20

Time (sec)

51

Velocity (deg/sec)

-10

Problems with Cubic Splines

Velocity Profile for Multiple Cubic Segments Acceleration for Multiple Cubic Segments
T T T

50

100

Acceleration (deg/secz)

Time (sec)

We still get jumps in the acceleration!

= Dangerous at high speed and damage the robot
= This requires higher order splines...

52

Angle (deg)

Quintic Splines

Multiple Quintic Polynomial Segments
100 T

No jumps in the acceleration =G boundary conditions

Replace Cubic Polynomials
by Quintic Polynomials

o free parameters

I i

Use new boundary conditions

20| L to f(§ 5 o [ap | [q0 |
0 1 2ty 3t3 4t} 5t; al V0
% 1 2 3 4 5 6 V0 2) 67?0 12..f% 20rt8 @ %
Time (sec) 1 ty t;f f} t}lf f} as qf
0 1 2ty 3t3 4t} 5t; a vy

0 2 Gty 12t3 20t} | Las | [af |

53

Quintic Splines

Smooth velocity and acceleration profiles with quintic splines

Acceleration Profile for Multiple Quintic Segments

Velocity (deg/sec)

Velocity Profile for Multiple Quintic Segments

1

T T

60 T
50 ""./ "\II
40
30
20
\
10 \\
/ | |
/
o \ /_/
-10 ! \f/ ‘ ‘
0 2 3 4 5
Time (sec)

54

Acceleration (deg/secz)

T

100

80

60 -

40 -

20/

T

J

/\

\
\
\

Time (sec)

Alternatives to Splines

Blend Times for LSPB Trajectory
T T T

=® Linear Segments with Parabolic Blends!

=® Trapezoidal Minimum Time Trajectories

Angle (deg)
N
o

%

®» Potential Fields V(Q)

. dV(q)
q —— Time (sec)
dq LSPB Velocity Profile
70 T T T T T T

= Nonlinear Dynamical Systems
q = f(a,q,0)
gao»

Ask guestions...

56

Ask questions...

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4. Control in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

58

Control

Why do we need control?

® Given a desired trajectory like qq(t), aq(t), qq(t), we still need
to find the controls w to follow this trajectory

59

Xdakdaid

qdaqcbdd

Trajectory

_>

— >
_>

Control

q,q, q

Dynamics

—

Kinematics

X, X, X

Feedback Control: Generic |dea

60

Controller ("Regler”)

450

—35°

f 250

Error {

Sensor

How can we correct?

Turn hotter (not colder)!

Measured__

ﬁ

[45°

—35°

Temperature

How hot is it?

Feedback Control: Generic |dea

Controller (“Regler”) Plant (“Regelstrecke”)

Desired
Value » 0y — f(Td,wﬁ Ti =T, + u
T; =35

Sensor / Measurement

yr = 1y + ¢

€ Measurement

61 errors

Linear Feedback Control

Controller (“Regler”) Plant (“Regelstrecke”)
Desired » Up =
Tiv1 =1 4 uy
Value K(Td o yt)
Ty = 35
Sensor / Measurement
Yy = 1y + €
Gain: 1.00, Noise: 0.00
35 - '
30t
= 25t
20 -==-desired
15 . . state —
5 10 ——measurement 20
20
> 10r
62 0 5 110 115 20

timeSteps

Measurement Errors

What effect do measurement errors have?

Gain: 1.00, Noise: 5.00

== desired
state -
——measurement

101

-10t

5 10 15 20
timeSteps

® High Motor Commands, that’s not a comfortable way to shower

63

Proper Control with Measurement Errors

Lower our gains!!!

Gain: 0.20, Noise: 5.00

40f

301

20r ----desired
state _

——measurement

5 10

5 10 15 20
timeSteps

64

What do High Gains do”

High gains are always problematic!!!! Check K= 2!

60

401

20

65

Gain: 2.00, Noise: 0.00

20

40 60

80

20

40 60
timeSteps

80

100

What happens if the sign is messed up?

Check K = -0.2.

66

-200¢

—-400¢f

Gain: -0.20, Noise: 0.00

==-desired J
state

10 ——measurement 20

| error

10 15
timeSteps

Control in Robotics
q4; (.ldv é.ld
" u
Trajectory Control Dynamics
—p
- -
q,q,q9 |

6/

Linear Control in Robotics?

Qa> A4 Control

+ K u
Trajectory i » Dynamics

q,q9 |

Linear Controllers:

« P-Controller (only q, in the diagram above)

« PD-Controller

« PID-Controller (different from above’s block diagram)

) ¢

68

Linear Control; “P-Regler”

P-Controller:

based on position error

u; = Kp(q; — q;)

0
0.9
0
q; = 0.9 qd = 0
0
0
0

What happens for this
control law? -

69

Oscillations,
mean position error

Linear Control: “PD-Regler”

PD-Controller:

based on position and
velocity errors

Uy = KP(Qd — Qt) T KD(Qd — Qt)

What happens for this - Steady state error: It can
20 control law? not reach set-point

Linear PD Control with Gravity Compensation

44, (.Id

Control

Trajectory

-

K

b

9(q)

Or—

9.9

Dynamics

= Jo reach the set-point, we must compensate for gravity

= Most industrial robots employ this approach

/1

Linear PD Control with Gravity Compensation

<

A

PD-Controller with gravity compensation

u; = Kp(q,—q,)+Kplg;—q,)
+g(q)

=® Requires a model of all steady
state components!

/2

Note on PID Control

Alternatively to doing gravity compensation, we could try to
estimate the motor command to compensate for the error.

=® This can be done by integrating the error ,

u = KP(qdes - q) + Kp ((.Ides - (.l) + K; / (qdes - q)dT'

—00
For steady state systems, this approach can be reasonable (e.g.,
If our shower thermostat has an offset)

» Useful if no good model is known!

=® For tracking control, it may create havoc and disaster!

73

Mechanical Equivalent

PD Control is equivalent to adding spring-dampers between the
desired values and the actuated robot parts.

Uy = KP(Qd — Qt) — K pq,

74_

Ask gquestions...

75

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4. Control in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

/6

Block Diagram of Complete System

PD with gravity compensation is not a good choice

» We need an error to generate a control signal. To be accurate,
we need to MAGNIFY a small error, i.e., we have huge gains.

» Huge gains are costly, make the robot very stiff and dangerous.

» Mechanical systems are second order systems, I.e., we can only
change the acceleration by inserting torques!

Can we do better with-a model?

A4; (.Ida Eid q
— P u _.>
Trajectory '—» Control ——» Dynamics —q> Kinematics
e -,

q,9,9 ‘

14 X, X, X

Model-lbased Control: Key Insight

Forward and inverse dynamics model have a useful property:

. Ml u Dynamics TR
dd,q,q —»| Dynamics > Vodel [94,994

Model >

= Forward Model: q/l q,))

®» |Inverse Model: y = Qq +C q, g(Q)

= [hus, we set q = dd

/8

Model-based Feedback Control

For errors, adapt only reference acceleration

... and insert it into our model

dref — éid + KD (qdes — (.]) T KP (qdes — q)

u = M(q)l,.s + c(q,q) + g(q)

As q = q,.s the system behaves as linear decoupled system

79

= |.e. it Is a decoupled double integrator!
Model-based Control

Dynamics

Qq; (.Ida iial q f
Trajectory >(%)—> K —>re Dlyr:/:rr:iis
e ___________________________a
q,q

—

Feedforward Control

= Feedforward control assumes Q =~ Q4 and q ~ (.ld
= Hence, we have

u = urr(qd,qd,dd) + UrB

with feedforward torgque prediction using an inverse dynamics model

upr = M(q)d + c(q,) + g(q) . N

and a linear PD control law for feedback

urg = Kp (qdes _ q) + Kp ((.ldes o (.1) \7F_@'/\/\

Feedforward Control

Dynamics

Feedforward
Control
Ya> Ad> 9d Inverse
il Dynamics
Trajectory . : 2 %
A4, Qd i ?
" —

q,q

Feedforward Control

Key on feedforward control (FF) ...

FF can be done with less real-time computation as feedforward terms can
often be pre-computed.

FF is generally more stable - even with bad models or approximate models

Only when you have a very good model, you should prefer Model-based
Feedback Control.

In practice, FF is often more important...

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4. Control in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

83

Assume your plan is In a task space...

l.e., we want the end-effector to follow a specific trajectory x(t)
= Typically given in Cartesian coordinates

= Eventually also orientation

Xdakdaxd

q
L» u —>
Trajectory —_: Control ——» Dynamics —q> Kinematics
| A,
T — T T —
9, 9,9 ‘

X, X, X

34

Why don’t we try it this way”?

Task Space Control with
Open-Loop Inverse Kinematics

Estimate
Derivative

qd: (.id

Trajectory |—»

Inverse

Kinematics -

Qd”i

Joint Space (| U
Control

q.9.9

Dynamics

NeHNell jNe!

| Kinematics

Inverse Kinematics (IK)

Little Dog

With Opertional Space Control

| ’ ; “ Balance Control Experiments

' University of Southern California
I L '5 S - : March 2006

- = =

k‘..- ; § E L i

How to move my joints in orderto get |f | want my center of gravity in the
to a given hand configuration? middle what joint angles do | need?

=®» What do we want to have?

=% |Inverse Kinematics: A mapping from task space to
configuration

86 q=f""(x)

—xample 1 - revisited

37

As = =q1+q2

we have

g1 = h

g2 = x—h
forany h€R

=® \We have infinitely many
solutions!!! Yikes!

—xample 2 - revisited

\We can solve for 61 and 65
A and get

2 2 2 2
r° + (81 (81
92 — COS 1(J 1 2)

200102
> 01 = tan 1 (g)
T

g 1 o sin o
— tan
a1 + o cos s

=® BUT: There is more than
one solution!

=» This is not a function!

Problems with Inverse Kinematics

Multiple solutions even for non-redundant robots (Example 2)
Redundancy results in infinitely many solutions.
=® Often only numerical solutions are possible!

=» Note: Industrial robots are often built to have invertible
Kinematics!

=» Block diagram in the start is among the most common
approaches.

89

Content of this Lecture

1. What is a robot?

2. Modeling Robots
Kinematics
Dynamics

3. Representing Trajectories
Splines

4. Control in Joint Space
Linear Control
Model-based Control

5. Control in Task Space
Inverse Kinematics
Differential Inverse Kinematics

90

Differential Inverse Kinematics

YA Inverse kinematics:
d, — f_l(md)

= Not computable as we have an
Infinite amount of solutions

Differential inverse kinematics:
q; = h(wda Qt)
=® Given current joint positions,

compute joint velocities that
minimizes the task space error

Y

= Computable

91

Differential Inverse Kinematics

v Differential inverse kinematics:

ot q; = h(z4,q;)

How can we use this for control?

0, 1. Integrate g, and directly use it
for joint space control

O,
Y

2. lterate differential IK algorithm to
find d,

drt1 = qx + h(xa, q)
and plan trajectory to reach 4y

92

Numerical Solution: Jacobian Transpose

vy = Minimize the task-space error
1
E=(x—f(a)" (x- f(a))

=® Gradient always points in the direction of
steepest ascent

dE
dq

- (- f(a)" L2

= —(z— f(q)" J(q)

93

Jacobian Transpose

goal

94

Minimize error per gradient descent

=® Follow negative gradient with a
certain step size ~

. (@)T —1J(q)"(z — f(q))

dq
=J(q)"e

= Known as Jacobian Transpose Method

(nl
|

Control often found in robots...

Task Space Control

Jacobian Integrate

q
Trajectory —fd——. Dynamics 2 | Kinematics
T —— I_
q.9, 9
X
Note:

e [his diagram is limited to joint space controllers that require no accelerations

(e.g., PD control with gravity compensation).
e |f you add additional differentiation (less pleasant than integration), you
can use other joint space control laws.

95

Jacobian

Pseudo Inverse

96

MY

®» Assume that we are not so far from our
solution manifold.

=® Take smallest step g that has a desired
task space velocity

z=n(zqs— f(q)) =ne
=® Yields the following optimization problem

ming’q st J(q)q=x
=® Solution: (right) pseudo-inverse
qg=J(q)" (J(q)J(q)") ‘e
=nJ(q)Te

Task-Prioritization with Null-Space Movementg
RN

Execute another task go simultaneously in the “Null-Space”

=® For example, “push” robot to a rest-posture

9o = Kp(qrest —)
=® [ake step that has smallest distance to “base” task
ming (§ —qo)" (@ — qo), st. &= J(q)q

® Solution: ¢ =J'&+ (I —J'J)q,

= Null-Space: (I — JTJ)

= All movements q,,;; that do not contradict the constraint

T = J(q)(q - qHull) Or J(q)qnull =0
97

More advanced solutions

Similarly, we can also use a acceleration formulation
Solution: § = J* (%X — Jq) + (I =JTI)g,

There is a whole class of operational space control laws that can be derived
from min (u — ug)? (u — up)
st. A(q,4,t)d =b(q,4q,t)
uo = g(q, 9, 1)
M(q)4 =u+c(q,q) +g(a)

=» [he resolved acceleration control law with a model-based control law can be

derived from this framework.

=» [For an up-to-date and conclusive treatment, see
= Nakanishi, J.;Cory, R.;Mistry, M.;Peters, J.;Schaal, S. (2008). Operational space control: A theoretical
and emprical comparison, International Journal of Robotics Research, 27, 6, pp.737-757.
=»Peters, J.;Mistry, M.;Udwadia, F. E.;Nakanishi, J.;Schaal, S. (2008). A unifying methodology for robot
control with redundant DOFs, Autonomous Robots, 24, 1, pp.1-12.

Singularity Problems

Problem: However, the inversion in the pseudo-inverse
J" = JY(JJ")~1 can be problematic

In the case of singularities, JJ' can not be inverted!

99

Damped Pseudo Inverse

Numerically more stable solution:

=® Find a tradeoff between minimizing the error and keeping
the joint movement small

ming (& — J(q)a)" (& — J(9)d) + A\d" ¢

=® Regularization constant)\

=® Damped Pseudo Inverse Solution
g=J(JIJT + X)) te =T Vg

=® \Works much better for singularities

100

Ask questions...

101

Unit quaternion

: : : A |
Specify axis rand Yaround axis vaxs Rotatior

Rotation

Plane p1

» Quaternion is defined by Q = {n, €}

v 9

77:0085 € = sin —7r

X axis

(toward viewe

* Always normalized: N+ ei T 65 -+ ez =1
» Jypically used for inverse kinematics (if we want to control
orientation)

102

Unit quaternion

- Obtain rotation matrix R(7, €) from quaternion Q:

R(n,€) =

2(n* +€;) — 1
2(€€, + ME.)
Q(Ewez o 77€y)

2(€.€, —me,) 2(€x€, + Mey)
2(n° +¢,) — 1 2(eye. — ney)
2(eye +mex) 2" +€2)—1

» Obtain Q from rotation matrix R

- sen(r3p — ro3)\/riL — To2 — 33+ 1]

1 1
n = 5\/7“11+7“22+7“33+1 €=3 sgn(ri3 — 731)v/T22 — 733 — 111 + 1

_ Sgn(T21 — 7412)\/7"33 — 711 — oo+ 1 1

+ Inverse quaternion: Q™' = {n, —€}

103

