
1

Model Learning

Gerhard Neumann
Jan Peters

2

Purpose of this Lecture

• Show different applications of supervised learning in robot learning.

• We can observe a lot of information, and model learning directly allows
us to make use of it...

• Learning models can be easier than physical modeling as well as of
learning control policies.

• Model-based learning: Using learned models to obtain a new policy is
typically very data efficient!

3

Outline of the Lecture

1. An Example

2. Types of Models and Learning Architectures

3. Case Study A: Inverse Dynamics & Forward Kinematics

4. Case Study B: Model Learning for Operational Space Control

5. Case Study C: Model Learning for Controller Falsification

6. Final Remarks

4

Example: Mars Rover

• Teleoperated System
1.5 AU (1 AU = 8min)
away.

• Most intelligence
was still on earth.

• Key problems:

i)getting stuck,

ii) coping with
delays

Hence, we need good models...

5

Learning to Predict Slip

The Mars Exploration Rover Opportunity trapped in the Purgatory dune
on sol 447. A similar slip condition can lead to mission failure.

6

A Model Learning Architecture

A. Angelova, L. Matthies, D. Helmick, P. Perona, Slip Prediction Using Visual
Information, Robotics: Science and Systems (RSS), 2006

Underlying model: Geometry

Terrain AppearanceSlip

7

Inputs
Im

ag
es

O
rie

nt
at

ion

8

Features
Te

rra
in

Sl
op

e

Legend

Te
rra

in
Ty

pe

9

A Model Learning Architecture

A. Angelova, L. Matthies, D. Helmick, P. Perona, Slip Prediction Using Visual
Information, Robotics: Science and Systems (RSS), 2006

Underlying model:

Simplification:

• terrain prediction from appearance A

Classification: Clustering + Nearest Neighbor

• slip prediction from slopes G for each terrain

Regression: 2 slopes -> slip, locally weighted regression

10

Outputs

If terrain type is known, prediction is almost spot on!

11

Outline of the Lecture

1. An Example

2. Types of Models and Learning Architectures

3. Case Study A: Inverse Dynamics & Forward Kinematics

4. Case Study B: Model Learning for Operational Space Control

5. Case Study C: Model Learning for Controller Falsification

6. Final Remarks

12

Types of Models

Assume our system has the functional form

• Discrete time:

• Continuous time:

• Discrete time often easier to use no integration needed

Four types of models become useful:
• Forward Models: Predict the future state.
• Inverse Models: Predict the action needed to reach a state.
• Mixed Models: Predict required task elements with a forward model

and use an inverse model for control.
• Multi-Step Models: Predict far in the future what will happen...

13

Forward Models

• Predict next state:

• Dataset:

• Can be used for direct action generation:

• Forward model is a simulator! can be used
for long-term prediction!

Note: typically:

14

Inverse Models

• Predict the action needed to reach a desired
state or any other desired outcome:

• Dataset:

• Can be used directly in control, e.g., inverse
dynamics control:

Next desired state is represented by the desired
acceleration

15

Inverse Model Learning ...

As long as our system is an invertible function, inverse model
learning will be useful!

Input Space Output Space

15

...but is that is not true for many problems!
Why? Redundancy!!

16

Mixed Model

• Assume that we can use our forward
model to predict quantity z.

• Based on z, our model can determine
the action a with an inverse model.

• Examples are:

i)Systems with Hysteresis

ii)Inverse Kinematics

17

Multi-Step Prediction Models

Example: Imagine you are controlling the Mars Rover. In that case, you
need to predict the effect of your actions many states ahead such that
you can cope with the delays in the system.

Multi-step prediction vs. iterative one step prediction?

• Multi-step: only for open loop control

• Single step: error accumulates!

18

Motivation for Model Learning in Robot Control

Why learn (Inverse) Kinematics Models?

• Kinematics can be measured nearly perfectly

• but Inverse Kinematics are expensive.

Why learn Dynamics Models:

• Dynamics parameters are terrible to estimate for interesting systems.

• Rigid Body Dynamics are inherently incomplete.

19

Example Problems in Robot Control

Forward Kinematics:

Inverse Kinematics:

Which one is not a regression model?

20

Example Problems in Robot Control

Forward Dynamics:

Continuous Time:

Discrete Time:

Discrete time vs. continuous time forward models
+ Easier to learn, less noisy data
+ Model learns non-linear effects due to integration
- only works for constant control action and fixed time step

21

Example Problems in Robot Control

Inverse Dynamics:

Operational/Task Space Control:

Which one is not a regression model?

22

Model Learning Architectures

Direct Modeling
Learning is directly
formulated as
regression problem

Works for well defined
input-output
relationship

23

Model Learning Architectures

Indirect Modeling
Works also for ill-
defined problems (e.g.,
differential inverse
kinematics)

Learning is modulated
by a the feedback error

Goal oriented, learns for
a specific task

24

Model Learning Architectures

Distal Teacher Learning
Designed for ill-defined
problem of learning
inverse models

Learn unique forward
and and inverse models

Forward-model guides
learning of the inverse
model

Challenges in Model Learning

•High-dimensionality
•Smoothness
•Discontinuities (E.g., stiction, contacts)
•Noise/Outliers
•Missing Data
•Too large or too small datasets
•Online updates
• Incorporation of prior knowledge
•Robustness and Safety

25

26

Outline of the Lecture

1. An Example

2. Types of Models and Learning Architectures

3. Case Study A: Inverse Dynamics & Forward Kinematics

4. Case Study B: Model Learning for Operational Space Control

5. Case Study C: Model Learning for Controller Falsification

6. Final Remarks

27

Learning to Control with Models

Analytical Rigid-Body
Model with CAD data Offline Trained Online Trained

Nguyen-Tuong, Peters, IROS 2008 (Finalist for Best Paper Award)

Compliant, low-gain control of fast & accurate movements requires
precise models.
• A changing world requires adaption to altered dynamics.
• Control both directly in joint (here) and task space (next)

28

Function Approximation Problem

Inverse Dynamics is a giant
function approximation problem
• Robot arm

• 3 x 7 = 21 state dimensions,
• 7 action dimensions

• Humanoid
• 3 x 30 = 90 state dimensions

• 30 action dimensions

• Learning in real-time!
• Online Adaptation is needed for

unexplored areas

• Unlimited continuous stream of
data...

Mass Matrix
Coriolis & Centripetal Forces

Gravity

Joint Accelerations, Velocities, Positions

Torques

29

Function Approximation Problem
What methods can deal with this
problem?

• Neural networks?
• Kernel Regression? GPs?
• Computationally expensive: only in

offline settings

Local methods can perform online:

• Locally Weighted PLS Regression
(LWPR) (Schaal, Atkeson &
Vijayakumar, 2002)

• Local Gaussian Processes (LGP)
(Nguyen-Tuong, Peters, 2008)

Mass Matrix
Coriolis & Centripetal Forces

Gravity

Joint Accelerations, Velocities, Positions

Torques

30

Local Gaussian Processes

Gaussian Processes are typically slow: computing the inverse of
kernel matrix

Use Local GP Models:

• Use centers with activation function

• Whenever create new center at location

• Output function:

• Add data only to nearest center

31

Local Gaussian Processes

Computational Complexity:

• L … number of samples in local
models

• K number of local models

Fast rank-one updates of the
covariance

Improved performance due to online
updates!

32

Learning to Control: Inverse Dynamics

33

Outline of the Lecture

1. An Example

2. Types of Models and Learning Architectures

3. Case Study A: Inverse Dynamics & Forward Kinematics

4. Case Study B: Model Learning for Operational Space Control

5. Case Study C: Model Learning for Controller Falsification

6. Final Remarks

34

Motivation

Operational space control:
learn to control in task-space

• It requires very precise
analytical models!

•Complex robots can often not
be modeled sufficiently
accurate using rigid-body
models.

•We need to learn the models

En
d-

ef
fe

ct
or

 P
os

itio
n

an
d

O
rie

nt
at

io
n

Ba
la

nc
e

Co
nt

ro
l

Peters & Schaal, R:SS 2005

35

Joint-Space Task-Space

Why is learning the mapping difficult ?
• It requires averaging over non-convex data!

Learning Operational Space Control

Peters & Schaal, ICML 2007

Possible Solutions:

Linearize learned forward
kinematics model
Bias training data to come
from only one mode
Additional Regularization term
to select desired solution

36

Select one solution/mode with an additional regularization

Select solution that minimizes effort

But still fulfills the control task

Compute Controllers: Basic Idea

Peters & Schaal, ICML 2007

Joint-Space Task-Space

Compute Controllers: Basic Idea
Formalize this selection of the solution as weighted regression
problem

The weighting is smaller for data from suboptimal modes

Only one mode remains

37

weighting

Weighted maximum likelihood!

Joint-Space Task-Space

Compute Controllers: Weighted Regression

Use several local linear models

For each model, we use a local data-set

... where we use a reward-weighting for each data point

The solution for of the local models is given by a weighted linear
regression

The controls provided by the local model:

38

39

Results: Learning Operational Space Control

40

Results: Learning Operational Space Control

41

Outline of the Lecture

1. An Example

2. Types of Models and Learning Architectures

3. Case Study A: Inverse Dynamics & Forward Kinematics

4. Case Study B: Model Learning for Operational Space Control

5. Case Study C: Model Learning for Controller Falsification

6. Final Remarks

42

With a Learned Simulator

Forward
Model

Robot
action state

1. Step: Learn an
Forward Model

2. Step: Use your favorite
Control Method

to get an good policy

Forward
Model

Policy

action state

Here, a we learn a simulator - more later
in RL! !

43

Controller Falsification

Safonov: Controller Invalidation and Learning

44

General Recipe: Fulfill Specification

1. Learn a Forward Model

2. Repeat until at least one good control law was generated:

1. Generate Control Law randomly.

2. Run Control Law in Learned Simulator

3. If Control Law fails, throw it away. Otherwise: break!

3. Output

45

Example: Missile (M. Safonov)

• Learns control gains
• Adapts quickly to compensate for

damage & failures
• Superior performance

Specified target response bound
Actual response

Commanded
response

Brugarolas, Fromion & Safonov, ACC ’98

Unfalsified adaptive missile autopilot:
• discovers stabilizing control gains

as it flies, nearly instantaneously
• maintains precise sure-footed control

Brugarolas, Fromion and Safonov, ACC98

46

General Recipe: Fulfill Specification Perfectly

1. Learn a Forward Model

2. Repeat until at least one good control law was generated:

1. Generate Control Law randomly.

2. Run Control Law in Learned Simulator

3. If control law does better on the metric then the last, keep it!

3. Output

!

47

Problems

• Model Errors:

•If we have any errors in our model, this approach will exploit them.

• Local Minima:

•We are prone to get stuck in partially fulfilled specifications if we do anything
smarter than brute force sampling.

• Stochasticity:

•You cannot compare trials well if they are random.

!

48

Solution

• Add random noise:
• Loads of noise require more robustness and simulator errors cannot

be exploited that easily.
• Noise “washes out” the local minima.
• BUT: the Stochasticity increases ...

• Easy Fix
• Test the policy on quasi-random scenarios.
• Can be achieved by re-using the random numbers!

• Long known in the simulation community...
• E..g., by resetting the random seed of the simulator to always the

same value when testing a policy.
• Known as Pegasus (Ng et al.) but much older.

!

49

QuickTime™ and a
mpeg4 decompressor

are needed to see this picture.

Video: Inverted Helicopter

50

Further Reading

• M. G. Safonov. Focusing on the knowable: Controller invalidation and
learning. In A. S. Morse, editor, Control Using Logic-Based Switching,
pages 224–233. Springer-Verlag, Berlin, 1996.

• M. G. Safonov and T. C. Tsao. The unfalsified control concept and
learning. IEEE Trans. Autom. Control, AC-42(6):843–847, June 1997.

• Unfalsified direct adapative control of a two-link robot arm. T.-C. Tsao
and M. G. Safonov, Proc. IEEE CCA/CACSD, Kohala Coast–Island of
Hawaii, HI, August 22-27, 1999.

• Inverted autonomous helicopter flight via reinforcement learning, Andrew
Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben
Tse, Eric Berger and Eric Liang. ISER 2004.

• PEGASUS: A policy search method for large MDPs and POMDPs,
Andrew Y. Ng and Michael Jordan. UAI 2000.

51

Outline of the Lecture

1. An Example

2. Types of Models and Learning Architectures

3. Case Study A: Inverse Dynamics & Forward Kinematics

4. Case Study B: Model Learning for Operational Space Control

5. Case Study C: Model Learning for Controller Falsification

6. Final Remarks

52

Conclusion

• When directly learnable, learn the model!

• Learning inverse models often requires learning from multiple non-
convex solutions

• Inverse models are useful, if you can, learn them

• Learning good models can sometimes be very hard

