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Purpose of this Lecture

• Show different applications of supervised learning in robot learning.

• We can observe a lot of information, and model learning directly allows 
us to make use of it...

• Learning models can be easier than physical modeling as well as of 
learning control policies.

• Model-based learning: Using learned models to obtain a new policy is 
typically very data efficient!
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3. Case Study A: Inverse Dynamics & Forward Kinematics
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6. Final Remarks
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Example: Mars Rover

• Teleoperated System 
1.5 AU (1 AU = 8min) 
away.

• Most intelligence 
was still on earth.

• Key problems: 

i)getting stuck,

ii) coping with 
delays 

Hence, we need good models...
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Learning to Predict Slip

The Mars Exploration Rover Opportunity trapped in the Purgatory dune 
on sol 447. A similar slip condition can lead to mission failure. 
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A Model Learning Architecture 

A. Angelova, L. Matthies, D. Helmick, P. Perona, Slip Prediction Using Visual 
Information, Robotics: Science and Systems (RSS), 2006

Underlying model: Geometry

Terrain AppearanceSlip
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A Model Learning Architecture 

A. Angelova, L. Matthies, D. Helmick, P. Perona, Slip Prediction Using Visual 
Information, Robotics: Science and Systems (RSS), 2006

Underlying model:

Simplification:

• terrain prediction from appearance A

Classification: Clustering + Nearest Neighbor

• slip prediction from slopes G for each terrain

Regression: 2 slopes -> slip, locally weighted regression
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Outputs

If terrain type is known, prediction is almost spot on!
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Types of Models

Assume our system has the functional form

• Discrete time:

• Continuous time:

• Discrete time often easier to use            no integration needed

Four types of models become useful:
• Forward Models: Predict the future state. 
• Inverse Models: Predict the action needed to reach a state.
• Mixed Models: Predict required task elements with a forward model 

and use an inverse model for control.
• Multi-Step Models: Predict far in the future what will happen...
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Forward Models

• Predict next state:

• Dataset:

• Can be used for direct action generation:

• Forward model is a simulator!   can be used 
for long-term prediction! 

Note:  typically: 
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Inverse Models

• Predict the action needed to reach a desired 
state or any other desired outcome:

• Dataset:

• Can be used directly in control, e.g., inverse 
dynamics control:

Next desired state is represented by the desired 
acceleration
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Inverse Model Learning ...

As long as our system is an invertible function, inverse model 
learning will be useful!

Input Space Output Space
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...but is that is not true for many problems!
Why? Redundancy!!
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Mixed Model

• Assume that we can use our forward 
model to predict quantity z.

• Based on z, our model can determine 
the action a with an inverse model.

• Examples are:

i)Systems with Hysteresis

ii)Inverse Kinematics
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Multi-Step Prediction Models

Example: Imagine you are controlling the Mars Rover. In that case, you 
need to predict the effect of your actions many states ahead such that 
you can cope with the delays in the system.

Multi-step prediction vs. iterative one step prediction?

• Multi-step: only for open loop control

• Single step: error accumulates!
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Motivation for Model Learning in Robot Control

Why learn (Inverse) Kinematics Models? 

• Kinematics can be measured nearly perfectly 

• but Inverse Kinematics are expensive.

Why learn Dynamics Models: 

• Dynamics parameters are terrible to estimate for interesting systems.

• Rigid Body Dynamics are inherently incomplete.
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Example Problems in Robot Control

Forward Kinematics: 

Inverse Kinematics:

Which one is not a regression model?
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Example Problems in Robot Control

Forward Dynamics:

Continuous Time:

Discrete Time:

Discrete time vs. continuous time forward models
+ Easier to learn, less noisy data
+ Model learns non-linear effects due to integration
- only works for constant control action and fixed time step
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Example Problems in Robot Control

Inverse Dynamics:

Operational/Task Space Control: 

Which one is not a regression model?
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Model Learning Architectures

Direct Modeling
Learning is directly 
formulated as 
regression problem

Works for well defined 
input-output 
relationship
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Model Learning Architectures

Indirect Modeling
Works also for ill-
defined problems (e.g., 
differential inverse 
kinematics)

Learning is modulated 
by a the feedback error

Goal oriented, learns for 
a specific task
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Model Learning Architectures

Distal Teacher Learning
Designed for ill-defined 
problem of learning 
inverse models

Learn unique forward 
and and inverse models

Forward-model guides 
learning of the inverse 
model



Challenges in Model Learning

•High-dimensionality
•Smoothness
•Discontinuities (E.g., stiction, contacts)
•Noise/Outliers
•Missing Data
•Too large or too small datasets
•Online updates
• Incorporation of prior knowledge
•Robustness and Safety

25
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Learning to Control with Models

Analytical Rigid-Body 
Model with CAD data Offline Trained Online Trained

Nguyen-Tuong, Peters, IROS 2008 (Finalist for Best Paper Award)

Compliant, low-gain control of fast & accurate movements requires 
precise models. 
• A changing world requires adaption to altered dynamics.
• Control both directly in joint (here) and task space (next)
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Function Approximation Problem

Inverse Dynamics is a giant
function approximation problem
• Robot arm

• 3 x 7 = 21 state dimensions, 
• 7 action dimensions

• Humanoid
• 3 x 30 = 90 state dimensions

• 30 action dimensions 

• Learning in real-time!
• Online Adaptation is needed for 

unexplored areas

• Unlimited continuous stream of 
data... 

Mass Matrix
Coriolis & Centripetal Forces

Gravity

Joint Accelerations, Velocities, Positions

Torques
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Function Approximation Problem
What methods can deal with this 
problem?

• Neural networks? 
• Kernel Regression? GPs?
• Computationally expensive: only in 

offline settings

Local methods can perform online:

• Locally Weighted PLS Regression 
(LWPR)  (Schaal, Atkeson & 
Vijayakumar, 2002)

• Local Gaussian Processes (LGP) 
(Nguyen-Tuong, Peters, 2008)

Mass Matrix
Coriolis & Centripetal Forces

Gravity

Joint Accelerations, Velocities, Positions

Torques
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Local Gaussian Processes

Gaussian Processes are typically slow:              computing the inverse of 
kernel matrix

Use Local GP Models: 

• Use centers      with activation function

• Whenever                                      create new center at location

• Output function:

• Add data only to nearest center
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Local Gaussian Processes

Computational Complexity: 

• L … number of samples in local
models

• K number of local models

Fast rank-one updates of the
covariance

Improved performance due to online 
updates!
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Learning to Control: Inverse Dynamics
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Motivation

Operational space control: 
learn to control in task-space

• It requires very precise 
analytical models!

•Complex robots can often not 
be modeled sufficiently 
accurate using rigid-body 
models.

•We need to learn the models
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Joint-Space Task-Space

Why is learning the mapping                                     difficult ? 
• It requires averaging over non-convex data! 

Learning Operational Space Control

Peters & Schaal, ICML 2007 

Possible Solutions:

Linearize learned forward 
kinematics model
Bias training data to come 
from only one mode
Additional Regularization term 
to select desired solution
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Select one  solution/mode with an additional regularization

Select solution that minimizes effort

But still fulfills the control task

Compute Controllers: Basic Idea

Peters & Schaal, ICML 2007 

Joint-Space Task-Space



Compute Controllers: Basic Idea
Formalize this selection of the solution as weighted regression
problem

The weighting is smaller for data from suboptimal modes

Only one mode remains

37

weighting

Weighted maximum likelihood!

Joint-Space Task-Space



Compute Controllers: Weighted Regression

Use several local linear models  

For each model, we use a local data-set  

... where we use a reward-weighting      for each data point

The solution for     of the local models is given by a weighted linear 
regression

The controls provided by the local model:

38
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Results: Learning Operational Space Control
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Results: Learning Operational Space Control
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With a Learned Simulator

Forward
Model

Robot
action state

1. Step: Learn an 
Forward Model

2. Step: Use your favorite
Control Method

to get an good policy

Forward
Model

Policy

action state

Here, a we learn a simulator - more later
in RL! !
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Controller Falsification

Safonov: Controller Invalidation and Learning 
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General Recipe: Fulfill Specification

1. Learn a Forward Model

2. Repeat until at least one good control law was generated:

1. Generate Control Law randomly.

2. Run Control Law in Learned Simulator

3. If Control Law fails, throw it away. Otherwise: break!

3. Output
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Example: Missile (M. Safonov)

• Learns  control gains
• Adapts quickly to compensate for 

damage & failures
• Superior performance

Specified target response bound
Actual response

Commanded 
response

Brugarolas, Fromion & Safonov, ACC ’98

Unfalsified adaptive missile autopilot:
• discovers stabilizing control gains

as it flies, nearly instantaneously
• maintains precise sure-footed control 

Brugarolas, Fromion and Safonov, ACC98
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General Recipe: Fulfill Specification Perfectly

1. Learn a Forward Model

2. Repeat until at least one good control law was generated:

1. Generate Control Law randomly.

2. Run Control Law in Learned Simulator

3. If control law does better on the metric then the last, keep it!

3. Output

!
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Problems

• Model Errors:

•If we have any errors in our model, this approach will exploit them.

• Local Minima:

•We are prone to get stuck in partially fulfilled specifications if we do anything 
smarter than brute force sampling.  

• Stochasticity:

•You cannot compare trials well if they are random. 

!
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Solution

• Add random noise:
• Loads of noise require more robustness and simulator errors cannot 

be exploited that easily.
• Noise “washes out” the local minima.
• BUT: the Stochasticity increases ...

• Easy Fix
• Test the policy on quasi-random scenarios.
• Can be achieved by re-using the random numbers! 

• Long known in the simulation community...
• E..g., by resetting the random seed of the simulator to always the 

same value when testing a policy.  
• Known as Pegasus (Ng et al.) but much older.

!
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QuickTime™ and a
mpeg4 decompressor

are needed to see this picture.

Video: Inverted Helicopter
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Further Reading

• M. G. Safonov. Focusing on the knowable: Controller invalidation and 
learning. In A. S. Morse, editor, Control Using Logic-Based Switching, 
pages 224–233. Springer-Verlag, Berlin, 1996.

• M. G. Safonov and T. C. Tsao. The unfalsified control concept and 
learning. IEEE Trans. Autom. Control, AC-42(6):843–847, June 1997.

• Unfalsified direct adapative control of a two-link robot arm. T.-C. Tsao 
and M. G. Safonov, Proc. IEEE CCA/CACSD, Kohala Coast–Island of 
Hawaii, HI, August 22-27, 1999.

• Inverted autonomous helicopter flight via reinforcement learning, Andrew 
Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben 
Tse, Eric Berger and Eric Liang. ISER 2004.

• PEGASUS: A policy search method for large MDPs and POMDPs, 
Andrew Y. Ng and Michael Jordan. UAI 2000.
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Conclusion

• When directly learnable, learn the model!

• Learning inverse models often requires learning from multiple non-
convex  solutions

• Inverse models are useful, if you can, learn them

• Learning good models can sometimes be very hard 


