
1

Imitation Learning

by

Behavioral Cloning

Jan Peters
Gerhard Neumann

2

Key idea of Imitation Learning

!

3

Goal of Imitation

„learning to do an act from seeing it done’’

(Thorndike, 1898)

In ALVINN:

„reproducing the observed steering action for a

given retinal image’’

(Pomerlau,1989-1995)

!

4

Bigger Picture

Today

!

5

Purpose of this Lecture

Learning From Demonstrations

• How can we teach a robot without

programming?

Policy Representations

• Show you important characteristics of

commonly used policies

• State space vs. trajectory space view

Introduce the concept of Movement Primitives:

• How can we incorporate modularity?

• Data-driven acquisition of movements

6

Outline:

1. Learning Policies from Demonstrations by Supervised Learning

2. Policy Representations

• State-space representations

• Trajectory-based representations

3. Imitation Learning with Movement Primitives

• Dynamic Movement Primitives

• Probabilistic Movement Primitives

• Beyond a single primitive

14

Why do we need imitation?

• Very successful strategy for humans

• Learning controllers from scratch by reinforcement learning is often very

time consuming or even too difficult

• the search space may frequently be way too large for the agent to

explore it in its lifetime

• an expert takes many years to optimize his policy and a robot could

avoid his expensive training by cloning his policy

15

Already rats can imitate!

• Student rats observe companion actor

rats performing different spatial tasks

differing according to the experimental

requirements.

• After the observational training, surgical

ablation to block any further learning in

the student rat.

• The observer rats displayed exploration

abilities that closely matched the

previously observed behaviors.

Legio et al, Brain Res. Protocols, 2003

Heyes, Trends in Cog. Sciences, 2001

16

... and dolphins...

17

Infants have Imitation build in!

• Infants as young as 42 minutes old copy several facial actions (e.g.,

Meltzoff & Moore, 1977).

18

How to Demonstrate?

• Teleoperation: Use a joystick to train an RC car, a mouse for training a

Quake III player, the steering wheel of the Navlab, data gloves, etc.

• Kinesthetic Teach-In: Take the robot by the hand like a tennis teacher

teaches a tennis student.

• Vision: Video-based tracking of human beings.

• Marker-based Tracking: With markers and a basic skeleton, very

precise human data can be obtained.

• Sensuits: Suits with encoders and accelerometers attached to human

beings.

19

Basic Idea of Behavioral Cloning

• Behavioral Cloning is the simplest form of learning from demonstration

• An expert is available and supplies data traces:

• In our case, often

• The student infers a policy from these data traces, i.e.,

• In principle, this can be treated as a supervised learning problem.

20

Direct Behavioral Cloning

Standard ML techniques can simply be applied to the data set

to extract a policy

… the problem frequently boils down to a regression problem.

The clean-up effect: due to regularization, the noise in the

demonstration is no longer exhibited by the reproduction and, hence, the

clone often surpasses the quality of the expert.

14

Outline:

1. Learning Policies from Demonstrations by Supervised Learning

2. Policy Representations

• State-space representations

• Trajectory-based representations

3. Imitation Learning with Movement Primitives

• Dynamic Movement Primitives

• Probabilistic Movement Primitives

• Beyond a single primitive

15

Why do we use parametric policies?

A parametric policy is a conditional probability distribution

that chooses the actions depending on the state of the robot

• Parametric policy naturally incorporates continuous actions

• Estimate from demonstration / imitation learning

Generalize to unseen situations

• Search for improved parameters / reinforcement learning

Autonomous self improvement!

16

What are desirable properties?

• Compactness: Low number of parameters

• Learn-ability: Easy to learn from demonstration and by reinforcement

learning

• Stochasticity: Can encode exploration and variability

• Optimality: Can encode optimal behavior?

• Scalability: Can be used for a high number of DoFs?

• Modularity:

Adaptability: Reusable for new situations?

Co-activation and Blending of movements

• Useable for stroke-based and rhythmic movements

Why use a stochastic policy?

Used for exploration in reinforcement learning (later)

Can also capture variability of movements

Exploration models:

No exploration:

Uncorrelated Exploration:

Correlated Exploration:

17

Stochastic vs. deterministic policies

Exploration might also hurt

We also have to learn the variances

of the linear models

State space representation:

• Policy depends on the state and on the parameters

• Represents a globally valid policy

• Complex non-linear representations are needed

Examples:

• Neural Networks

• RBF Networks

• Gaussian Processes

• Locally Weighted Regression Models

18

State space vs. trajectory space representations

Linear controllers:

Most simple case: linear PD controller

[-] Good feature representation needs to be known

[+] Very compact representation (low number of parameters)

[+] Easy to learn (linear regression)

19

State space representations

21

Pole Balancing

Widrow and Smith (1964) used supervised learning to acquire a

pole balancing policy.

State

Action

21

Pole Balancing

Widrow and Smith (1964) used supervised learning to acquire a

pole balancing policy.

State

Action

Solved

basically by

linear

regression!!

22

Sammut’s Cessna Pilot

(Sammut et al., 1992)

Radial Basis Function (RBF) networks:

Normalized RBF:

[-] A high number of parameters

[-] Non-convex optimization

[-] Hard to scale curse of dimensionality

[+] Automatic feature construction

Alternatives: Gaussian Mixture Models (GMM), Neural Networks 9

Non-linear state space representations

23

ALVINN & Navlab in 1989-1995!

Pomerlau (1989-1995)

24

No-Hands-Across-America

ALVINN allowed the Navlab vehicle of CMU’s robotics institute to

drive 2796km autonomously as part of their ’No-Hands-Across-

America’ Tour in 1995.

25

States and Actions

State:

Camera

Image

Action:

Steering

Wheel,

Brakes, Gas

26

Intelligence

Function Approximator:

A Two-Layered

Neural Network

26

Intelligence

Function Approximator:

A Two-Layered

Neural Network

JUST

(nonlinear)

REGRESSION!

27

Video from ALVIN

10

State space representations

Represent controller in a low-dimensional manifold

E.g. Eigenpostures

for walking

(Grimes, Rashid, & Rao, NIPS 2007)

28

Doubts on Direct Behavioral Cloning from

State-Action Pairs

• It becomes brittle for larger state-spaces unless you have a task-

appropriate representation.

• Frequently leads to catastrophic failures if the controller has not been

trained in this area of the state-action space (Sammut, 2010) or if there

have been small changes in the system (Camacho & Michie, 1995).

• Reproduction of single human teachers always works best (Camacho

& Michie, 1995).

• There is no guarantee that the reproduction is meaningful, nor an

interpretation of behavior.

• The data is treated as if it was i.i.d.

• We do not know whether we can also reproduce the long-term

behavior!

• Only learning of individual motions is „easy“.

Time-dependent representation:

Policy also depends on time, e.g., follow a specific trajectory

For the same time step, the robot is often in similar states

Simple local models are often sufficient!

32

State space vs. trajectory space representations

For example: Time-dependent linear feedback controllers

• Time dependent basis functions, e.g., normalized RBF functions

• Scales quadratically with # DoF D:

• Equivalent to PD-trajectory tracking with time-varying controller gains

• Variable stiffness controllers

• Locally optimal representation (why we will see in the next lectures!)

11

Time-dependend representations

Trajectory Generators:

Directly learn desired trajectory

Use feedback controller to follow trajectory

where typically and are hand tuned diagonal matrices

Possible Trajectory Representations:

• Splines

• Linear basis function models (RBFs)

• Dynamical Systems

12

Trajectory-based representations

35

Outline:

1. Learning Policies from Demonstrations by Supervised Learning

2. Policy Representations

• State-space representations

• Trajectory-based representations

3. Imitation Learning with Movement Primitives

• Dynamic Movement Primitives

• Probabilistic Movement Primitives

• Beyond a single primitive

What are movement primitives?

Movement primitives are a compact representation of a movement

Often represented as parametrized trajectory generator

Imitation Learning with trajectory generators

By learning the desired trajectory, we also learn the desired long term

behavior!

However, we still have to learn how to follow this trajectory

If we do not have good trajectory tracking controllers, it does not work

Movement Primitives

42

Dynamical systems as Trajectory Generators

Dynamical systems can be used to represent trajectories

Integrating the dynamical system results in a trajectory

• What movement can a

differential equation encode?

• Example: First order linear

dynamical system:

44

What movements can a differential

equation encode?

Linear differential equations:

• well-defined behavior

• But: limited class of movements

Second order linear dynamical system:

45

How can we make it more representative?

Use non-linear dynamical systems ?

• Can represent more complex

behavior

• Can also get unstable!

46

Non-linear dynamical systems

Different behaviors might emerge…

47

Movements as dynamical systems

49

Dynamic Movement Primitives (DMPs)

We can encode desirable properties such as:

• stability

• perturbation robustness

• periodic and point-to-point behaviors

• Attractors that have rather complex shape

• Easy to learn

• Coupling of a high number of DoFs

• Timing, temporal scaling

• Generalization (structural equivalence for parameter changes)

DMPs: [Ijspeert, Nakanishi & Schaal, NIPS 2003, Schaal, Peters, Nakanishi, Ijspeert, ISRR 2003

50

Point-to-Point Movements

as Dynamic Systems

Time [s]

y dy/dt

goal g

T T

E.g., for a one degree-of-freedom movement, start with
a simple damped spring model

(Ijspeert, Nakanishi & Schaal, NIPS 2003; Schaal, Peters, Nakanishi, Ijspeert, ISRR 2003)

51

Dynamic Movement Primitives

How can we encode a desired behavior?

Add a forcing function to obtain a moving attractor

The forcing function encodes the desired additional

acceleration profile

… learnable function

(Ijspeert, Nakanishi & Schaal, NIPS 2003; Schaal, Peters, Nakanishi, Ijspeert, ISRR 2003)

52

Dynamic Movement Primitives

How can we encode a temporal scaling?

Add a phase variable to replace time

Also uses dynamical system to model phase z

… temporal scaling variable

(Ijspeert, Nakanishi & Schaal, NIPS 2003; Schaal, Peters, Nakanishi, Ijspeert, ISRR 2003)

55

Adapting the temporal scaling…

P
h
a
s
e

Tr
a
je

c
to

ry

higher higher movement speed

54

Representation of the forcing function

How to represent f?

Normalized RBF basis functions

Matrix Form:

For

A DMP is stable per construction as the forcing function
vanishes it is just a standard PD for

54

Representation of the forcing function

Integrating the dynamical system leads to the trajectory

53

Dynamic Movement Primitives

For multi-DoF robots, we use an individual DMP per DoF

Phase variable z is shared

Coupling between joints due to the shared phase

For periodic movements, we can use periodic phase variables

(Ijspeert, Nakanishi & Schaal, NIPS 2003; Schaal, Peters, Nakanishi, Ijspeert, ISRR 2003)

yd
d

zdz

55

Adapting the meta-parameters…

Adapting the goal attractor

Changes final position

Adapting the temporal scaling

P
h
a
s
e

Tr
a
je

c
to

ry
Tr

a
je

c
to

ry

56

Imitation Learning with DMPs

Given:

• A desired trajectory and its derivatives

• A goal attractor g (e.g. final position of trajectory)

• Parameters: (typically fixed)

• Temporal Scaling : Adjusted to movement duration

Algorithm:

• Compute target values for each time step

• Compute shape parameters by linear (ridge) regression

(Ijspeert, Nakanishi & Schaal, NIPS 2003; Schaal, Peters, Nakanishi, Ijspeert, ISRR 2003)

57

Example: A Tennis Backhand

Rhythmic Motor Primitives

(Kober & Peters, ICRA 2009)

59

Fast Coupling between System and Gait

Important properties of movement primitive representations

Data-Driven: easily learnable from demonstrations

Generalization: easily adaptable to a new situation

Combination: Co-activate multiple primitives to solve a combination of

tasks

Temporal Scaling: Modulate the execution speed of the movement

Coupling: Represent the coupling between a high number of joints

Variability: Reproduce the stochasticity in the demonstrations

Optimality: Can we represent optimal behavior?

Can be applied for rhythmic and stroke-based movements

Movement Primitives

What we have so far…

Data-Driven: Yes

Generalization: Only adapt final positions

Combination: No idea how…

Temporal Scaling: Yes

Coupling: Yes, but only the mean is coupled, no correlations

Variability: No

Optimality: Is following a single trajectory really optimal? No

Can be applied for rhythmic and stroke-based movements: Yes

Movement Primitives

06.12.17 | Gerhard Neumann | TU Darmstadt | Talk Karlsruhe | 57

Probabilistic Movement Primitives

Stochastic representation of trajectories:

Use to represent a single trajectory

Learn a distribution over the vectors

Integrate out to obtain

Why is this useful?

We can also represent uncertainty

Uncertainty gives us information on

importance of time points

We can apply probabilistic operations

67

How to represent trajectory distributions?

Representation of a single trajectory

Phase-dependent basis:

For example, normalized Gaussian basis functions

Probabilistic model:

Trajectory distribution: distribution over the parameters

How to represent trajectory distributions?

You can always rely on old friends…

Lets use a Gaussian:

Computing the trajectory distribution is now easy

Hence, we can easily evaluate mean and variance for any time point

 68

How to represent trajectory distributions?

Hence, we can easily evaluate mean and variance for any time point

68

How to represent trajectory distributions?

How can we encode a distribution over multiple DoFs?

Use a concatenated weight and trajectory vector and block-diagonal

basis matrix

The same linear relation holds:

We use a distribution over the parameters of all DoFs

For a single time step:

Covariance matrix encodes correlation between the joints

68

from that exactly reproduces the given trajectory
distribution (mean and variances)

69

Trajectory distribution tracking

How do we use a trajectory distribution for robot control?

We can obtain a time-varying stochastic feedback-controller in closed form

Same structure as optimal controllers for linear(ized) systems

But it needs an accurate model

DMPs ProMPsOptimal control

06.12.17 | Gerhard Neumann | TU Darmstadt | Talk Karlsruhe | 63

Generalization via Conditioning

Generalization: Change intermediate or end-point of the movement

We can condition on reaching position at time-step t

New trajectory distribution is obtained by Bayes

theorem

Closed-form solution for Gaussian trajectory distributions

ProMPsDemonstration Dynamic MPs

06.12.17 | Gerhard Neumann | TU Darmstadt | Talk Karlsruhe | 64

Combination of Movement Primitives

Modularity: Combine primitives to solve a combination of tasks

Implemented as product of distributions:

„Intersection“ of trajectory distributions

Area, in which all distributions have

high probability

i-th movement primitive

activation factors

Computed in closed-form for

Gaussian distributions

x

=
C
o
m
b
in
a
ti
o
n

Experiments: Co-Activation

7-link planar robot arm, controlled by inverse dynamics

• Trained 2 movements for reaching different via-points at different

time steps

• Combination of the movements reaches all 2 via-points

72

Movement 1

Movement 2

Combination

Experiments: Blending and temporal scaling

7-link KUKA robot arm, playing maracas

• Record rhythmic movements to produce sounds

• Blend between different rhythmic movements

73

Maracas Temporal scaling Blending

06.12.17 | Gerhard Neumann | TU Darmstadt | Talk Karlsruhe | 67

Case Study: Robot Hockey

7link KUKA robot arm, playing hockey

Train 2 primitives with high variance in shooting angle or in distance

Product of the primitives:

Combination of both tasks

Conditioning to select the

shooting angle

Demonstration 1 Demonstration 2

YesYes

What we have so far…

Data-Driven: Yes

Generalization: Yes

Combination: Yes

Temporal Scaling: Yes

Coupling: Yes

Variability: Yes

Optimality: Yes

Can be applied for rhythmic and stroke-based movements: Yes

Movement Primitives

60

Libraries of Primitives

One primitive is not enough…!!

What we want:

61

Imagine the following situation...

62

What about many primitives?

Forehand 1 Forehand 2 Smash Backhand 1

Incoming

Ball?

Opponent’s

Movement?

Own

position?

+

Desired Behavior

Prior Opponent

Game Play?

Gating

Network

63

What you can do with it...

29

Core Open Questions in Imitation Learning

• What to Imitate? The data traces will contain outliers, redundant data,

data that is irrelevant to the task. How can the system extract the relevant

components? Imitate on which level of abstraction?

• How to Imitate? body of the teacher body of the student

„Correspondence Problem“.

• When to Imitate? Not all behavior in a data stream may be suited for

imitation. Untackled questions

• Whom to Imitate? If a scene with several actors is observed, the correct

one needs to be extracted. Untackled questions

(Nehaniv & Dautenhan, 2001)

30

Imitation Learning

Imitation

Problems of Imitation Learning

• Correspondence Problem ➜ requires reinforcement learning

• Imperfect demonstrations ➜ require reinforcement learning

• Intent identification ➜ requires inverse reinforcement learning

Summary…

What you should know…

• State-space representations versus trajectory-based policy

representations

• What is imitation learning and when does it fail?

• What are the main ideas of using movement primitives?

• Why do use dynamical systems? Advantages/Disadvantages?

• Why do use a probabilistic representation?

76

