
Robot Learning
Winter Semester 2017/2018, Homework 1

Prof. Dr. J. Peters, D. Tanneberg, M. Ewerton

Total points: 68 + 10 bonus
Due date: Wednesday, 15 November 2017 (before the lecture)

Name, Surname, ID Number

Problem 1.1 Robotics in a Nutshell [12 Points]

You are considering to buy a new multi-purpose robot platform. Its kinematic chain has two rotational q{1,3} and two
linear q{2,4} degrees of freedom (DoFs), as shown in the figure below. These four joints are actuated with forces and
torques of ui , i ∈ {1,2, 3,4}. A gripper is mounted on the end of the robot, indicated by the letter E. The robot’s base is
mounted on a table. We assume that the base Cartesian coordinates at the mount are xbase = [0, 0,0].
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a) Forward Kinematics [2 Points]

Compute the kinematic transformation in the global coordinate system from the base xbase to the end-effector E.
Write the solution for the xend-eff = [x , y, z]T according to the joint values qi , where i ∈ {1,2, 3,4}.

b) Inverse Kinematics [2 Points]

Define briefly in your own words the inverse kinematics problem in robotics. Can we always accurately model the
inverse kinematics of a robot with a function?
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c) Differential Kinematics [4 Points]

Compute the Jacobian matrix J (q) of the robot such that ẋ = J (q) q̇ , where q̇ is the first time derivatives of the
state vector q of the robot. Explain in a sentence the physical meaning of the Jacobian.

d) Singularities [3 Points]

What is the kinematic singularity in robotics? How can you detect it? When does our robotic arm, which was
defined above, enter a kinematic singularity?

e) Workspace [1 Points]

If your task is to sort items placed on a table, would you buy this robot? Briefly justify your answer.
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Problem 1.2 Control [26 Points + 5 Bonus ]

In robotic locomotion it is common to abstract from the robot by using inverted pendulum models. In this exercise we
will use a planar double inverted pendulum to test different control strategies. Our robot can be controlled by specifying
the torque u= [u1, u2] of its motors. Consider that in mechanical systems the torque u is a function of the joint positions
q , velocities q̇ and accelerations q̈ , as given by

u = M (q) q̈ + c (q , q̇) + g (q) ,

where M denotes the inertial matrix, c (q , q̇) the Coriolis and centripetal forces, and g the gravity terms. In the following
exercises assume that these terms are given.

For the programming exercises you will use the attached code. We provide skeletons for controlling the system either in
joint space (my_ctl.py) or in task space (my_taskSpace_ctl.py) and a basic functionality for plotting. You can invoke
either mode by running jointCtlComp.py or taskCtlComp.py respectively. Attach a printout with plots and a snippet of
your source code for each programming exercise.

a) PID Controller [2 Points]

What is the form of a proportional-integral-derivative (PID) controller and how could you use it to control a robot,
i.e. what physical quantities could you control? Name one positive and one negative aspect of PID controllers.
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b) Gravity Compensation and Inverse Dynamics Control [4 Points]

Suppose that you would like to create a control law to set the joint angles on the double inverted pendulum model
by controlling the torque of the motors. Write a feedback control law which additionally gravity compensates and
then extend it to full inverse dynamics control.
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c) Comparison of Different Control Strategies [12 Points]

In the following exercise you will investigate the differences of the following control algorithms, P, PID, PD with
gravity compensation, and full inverse dynamics. The double pendulum is initiated hanging down, with state
qstart = [−π, 0]. We simulate the system with a time-step d t = 0.002 seconds using symplectic Euler integration
and run the simulation for tend = 3s.

Implement the control laws by filling the skeleton file my_ctl.py. Use the following feedback gains KP = 60, KD =
10, KI = 0.1 for the first joint and KP = 30, KD = 6, KI = 0.1 for the second one. The target state of the double
pendulum is set to qdes = [−π/2,0].

Create (max. 4) plots that compare the different control strategies and analyze the results. It is your choice how
to illustrate your results. In your analysis you should include a discussion on the overall performance of each
controller. Which controllers manage to go to the desired point, and how does the choice of a controller affects
the behavior of the second joint of the pendulum? Additionally discuss which controller you would choose and
why. The provided code is able to generate plot but feel free to modify it if you like. Points will be deducted for
confusing plots. Do not forget to include your source code in your solutions.
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d) Tracking Trajectories [4 Points]

Repeat the same experiment but this time use the provided time-varying target trajectory. Create (max 4) plots that
compare the different control strategies and analyze the results. In your analysis discuss the overall performance
and which controllers track the desired trajectory nicely. Additionally discuss which controller you would choose
and why.

e) Tracking Trajectories — High Gains [4 Points]

Repeat the same experiment (using the provided trajectory) but this time multiply the gains by ten. Create plots
that compare the different control strategies and analyze the results. In your analysis discuss the overall perfor-
mance and compare it to the previous case. Are there any drawbacks of using high gains?
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f) Task Space Control [5 Bonus Points]

The robot must now reach a desired position in task space xend = [−0.35,1.5]. In class we derived the Jacobian
transpose, Jacobian pseudo-inverse, and Jacobian pseudo-inverse with damping methods. All of them are im-
plemented in my_taskSpace_ctl.py. You are asked to implement also the null-space task prioritization method
with a null-space resting posture q = [0,π]. Run the simulation and plot the initial and final configuration of the
robot. Then, change the resting posture to q = [0,−π] and redo the plots. Analyze in a couple of sentences your
observation. Use the same damping coefficient 10−6 and include a code snippet to your solutions.
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Problem 1.3 Machine Learning in a Nutshell [30 Points + 5 Bonus ]

For this exercise you will use a dataset, divided into training set and validation set (both attached). The first row is the
vector x and the second row the vector y .
Based on these data, we want to learn a function mapping from x values to y values, of the form y = θ Tφ (x ).

For all questions requiring a plot, you also have to provide a snippet of your code!

You are allowed to use scipy.spatial.distance.cdist and scipy.exp.

a) Supervised vs Unsupervised Learning [2 Points]

Briefly explain the differences between supervised and unsupervised learning. Is the above a supervised or unsu-
pervised learning problem? Why?

b) Regression vs Classification [2 Points]

Supervised learning is typically divided into regression and classification tasks. Briefly explain what are the differ-
ences between regression and classification.

c) Linear Least Squares [4 Points]

Consider the training set above to calculate features φ (x) of the form [sin
�

2i x
�

]i=0...n−1. Compute the feature
values when n is 2, 3 and 9 (i.e., when using 2, 3 and 9 features). Use the linear least squares (LLS) method to
predict output values y for input values x ∈ {0, 0.01,0.02, . . . , 6} using the different numbers of features. Attach a
single plot showing the three resulting predictions when using 2, 3 and 9 features (i.e., having x and y as axes).
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d) Training a Model [2 Points]

The root mean square error (RMSE) is defined as RMSE=
È

1
N

∑N
i=1

�

y true
i − ypredicted

i

�2
, where N is the number of

data points. Using the LLS algorithm implemented in the previous exercise, train a different model for each of the
number of features between 1 and 9, i.e., [1,2,3...,9]. For each of these models compute the corresponding RMSE
for the training set. Attach a plot where the x-axis represents the number of features and the y-axis represents the
RMSE.

e) Model Selection [4 Points]

Using the models trained in the previous exercise, compute the RMSE of each of these models for the validation
set.
Compare in one plot the RMSE on the training set and on the validation set. How do they differ? Can you explain
what is the reason for these differences? (Hint: remember the plot from Exercise c) ) What is the number of
features that you should use to achieve a proper modeling?
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f) Cross Validation [8 Points]

K-fold cross validation is a common approach to estimate the test error when the dataset is small. The idea is to
randomly divide the training set into K different datasets. Each of these datasets is then used as validation set for
the model trained from the remaining K −1 datasets. The resulting vector of errors E = [e1...eK] can now be used
to compute a distribution (typically by fitting a Gaussian distribution). When K is equal to the number of data
points, K-fold cross validation takes the name of leave-one-out cross validation (LOO).

Apply LOO using only the training set and compute the mean/variance of the RMSE for the learned models. Repeat
for the models with the number of features between 1 and 9, i.e., [1,2,3...,9]

Attach a plot showing the mean/variance (as a distribution) of the RMSE computed using LOO and having on the
x-axis the number of features and on the y-axis the RMSE. Which is the optimal number of features now? Discuss
the results obtained and compare against model selection using train/validation set.

g) Kernel Functions [2 Points]

A kernel function k
�

xi , x j

�

is given by the inner product of two feature vectors. Write out the kernel function for
the previous set of features where n= 3.
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h) Kernel Regression [6 Points]

The kernel function in the previous question required explicit definition of the type and number of features, which
is often difficult in practice. Instead, we can use a kernel that defines an inner product in a (possibly infinite
dimensional) feature space.
Using the training set and an exponential squared kernel k

�

x i , x j

�

= exp
�

− 1
σ2 ‖x i − x j‖2

�

with σ = 0.15, predict
output values y for input values x ∈ {0,0.01, . . . , 6}. Attach a plot of your results.
(Hint: use standard kernel regression: f (x ) = kTK−1 y with K i j = k

�

x i , x j

�

and k i = k (x , x i)).

Compute the RMSE on the validation set for the kernel regression model. Compare it with the RMSE of the best
LLS model you found.
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i) Derivation [5 Bonus Points]

Explain the concept of ridge regression and why/when it is used. Derive its final equations presented during the
lecture.
(Hint: remind that for normal linear regression the cost function is J = 1

2

∑N
i=1 ( f (x i)− yi)

2 )
(Hint 2: use matrix notation)
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