
Robot Learning
Winter Semester 2017/2018, Homework 2

Prof. Dr. J. Peters, D. Tanneberg, M. Ewerton

Total points: 46 + 20 bonus
Due date: Wednesday, 20 December 2017 (before the lecture)

Name, Surname, ID Number

Problem 2.1 Model Learning [24 Points + 4 Bonus]

The new and improved Spinbot 2000 is a multi-purpose robot platform. It is made of a kinematic chain consisting of a
linear axis q1, a rotational axis q2 and another linear axis q3, as shown in the figure below. These three joints are actuated
with forces and torques of u1, u2, and u3. Different end effectors, including a gripper or a table tennis racket, can be
mounted on the end of the robot, indicated by the letter E. Thanks to Spinbot’s patented SuperLight technology, the
robot’s mass is distributed according to one point mass of m1 at the second joint and another point mass of m2 at the end
of the robot E.

Top View

X

Y

q

E

q

3

2

Side View

Z

q
2

1

3

q

q

E

m
m

2
1

The inverse dynamics model of the Spinbot is given as

u1 = (m1 +m2) (q̈1 + g) ,

u2 = m2

�

2q̇3q̇2q3 + q2
3 q̈2

�

,

u3 = m2

�

q̈3 − q3q̇2
2

�

.

We now collected 100 samples from the robot while using a PD controller with gravity compensation at a rate of 500Hz.
The collected data (see spinbotdata.txt) is organized as follows

t1 t2 t3 . . .

q1[m]
q2[rad]
q3[m]
. . .
q̈3[m/s2]
u1[N]
u2[Nm]
u3[N]

1

Name, Surname, ID Number

Given this data, you want to learn the inverse dynamics of the robot to use a model-based controller. The inverse

dynamics of the system will be modeled as u = φ (q , q̇ , q̈)
T
θ , where φ (q , q̇ , q̈) are features and θ are the parameters.

a) Problem Statement [2 Points]

What kind of machine learning problem is learning an inverse dynamics model? What kind of information do you
need to solve such a problem?

b) Assumptions [5 Points]

Which standard assumption has been violated by taking the data from trajectories?

c) Features and Parameters [4 Points]

Assuming that the gravity g is unknown, what are the feature matrix φ and the corresponding parameter vector
θ for u = [u1, u2, u3]

T
? (Hint: you do not need to use the data at this point)

d) Learning the Parameters [2 Points]

You want to compute the parameters θ minimizing the squared error between the estimated forces/torques and
the actual forces/torques. Write down the matrix equation that you would use to compute the parameters. For
each matrix in the equation, write down its size.
Then, compute the least-squares estimate of the parameters θ from the data and report the learned values.

2

Name, Surname, ID Number

e) Recovering Model Information [4 Points]

Can you recover the mass properties m1 and m2 from your learned parameters? Has the robot learned a plausible
inverse dynamics model? Explain your answers.

f) Model Evaluation [7 Points]

Plot the forces and torques predicted by your model over time, as well as those recorded in the data and comment
the results. Is the model accuracy acceptable? If not, how would improve your model? Use one figure per joint.

3

Name, Surname, ID Number

g) Models for Control [4 Bonus Points]

Name and describe three different learned models types and their possible applications.

4

Name, Surname, ID Number

Problem 2.2 Trajectory Generation with Dynamical Systems [22 Points + 16 Bonus]

In this exercise we will use the Dynamic Motor Primitives (DMPs), described by the following dynamical system,

ÿ = τ2 (α (β (g − y)− (ẏ/τ)) + fw (z)) , (1)

ż = −ταzz, (2)

where y is the state of the system, ẏ and ÿ are the first and second time derivatives, respectively. The attractor’s goal
is denoted by g and the forcing function by fw. The parameters α and β control the spring-damper system. The phase
variable is denoted by z and the temporal scaling coefficient by τ. The forcing function fw is given by

fw (z) =

∑K
i=0φi (z)wiz
∑K

j=0φ j (z)
=ψ (z)T w , with ψi (z) =

φi (z) z
∑K

j=1φ j (z)
, (3)

where the basis functions φi (z) are Gaussian basis given by

φi (z) = exp
�

−0.5 (z − ci)
2 /hi

�

, (4)

where the centers c are equally distributed in the phase z, and the width h is an open parameter. For the programming
exercises a basic environment of a double link pendulum is provided, as well as the computation of the ψi (z).

a) Similarities to a PD controller [2 Points]

Transform Equation (1) to have a similar structure to a PD-controller,

ÿz = KP

�

ydes
z − yz

�

+ KD

�

ẏdes
z − ẏz

�

+ u f f (5)

and write down how the following quantities Kp, Kd , ydes
z and ẏdes

z look like in terms of the DMP parameters. Do
not expand the forcing function fw (z) at your solutions.

b) Stability [2 Points]

Show why the DMPs are stable when t →∞ and what would the equilibrium point be.

5

Name, Surname, ID Number

c) Double Pendulum - Training [12 Points]

Implement the DMPs and test them on the double pendulum environment. In order to train the DMPs you have
to solve Equation (1) on the forcing function. Before starting the execution, set the goal g position to be the
same as in the demonstration. Then, set the parameters to α = 25,β = 6.25,αz = 3/T,τ = 1. Use N = 50 basis
functions, equally distributed in z. Use the learned DMPs to control the robot and plot in the same figure both the
demonstrated trajectory and the reproduction from the DMPs. You need to implement the DMP-based controller
(dmpCtl.py) and the training function for the controller parameters (dmpTrain.py). To plot your results you can
use dmpComparison.py. Refer to example.py to see how to call it. Attach a snippet of your code.

d) Double Pendulum - Conditioning on the Final Position [3 Points]

Using the trained DMPs from the previous question, simulate the system with different goal positions: first with
qt=end = {0, 0.2} and then with qt=end = {0.8,0.5}. Generate one figure per DoF. In each figure, plot the demon-
strated trajectory and the reproduced trajectories with different goal positions. How do you interpret the result?

6

Name, Surname, ID Number

e) Double Pendulum - Temporal Modulation [3 Points]

Using the trained DMPs from the previous question, simulate the system with different temporal scaling factors
τ= {0.5,1.5}. Generate one figure per DoF and explain the result.

f) Probabilistic Movement Primitives - Radial Basis Function [3 Bonus Points]

We now want to use ProMPs. Before we train them, we need to define some basis functions. We decide to use
N = 30 radial basis functions (RBFs) with centers uniformly distributed in the time interval [0−2b, T+2b], where
T is the end time of the demonstrations. The bandwidth of the Gaussian basis (std) is set to b = 0.2. Implement
these basis functions in getProMPBasis.py. Do not forget to normalize the basis such at every time-point they
sum-up to one! Attach a plot showing the basis functions in time and a snippet of your code.

7

Name, Surname, ID Number

g) Probabilistic Movement Primitives - Training [7 Bonus Points]

In this exercise you will train the ProMPs using the imitation learning data from getImitationData.py and the
RBFs defined in the previous question. Modify the proMP.py in order to estimate weight vectors wi reproducing the
different demonstrations. Then, fit a Gaussian using all the weight vectors. Generate a plot showing the desired
trajectory distribution in time (mean and std) as well as the trajectories used for imitation. Attach a snippet of
your code.

h) Probabilistic Movement Primitives - Number of Basis Functions [2 Bonus Points]

Evaluate the effects of using a reduced number of RBFs. Generate two plots showing the desired trajectory dis-
tribution and the trajectories used for imitation as in the previous exercise, but this time use N = 20 and N = 10
basis functions. Briefly analyze your results.

8

Name, Surname, ID Number

i) Probabilistic Movement Primitives - Conditioning [4 Bonus Points]

Using Gaussian conditioning calculate the new distribution over the weight vectors wi such as the trajectory has
a via point at position y∗ = 3 at time tcond = 1150 with variance Σy∗ = 0.0002. Use again 30 basis functions.
Assuming that the probability over the weights is given by N

�

w |µw,Σw

�

and the probability of being to that
position is given by N

�

y∗|Φw ,Σy∗
�

, show how the new distribution over w is computed (how does the mean
and variance look like)?
Then, in a single plot, show the previous distribution (learned from imitation) and the new distribution (after
conditioning). Additionally, sample K = 10 random weight vectors from the ProMP, compute the trajectories and
plot them in the same plot. Analyze briefly your results and attach a snippet of your code.

9

	Model Learning [24 Points + 4 Bonus]
	Trajectory Generation with Dynamical Systems [22 Points + 16 Bonus]

