
Robot Learning
Winter Semester 2017/2018, Homework 3

Prof. Dr. J. Peters, D. Tanneberg, M. Ewerton

Total points: 54 + 8 bonus
Due date: Wednesday, 17 January 2018 (before the lecture)

Name, Surname, ID Number

Problem 3.1 Optimal Control [20 Points]

In this exercise, we consider a finite-horizon discrete time-varying Stochastic Linear Quadratic Regulator with Gaussian
noise and time-varying quadratic reward function. Such system is defined as

s t+1 = At s t + Bt at + w t , (1)

where s t is the state, at is the control signal, w t ∼N
�

bt ,Σt

�

is Gaussian additive noise with mean bt and covariance
Σt and t = 0, 1, . . . , T is the time horizon. The control signal at is computed as

at = −K t s t + kt (2)

and the reward function is

rewardt =

¨

− (s t − r t)
T Rt (s t − r t)− aT

t H t at when t = 0, 1, . . . , T − 1

− (s t − r t)
T Rt (s t − r t) when t = T

(3)

Note: the notation used in Marc Toussaint’s notes “(Stochastic) Optimal Control” is different from the one used in
the lecture’s slides.

a) Implementation [8 Points]

Implement the LQR with the following properties

s0 ∼N
�

0, I
�

T = 50

At =
�

1 0.1
0 1

�

Bt =
�

0
0.1

�

bt =
�

5
0

�

Σt =
�

0.01 0
0 0.01

�

K t =
�

5 0.3
�

kt = 0.3

H t = 1 Rt =



















�

100000 0

0 0.1

�

if t = 14 or 40
�

0.01 0

0 0.1

�

otherwise
r t =



















�

10

0

�

if t = 0, 1, . . . , 14
�

20

0

�

if t = 15, 16, . . . , T

Execute the system 20 times. Plot the mean and 95% confidence (see “68–95–99.7 rule” and mat-
plotlib.pyplot.fill_between function) over the different experiments of the state s t and of the control signal
at over time. How does the system behave? Compute and write down the mean and the standard deviation of
the cumulative reward over the experiments. Attach a snippet of your code.

1



Name, Surname, ID Number

b) LQR as a P controller [4 Points]

The LQR can also be seen as a simple P controller of the form

at = K t

�

sdes
t − s t

�

+ kt , (4)

which corresponds to the controller used in the canonical LQR system with the introduction of the target sdes
t .

Assume as target

sdes
t = r t =



















�

10

0

�

if t = 0, 1, . . . , 14
�

20

0

�

if t = 15, 16, . . . , T
(5)

Use the same LQR system as in the previous exercise and run 20 experiments. Plot in one figure the mean
and 95% confidence (see “68–95–99.7 rule” and matplotlib.pyplot.fill_between function) of the first dimension
of the state, for both sdes

t = r t and sdes
t = 0.

2



Name, Surname, ID Number

c) Optimal LQR [8 Points]

To compute the optimal gains K t and k t , which maximize the cumulative reward, we can use an analytic
optimal solution. This controller recursively computes the optimal action by

a∗t = −
�

H t + BT
t V t+1Bt

�−1
BT

t (V t+1 (At s t + bt)− v t+1) , (6)

which can be decomposed into

K t = −
�

H t + BT
t V t+1Bt

�−1
BT

t V t+1At , (7)

k t = −
�

H t + BT
t V t+1Bt

�−1
BT

t (V t+1bt − v t+1) . (8)

where

M t = Bt

�

H t + BT
t V t+1Bt

�−1
BT

t V t+1At (9)

V t =

¨

Rt + (At −M t)
T V t+1At when t = 1...T − 1

Rt when t = T
(10)

v t =

¨

Rt r t + (At −M t)
T (v t+1 − V t+1bt) when t = 1...T − 1

Rt r t when t = T
(11)

Run 20 experiments with sdes
t = 0 computing the optimal gains K t and k t . Plot the mean and 95% confi-

dence (see “68–95–99.7 rule” and matplotlib.pyplot.fill_between function) of both states for all three different
controllers used so far. Use one figure per state. Report the mean and std of the cumulative reward for each
controller and comment the results. Attach a snippet of your code.

3



Name, Surname, ID Number

Problem 3.2 Reinforcement Learning [34 Points + 8 Bonus ]

You recently acquired a robot for cleaning you apartment but you are not happy with its performance and you decide
to reprogram it using the latest AI algorithms. As a consequence the robot became self-aware and, whenever you are
away, it prefers to play with toys rather than cleaning the apartment. Only the cat has noticed the strange behavior
and attacks the robot. The robot is about to start its day and its current perception of the environment is as following

Environment

O O O O

D O D

D O O

O O O O O O O O

D D O T D

O D D O W

W O O O D O O

W O D O D

D C O D

2 4 6 8 10

1

2

3

4

5

6

7

8

9

The black squares denote extremely dangerous states that the robot must avoid to protect its valuable sensors. The
reward of such states is set to rdanger = −105 (NB: the robot can still go through these states!). Moreover, despite
being waterproof, the robot developed a phobia of water (W), imitating the cat. The reward of states with water is
rwater = −100. The robot is also afraid of the cat (C) and tries to avoid it at any cost. The reward when encountering
the cat is rcat = −3000. The state containing the toy (T) has a reward of rtoy = 1000, as the robot enjoys playing
with them. Some of the initial specification still remain, therefore the robot receives rdirt = 35 in states with dirt (D).

State rewards can be collected at every time the robot is at that state. The robot can perform the following actions:
down, right, up, left and stay.

In our system we represent the actions with the an ID (0, 1, 2, 3, 4), while the grid is indexed as {row,column}. The
robot can’t leave the grid as it is surrounded with walls. A skeleton of the gridworld code and some plotting functions
are available at the webpage. For all the following questions, always attach a snippet of your code.

a) Finite Horizon Problem [14 Points]

4



Name, Surname, ID Number

In the first exercise we consider the finite horizon problem, with horizon T = 15 steps. The goal of the robot
is to maximize the expected return

Jπ = Eπ

�

T−1
∑

t=1

rt (st , at) + rT (sT )

�

, (12)

according to policy π, state s, action a, reward r, and horizon T . Since rewards in our case are independent of
the action and the actions are deterministic, Equation (12) becomes

Jπ =
T
∑

t=1

rt (st) . (13)

Using the Value Iteration algorithm, determine the optimal action for each state when the robot has 15 steps
left. Attach the plot of the policy to your answer and a mesh plot for the value function. Describe and comment
the policy: is the robot avoiding the cat and the water? Is it collecting dirt and playing with the toy? With
what time horizon would the robot act differently in state (9,4)?

5



Name, Surname, ID Number

b) Infinite Horizon Problem - Part 1 [4 Points]

We now consider the infinite horizon problem, where T =∞. Rewrite Equation (12) for the infinite horizon
case adding a discount factor γ. Explain briefly why the discount factor is needed.

c) Infinite Horizon Problem - Part 2 [6 Points]

Calculate the optimal actions with the infinite horizon formulation. Use a discount factor of γ= 0.8 and attach
the new policy and value function plots. What can we say about the new policy? Is it different from the finite
horizon scenario? Why?

6



Name, Surname, ID Number

d) Finite Horizon Problem with Probabilistic Transition Function [10 Points]

After a fight with the cat, the robot experiences control problems. For each of the actions up, left, down, right,
the robot has now a probability 0.7 of correctly performing it and a probability of 0.1 of performing another
action according to the following rule: if the action is left or right, the robot could perform up or down. If the
action is up or down, the robot could perform left or right. Additionally, the action can fail causing the robot
to remain on the same state with probability 0.1. Using the finite horizon formulation, calculate the optimal
policy and the value function. Use a time horizon of T = 15 steps as before. Attach your plots and comment
them: what is the most common action and why does the learned policy select it?

e) Reinforcement Learning - Other Approaches [8 Bonus Points]

What are the two assumptions that let us use the Value Iteration algorithm? What if they would have been
not satisfied? Which other algorithm would you have used? Explain it with your own words and write down
its fundamental equation.

7


	Optimal Control [20 Points]
	Reinforcement Learning [34 Points + 8 Bonus ]

