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Abstract

In this paper we investigate learning the tasks
of ball serving and ball bouncing. These
tasks display characteristics which are com-
mon in a variety of motor skills. To learn the
required motor skills for these tasks the robot
uses Relative Entropy Policy Search which is
a state of the art method in Policy Search
Reinforcement Learning. Our experiments
show that REPS does not only converge con-
sistently to good solutions, but also robust
solutions.

1 Introduction

Learning motor skills similar to those of human beings
poses a challenging task for robots. They are difficult
and non-trivial to learn, but are necessary for perform-
ing complex tasks under varying conditions.

There are several common aspects to motor skills: Mo-
tor skills are often target oriented. For example reach-
ing movements are often directed to specific objects.
Motor skills are often also constrained by time. As
an example, a ball has to be caught before it hits the
ground. Some tasks such as walking require periodic
motor skills, which involve repeatedly performing simi-
lar movements. Most motor skills also require feedback
to compensate for errors. For example when writing
we try to keep a constant pressure on the pen.

In this paper we will take a closer look at the mo-
tor skills of serving and bouncing a ball. Ball serving
requires the robot to hit a dropped ball to a desired
target location on the ground. Ball bouncing involves
repeatedly hitting the ball into the air while keeping
it centered above the paddle. They are good repre-
sentatives of the common aspects of motor skills men-
tioned above. Ball serving is target oriented and time
dependent while ball bouncing enhances serving with
the aspect of feedback and a periodic movement. A
detailed description of the tasks follows in Section 2.
For learning these tasks we will use the state of the

art method Relative Entropy Policy Search (REPS)
which is explained in Section 2.4.1. Furthermore we
will compare REPS to Finite Differences and evaluate
the robustness of our solution in Section 4. The ben-
efit of learning a feedback controller for ball bouncing
will also be evaluated.

2 Background

Before we come to the methods we used to learn the
ball bouncing task, we will first describe the setup of
the ball bouncing environment we used for the experi-
ments and then show how we modeled the movements
of the robot arm.

2.1 The Experiment Setup

For the experiments we used a Barrett WAM Arm with
seven degrees of freedom with a table tennis racket at-
tached as the end effector. The robot arm was simu-
lated using the SL Simulation and Real-Time Control
Software Package (Schaal, 2007). The kinematic con-
figuration of the Barrett WAM is shown in Figure 1.
For our experiments we only actuated the 4th and the
7th joint. The 4th joint was used to perform a stroke
movement, which will be explained in detail in the
next section, and the 7th joint was used to control the
motion of the ball in the x-direction.

In the ball serving task the ball was initially dropped
from the ceiling above the table tennis racket. The
robot has to perform a hitting motion to redirect the
ball to a target location on the ground. The target
locations were specified as part of the task. Given
the target location xg and the location where the ball
landed xb the reward for the ball serving task was given
by

R = −‖xg − xb‖2

In the ball bouncing task the ball was also dropped
from the ceiling. Instead of a target on the ground the
ball had to be hit back to the initial starting height
above the racket. In this way the robot and ball return
to the same state as at the start of the movement, and
the action can be performed repeatedly. Given that
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the peak of the balls trajectory is at xp and the initial
position was at xi the reward function for the ball
bouncing task was given by

R = −‖xi − xp‖2 − ‖ẋp‖2

For the ball bouncing task the ball position was limited
to the x-z plane. The learned controller should also be
robust to disturbances in the x direction.

Figure 1: The kinematic configuration of the 7-DOF
Barrett WAM Arm. The blue arrows depict the rota-
tion axes of the joints. For our experiments we actu-
ated the 4th and the 7th joint, while the other joints
were kept in their zero position.

2.2 Parametric Representation of a Stroke

The first and most intuitive parametric representation
of the stroke was a simple sinusoidal movement in the
4th joint (elbow) of the robot. The parameters of this
movement consisted only of the amplitude A of the
sine and its period T . The trajectory of the 4-th joint
for this movement is outlined in Figure 2. However,
this representation did not lead to good results.

The second approach we followed was a slightly more
sophisticated representation. That part of the move-
ment, in which the ball is hit, is still sinusoidal trajec-
tory with amplitude A and period T . Additionally we
introduced a delay phase with the parameter d before,
and a return phase after the stroke phase. So the total
movement is composed of a delay phase, a sinusoidal

Figure 2: First approach of a parametric representa-
tion of a stroke: sinusoidal trajectory of joint 4 (elbow)
with amplitude A and period T .

hitting phase, and a fixed return phase in which the
robot arm returns to its initial position. The delay
phase starts when Ball has reached its peak position.
The trajectory of the elbow joint of this representation
is depicted in Figure 2.

Figure 3: Second approach of a parametric represen-
tation of a stroke: The movement consists of three
phases: 1) a delay phase with parameter d, in which
the arm rests at its initial position. 2) the hitting
phase in which the arm follows a sinusoidal trajectory
with amplitude A and period T in joint 4 to hit the
ball.

We will show in Section 4, that we were able to achieve
good results with this representation.

2.3 PD Control

Additionally to the stroke movement in joint 4 (elbow)
of the robot, we learned a PD controller (proportional-
derivative controller) for the 7th joint, to react on
movements of the ball in x-direction. A PD controller
has the two parameters kp and kd which are applied
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to the error and the error’s derivative, respectively:

u = kp · e+ kd · ė. (1)

The error e is the difference between a desired position
xd and the ball’s position xb, analogously the error’s
derivation is the difference between a desired velocity
ẋd and the ball’s velocity ẋb (all of them are only the
x-components of positions and velocities):

u = kp(xd − xb) + kd(ẋd − ẋb). (2)

For the ball bouncing task the desired position of the
ball is xd = 0, which is centered above the racket, and
it has a velocity of ẋd = 0.

For the ball serving task the PD controller was not
used. Instead the robot selected a fixed angle for the
wrist joint throughout the trajectory. Using this joint
it is able to hit the ball in different x directions.

2.4 The Learning Method

In reinforcement learning the general setup (Sutton
and Barto, 1998) considers an agent that interacts
with its environment. The actions taken by this
agent are based on a Markov Decision Process (MDP).
Hence, if the agent is in a state s ∈ S it selects an
action a ∈ A using the policy π(a|s). The agent then
transfers to the next state s′ with the transition proba-
bility Pass′ = p(s′|s, a). This transition yields a reward
r(s, a) = Ras ∈ R for the agent.

The goal of reinforcement learning is now to find a pol-
icy that maximizes the expected reward of the agent

J(π) =
∑
s,a

µπ(s)π(a|s)Ras (3)

Here, µπ(s) denotes the probability ob the agent being
in state s, the state distribution.

Policy search methods are one group of methods to
maximize the expected reward by directly searching
for an optimal policy. However, one drawback of most
of these methods is they take only the experience of the
most recent trials into account for computing the new
policy. Hence, there is a loss of information from older
policy evaluations during the policy improvement step.

2.4.1 Relative Entropy Policy Search

To circumvent the problem of loss of information when
directly optimizing the policy, Peters et al. (2010)
proposed the relative entropy policy search (REPS)
method.

The objective function here is again the expected re-
ward, which they want to be maximized. But ad-
ditionally the Kullback-Leibler divergence or ”relative

entropy between the observed data distribution q(s, a)
and the data distribution pπ(s, a) = µπ(s)π(a|s)” (Pe-
ters et al., 2010) is constraint to an upper bound ε:

D(pπ||q) =
∑
s,a

µπ(s)π(a|s) log
µπ(s)π(a|s)
q(s, a)

≤ ε. (4)

Together with the assumption of a stationary state
distribution µπ(s) and the constraint that probabil-
ity distributions must sum to 1, they get the following
problem statement:

Problem Statement. The goal of relative entropy
policy search is to obtain policies that maximize the
expected reward J(π) while the information loss is
bounded, i.e.,

max
π,µπ

J(π) =
∑
s,a

µπ(s)π(a|s)Ras (5)

s.t. ε ≥
∑
s,a

µπ(s)π(a|s) log
µπ(s)π(a|s)
q(s, a)

(6)

∑
s′

µπ(s′)φs′ =
∑
s,a,s′

µπ(s)π(a|s)Pass′φs′ (7)

1 =
∑
s,a

µπ(s)π(a|s) (8)

Both µπ and π are probability distributions and the
features φs′ of the MDP are stationary under policy π.

3 Learning the Stroke

As we described in Section 2.2, the stroke movements
are abstracted using a parametric description. Due to
this simplification we do not have any states – or, from
another point of view, we are always in the same state,
when executing the movement. Thus we can simplify
the REPS problem statement to the following form:

Problem Statement. Maximize the expected reward
J(π) while the loss of information is bounded, i.e.,

max
π

J(π) =
∑
a

π(a)Ra (9)

s.t. ε ≥
∑
a

π(a) log
π(a)

q(a)
(10)

1 =
∑
a

π(a) (11)

From this simplified problem we can then derive the
policy update

π(a) =
q(a) exp

(
Ra
η

)
∑
a q(a) exp

(
Ra
η

) , (12)
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with the Lagrangian parameter η which we obtain from
the minimization of the dual function

g(η) = η log

(∑
a

q(a) exp

(
Ra

η

))
+ ηε. (13)

As we are using policy iteration the data distribution
q(a) is inherent in the distribution of the samples from
the old policy. Hence the sample-based policy update
becomes a weighted maximum likelihood estimation
with weight wi for the i -th sample:

wi =
exp

(
ri
η

)
∑N
i=1 exp

(
ri
η

) , (14)

where ri is the reward received by the i -th sample of
the policy. The dual function becomes then

ĝ(η) = η log

(
1

N

N∑
i=1

exp

(
ri
η

))
+ ηε, (15)

with the number of samplesN . The learning algorithm
is outlined in Algorithm 1.

4 Experiments

To evaluate REPS for learning motor skills we ran
three experiments. In the first experiment we com-
pared the performance of REPS with that of finite
differences with RPROP on the ball serving task. In
the second experiment we evaluated the effect of dif-
ferent values for ε on the performance of REPS. In the
third experiment the robot learns ball bouncing with
a feedback controller to compensate for errors.

4.1 Comparison with Finite Differences

In this experiment the robot was given the task of
serving the ball to three different locations:

xg = [0,−1.5]

xg = [1,−2]

xg = [2,−1]

Each target location was evaluated three times with
both methods. For comparison the robot used REPS
and finite differences with RPROP. For REPS the ε
was set to 1. For finite differences with RPROP the
initial step size was 0.005. The step size was increased
by a factor of 1.2 when the gradient direction stayed
the same and decreased by a factor of 0.5 when the
gradient flipped. Both methods were given 50 itera-
tions for each task and 15 samples per iteration. The
results of the experiments are shown in Figure 4.

Policy Iteration with Adapted REPS

Input: maximal information loss ε, initial policy
π0(a), number of iterations N , number of
samples M .

for k ≤ N do
Sampling:: Draw M samples ai from the

policy πk(a).
Critic: Evaluate policy

foreach sample ai, i ∈ {1, . . . ,M} do
Perfrom experiment with sample ai to
obtain reward ri.

Compute the Dual Function:

ĝ(η) = η log

(
1

N

N∑
i=1

exp

(
ri
η

))
+ ηε

Compute the Dual Function’s Derivative:

∂ĝ(η)

∂η
= log

(
1

N

N∑
i=1

exp

(
ri
η

))

− 1

η

∑N
i=1 ri exp

(
ri
η

)
∑N
i=1 exp

(
ri
η

) + ε

Optimize: η∗ = fmin BFGS(ĝ, ∂ĝ, η0).

Actor: Improve policy
New Policy is weighted maximum
likelihood estimation of samples with
weights

wi =
exp

(
ri
η∗

)
∑N
i=1 exp

(
ri
η∗

)

Algorithm 1: Policy Iteration with adapted
REPS. fmin BFGS stands for the Broyden-Fletcher-
Goldfrab-Shannon (BFGS) optimization method.

As can be seen by the plots both methods started with
the same performance as they were initialized with the
same parameters. However REPS quickly converged
to the target location. In comparison the finite differ-
ences method converged more slowly. The solutions
found by finite differences tended to perform worse
than those of REPS. This is due to finite differences
often ending in a local maximum where it simply lets
the ball drop to the ground. At this point there is no
longer a gradient and the method stops learning. This
experiment shows that REPS is more robust to getting
stuck in such a local maximum.
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Figure 4: Comparison Finite Differences with RPROP
and REPS
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Figure 5: Effect of different ε values

4.2 Effect of different values for ε

In the second experiment we investigated the effects
of changing the main parameter of the REPS method.
The evaluation was again performed using the ball
serving task. In this case the ball was always served
to the same target location.

xg = [−2,−2]

As a performance measure we looked at the rewards
achieved after 50 iterations. Again each iteration con-
sisted of 15 samples. Each ε value was tested five
times. The results of the experiment are shown in
Figure 5.

As can be seen the REPS algorithm is able to consis-
tently obtain good final rewards when using ε values
in the range 0.4 to 2. Using higher ε values seems
to have led to numerical instabilities and the method
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Figure 6: Ball trajectory without feedback controller.
A small error accumulates and would eventually lead
to the ball falling off the paddle.

does not learn. For smaller ε values the performance
gradually decreases. The wide peak of performance in-
dicates that the performance of REPS is not sensitive
to ε and can be easily tuned.

4.3 Learning Ball Bouncing

In the final experiment the robot was given the task
to robustly perform the ball bouncing task. First the
robot learned a standard hitting movement where the
ball was dropped from the initial position as usual. To
learn this hitting motion REPS was used with 50 itera-
tions, ε = 1 and 15 samples per iteration. The learned
movement was concatenated into a periodic motion ac-
cording to the time it took the ball to get back to the
initial position. The resulting ball trajectory can be
seen in Figure 6.

A small error accumulated in the x direction which
would eventually result in the ball falling off the pad-
dle. We therefore also learned a PD controller based
on the balls position and velocity in the x direction as
already described in section (2.3). To learn the gains
of the PD controller we again used REPS for 50 it-
erations. The resulting controller was evaluated by
initially dropping the ball at 2.5 cm increments across
the width of the racket. In each trial the robot suc-
cessfully managed to bounce the ball back to center
of the racket and keep bouncing it there. As an ad-
ditional test we evaluated the situation where the ball
is thrown near the edge of the paddle with a horizon-
tal speed of 1.25 m/s. The resulting ball trajectory is
shown in Figure 7.

The figure shows that even in this extreme situation
the learned controller was still able to compensate for
the error and successfully perform the ball bouncing
task.
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Figure 7: Ball trajectory with feedback controller.
The ball is thrown onto the paddle with a speed of
1.25 m/s. The width of the paddle is marked with a
black line. The robot is able to slowly bring the ball
to the center of the paddle.

5 Conclusion

In this paper we investigated using the Relative En-
tropy Policy Search algorithm for learning robot motor
skills. We looked at the tasks of ball serving and ball
bouncing. Our experimental results show that REPS
is robust to getting stuck in local maxima. REPS is
based on bounding the information loss between poli-
cies by a value ε. We discovered that the performance
of the algorithm is not sensitive to this parameter
which means it can be easily set. Using the REPS
algorithm the robot was able to learn to serve the ball
to various target locations and robustly perform the
ball bouncing task. The learned controller was even
able to compensate for the ball being thrown onto the
paddle with a horizontal velocity of 1.25 m/s.

In the future we would like to use a controller based
on inverse kinematics, such that the paddle can easily
be rotated around the x axis. Using such a controller
the PD feedback controller could also be learned for
the y direction similar to how the robot learns it now
in the x direction. We also plan to investigate using
the state dependent version of REPS to directly learn
to serve the ball to different target locations.
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Derivation of adapted REPS

Lagrangian of the program in Equations (9-11):

L =
∑
a

π(a)Ra + η

(
ε−

∑
a

π(a) log
π(a)

q(a)

)

+ λ

(
1−

∑
a

π(a)

)

=
∑
a

π(a)

[
Ra − η log

π(a)

q(a)
− λ
]

+ ηε+ λ (16)

Differentiate the Lagrangian with respect to π(a):

∂L

∂π(a)
=

(
Ra − η log

π(a)

q(a)
− λ

)
+ π(a)

(
−η 1

π(a)

)
= Ra − η log

π(a)

q(a)
− λ− η (17)

Set to zero and solve for π(a):

η log
π(a)

q(a)
= Ra − λ− η (18)

π(a) = q(a) exp

(
Ra

η
− λ

η
− 1

)
(19)

= q(a) exp

(
Ra

η

)
exp

(
−1− λ

η

)
(20)

Since we require that
∑
a π(a) = 1, we can sum up

both sides of Equation (20) over a and obtain:

1 =
∑
a

q(a) exp

(
Ra

η

)
exp

(
−1− λ

η

)
1 = exp

(
−1− λ

η

)∑
a

q(a) exp

(
Ra

η

)

exp

(
−1− λ

η

)
=

(∑
a

q(a) exp

(
Ra

η

))−1
(21)
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If we insert Equation (21) into Equation (20) we get:

π(a) =
q(a) exp

(
Ra
η

)
∑
a q(a) exp

(
Ra
η

) (22)

We can now replace π(a) in the Lagrangian (Equa-
tion (16)) using Equation (22) and obtain the dual
function:

L =
∑
a

q(a) exp
(
Ra
η

)
∑
a q(a) exp

(
Ra
η

)
·

Ra − η log
q(a) exp

(
Ra
η

)
q(a)

∑
a q(a) exp

(
Ra
η

) − λ


+ ηε+ λ (23)

For the sake of limited space the following equations
show the simplification of only the term in the big
square brackets of Equation (23):Ra − η log

q(a) exp
(
Ra
η

)
q(a)

∑
a q(a) exp

(
Ra
η

) − λ


=

[
Ra − ηR

a

η
+ η log

∑
a

q(a) exp

(
Ra

η

)
− λ

]

=

[
η log

∑
a

q(a) exp

(
Ra

η

)
− λ

]
(24)

As the term in Equation (24) is now not dependent on
the running variable of the outer summation in Equa-
tion (23) anymore, we can pull it out of that sum and
thus ∑

a

q(a) exp
(
Ra
η

)
∑
a q(a) exp

(
Ra
η

) = 1. (25)

Applying the simplifications of Equations (24)
and (25) to the Lagrangian in Equation (23), we obtain
the dual function as follows:

g(η) = η log
∑
a

q(a) exp

(
Ra

η

)
− λ+ ηε+ λ

= η log
∑
a

q(a) exp

(
Ra

η

)
+ ηε (26)


