
Learning how to cast a ball into a cup using a robotic arm

Nicole Brunkhorst Stefan Rado
TU Darmstadt TU Darmstadt

Abstract

Many real-world problems involve the con-
trol of pendulums and other swinging masses
such as automatic cranes. Precisely control-
ling them can be very difficult depending on
the environment and technical capabilities.

In this paper, we examine how to use a
robotic manipulator to bring a ball hanging
on a string from the end effector into a cup on
the floor. We present different approaches to
control such a task and finally solve the prob-
lem by learning a forward model that we use
to plan the required motion. Our approach
successfully hits the cup in 90% of the cases.

1 Introduction

Controlling a freely swinging mass is a difficult task
itself and it gets even harder if it shall be moved to a
target position. The problem we want to tackle in this
paper is to bring a ball hanging on a string into a cup
on the floor using a robot manipulator.

What makes this task difficult is that the only way
to move the ball is to move the suspension point of
the string. It is very hard to predict the reactions
of the ball as a string is very flexible and we have
no possibility to measure the ball’s current position
besides using complex vision-based approaches.

Additionally to the lack of information about the pen-
dulum, controlling a robot manipulator to do precise
movements turns out to be a problem that can hardly
be solved using analytical methods. Although many
robots are build such that it is easier to calculate in-
fluences such as gravity and centripetal forces, even
small influences such as wear and tear can render an-
alytical models unusable.

That is where the field of robot learning techniques
come into play. Instead of finding a control method
analytically, it is possible to learn a control policy from
training data.

For fast motions, it may be impossible to reevaluate
the motion’s parameters for each time step as this
takes time. It is also a lot simpler to search through
a limited policy space before actually starting the mo-
tion. There are two ways to proceed: Model-free policy
search methods that allow learning a controller with-
out a model of reality and model-based policy search
methods that first learn a model and then use it to
derive a controller [5, p. 227].

Model-free policy search methods have the advantage
that they can directly map from a target state to an
action required to get to this target state. They can
directly be used for control, but they also have a few
downsides: First of all, such an Inverse Model is not
necessarily a function – one target state could be reach-
able by different actions and the model does not have
to return the best of the possible actions. Also, learn-
ing them requires a lot of data as it needs to be trained
separately for each target state. In computer sim-
ulation, this might not be a big problem, but when
working with a mechanical system, a lot of data inher-
ently means that a lot of experimental time is required,
moreover causing wear and tear to the system.

Model-based policy search methods use a Forward
Model that can be used to predict how the environ-
ment will respond to actions [5, p. 230]. Learning a
Forward Model needs less training data, but requires
additional effort to find the action leading to a desired
target state.

To solve our ball-casting problem, we decided to learn
a Forward Model from training samples. We then use
this Forward Model to plan the motion parameters
required to cast the ball into the cup.

2 Casting

Our approach to model-based machine learning to
learn motor skills requires a couple of steps. First,
we introduce our set-up used to implement the prob-
lem (Section 2.1). We continue with describing the
motion the robotic arm has to follow to swing the ball
such that it falls into the cup and specify the param-
eters required to describe this motion (Section 2.2).

Learning how to cast a ball into a cup using a robotic arm

Figure 1: Project structure

Subsequently, we describe how we implemented the
controller for this motion (Section 2.3).

Having a working robot (simulation), we continue with
learning a forward model of the problem (Section 2.4).
This model can then be used to find the motion pa-
rameters required to cast the ball into the cup sitting
at a given position (Section 2.5). An overview of our
approach can be found in Figure 1.

2.1 Set-up / Environment

The robotic manipulator used in our study is
a 7-degree-of-freedom WAM

TM

Arm by Barrett
Technology R© Inc. that is mounted onto the ceiling.
A string connects the end effector to a small ball (see
Figure 2).

To speed up development and training data genera-
tion, we used the robot simulator SL [4] instead of real
hardware. Nevertheless it should be possible to adapt
the robot controller presented in this paper to the real
world with only minimal changes. The described learn-
ing techniques are independent of the concrete robot
manipulator.

For complex mathematical computations, SL can be
connected to the numerical computing environment
MATLAB. We therefore implemented all expensive
matrix calculations required by the learning and plan-
ning algorithms in MATLAB while doing the robot
simulations in SL.

Figure 2: Robot arm set-up

2.2 Specification of the Motion

To cast the ball into the cup, the robotic arm needs
to perform a precise motion. To allow learning of the
motion’s parameters, the motion also has to have as
little noise as possible. See Figure 3 for a visualization
of the following explanations.

For simplification, we expect the cup to be on a fixed
line on the floor, so only the distance to the base of
the robot arm varies while the angle is fixed. Gener-
alization to arbitrary cup positions is straightforward
by calculating the angle with which to turn the first
degree-of-freedom.

Every casting attempt starts with a defined initial arm
posture. This posture is chosen such that the ball is
hanging freely from the end effector, its lower edge
being above the height of the cup’s upper rim. The
ball must not be swinging for the attempt to be repro-
ducible. This initial posture is also shown in Figure 2.

To accelerate the ball in the direction of the cup, the
end effector needs to perform a horizontal movement
towards the cup. The height of the end effector should
not change during this first movement, otherwise the
ball might hit the cup from the side, being unable to
fall inside from the top. The speed of the horizontal
movement should be high enough to get the ball swing-
ing if the cup’s position is outside of the end effector’s
range.

After finishing the horizontal movement, the robot
needs to wait for the now swinging ball to catch up.

Nicole Brunkhorst, Stefan Rado

Figure 3: Ball casting motion

The exact waiting time determines how far the ball
moves forward. The end effector must then perform a
downwards movement that is fast enough to end the
string’s restriction on the ball so that it falls down
into the cup. After the ball falls into the cup or on the
floor, the robot arm returns to its initial posture.

The whole motion can be parametrized to hit different
targets using the following three parameters:

1. The horizontal movement’s distance.

2. The horizontal movement’s speed.

3. The waiting time.

2.3 Implementation of the Robot Controller

We implemented a closed-loop controller to execute
the motion specified above. Using a simple state-
machine, we go through the three stages of the motion
– the horizontal movement, the waiting time and the
downwards movement.

As joint motors can only influence accelerations and
jumps in accelerations may be dangerous at high
speeds, we need smooth movements with defined start
and end accelerations. To achieve this, we calculate
the coefficients {ai : 0 ≤ i ≤ 5} of quintic splines

x(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5

for motion stage 1 and 3, using the arm’s start and
target positions and zero initial and terminal velocities

and accelerations as the splines’ boundary conditions

x(t0) = initial position

ẋ(t0) = 0

ẍ(t0) = 0

x(tf) = final position

ẋ(tf) = 0

ẍ(tf) = 0,

where t0 and tf are the start and end times of the
movements. We can then use these splines to calculate
the current desired position x(t) and velocity ẋ(t) of
the end effector for each time step t.

To bring the end effector to the state given by the
spline evaluation, we use a PD controller to calculate
the error between its current and the desired position
and between the current and desired velocity

ux = Kp(xdes − x) +Kd(ẋdes − x).

The resulting control forces in cartesian space must
then be translated into joint space using the trans-
posed Jacobian

uq = J(q)Tux.

2.4 Learning the Model

To learn a forward model of our robot, we first gen-
erate training data which we can then combine using
Kernel Ridge Regression. Generating the training data
is done by running simulations with random parame-
ters. Each parameter – horizontal distance, horizontal
speed and waiting time – gets drawn from uniform dis-
tributions between reasonable limits. We obtain the
location where the ball crosses the virtual plane lying
on top of the cup.

As generating samples is cheap using simulation, we
also generate smaller validation and test data sets to
allow tuning and evaluation of the model.

Using the training data {(xn, yn) : n ∈ {1, ..., N}} we
can now predict the ball’s impact location m(x) for
new motion parameters x using Kernel Ridge Regres-
sion [1, chapter 6]

m(x) = k(x)T (K + λIN)−1Y,

where k(x) is a vector with elements [k(x)]n =
k(x, xn), K is the Gram matrix with [K]ij = k(xi, xj)
and Y = (y1, ..., yN). k is a Gaussian kernel of the
form

k(xi, xj) = exp(− 1

σ2
||xi − xj ||2).

We use Gradient Descent optimization [2, p. 466] to
determine the σ for the kernel that leads to the mini-
mal Mean Squared Error to the validation data set.

Learning how to cast a ball into a cup using a robotic arm

2.5 Planning a Motion

Now that we learned a Forward Model of the robot,
we want to use it to find the correct parameters to cast
the ball into the cup standing at a given position. Our
model gives us a mapping from motion parameters x
to ball impact locations y = m(x), so we use Gradient
Descent optimization to find motion parameters that
minimize the model-predicted impact location to the
cup position ycup:

xi+1 = xi − α∇(m(xi)− ycup)

We estimate the model error’s gradient ∇(m(xi) −
ycup) using the finite-difference method. As this only
requires evaluation of the learned model, less data from
the real robot is needed.

The step width α for every gradient descent step is
chosen proportionally to the distance of the current
impact location prediction to the target location

α ∼ ||m(xi)− ycup||.

The step width therefore gets smaller the better the
parameters get.

We end the gradient descent once the predicted impact
location xi is within a range of 1 cm of the cup’s center
position ycup, which is close enough to get the ball into
the cup, or once we did a certain maximum number of
steps.

3 Evaluation

To test and tune our implementation, we sampled 1300
training data sets together with 300 validation and 100
test data sets. Figure 4 shows Histograms of the uni-
form random motion parameters of the training data
and their corresponding ball impact locations.

Figure 5 shows the Root Mean Square Error (RMSE)
towards the validation data of a Kernel Regression
using different σ. The lowest error is reached with
σ = 0.35. The RMSE towards the test data using this
σ is 2.24 cm.

As a reference, we also tried linear regression with fit-
ting the training data to polynomials [1, chapter 1.1].
A 12-th grade polynomial proved to be best, leading to
an RMSE of 21.7 cm towards the test data. Obviously,
Kernel Regression performs a lot better.

The results of using the learned model to bring the ball
into cups sitting at different positions can be seen in
Figure 6. The policy search was able to find parame-
ters for which the model predicted the impact location
to be a mean of 8.5 mm off of the center of the cup.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.5

1

1.5

2

2.5

3

3.5

4

4.5
·10−2

Best σ = 0.35

Sigma
R

o
o
t

M
ea

n
S

q
u

a
re

E
rr

o
r

[m
]

Figure 5: Root Mean Square Error towards the vali-
dation data using different σ

As the cup’s inner radius is 3 cm, all except two tries
hit the cup. For these two tries, the policy search pre-
dicted an impact location about 2 cm off the center of
the cup. The gradient descent could not find better
motion parameters, most likely due to a local mini-
mum in the training data. The ball then bounced off
of the rim of the cup, leading to an impact location 5
cm off the cup’s center.

4 Conclusion

As described above, our approach works quite well to
solve the problem. It is able to bring the ball into the
cup for most cup positions. The few times the cup
could not be hit are due to local minima in the model
which might be avoided using different optimization
methods for the policy search.

A future addition to the implementation would be to
add the possibility to move the cup in two dimensional
space on the floor instead of just one.

Nicole Brunkhorst, Stefan Rado

0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

Horizontal time [s]

C
ou

n
t

−0.1 0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

Horizontal distance [m]

C
o
u

n
t

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

Wait time [s]

C
ou

n
t

−1 −0.8 −0.6 −0.4 −0.2
0

10

20

30

40

50

Ball impact location
C

o
u

n
t

Figure 4: Histogram of parameter distributions and ball impact locations in training data

−1.05 −1 −0.95 −0.9 −0.85 −0.8 −0.75 −0.7 −0.65 −0.6 −0.55 −0.5 −0.45 −0.4 −0.35 −0.3

−0.02

0

0.02

0.04

0.06

C
u

p
in

n
er

d
ia

m
et

er

Reachable range (without swinging)

Target (cup location)

D
is

ta
n

ce
to

ta
rg

et

Model Prediction
Ball Impact Location

Figure 6: Performance of the model-based policy search

Learning how to cast a ball into a cup using a robotic arm

References

[1] Christopher M. Bishop. Pattern Recognition and
Machine Learning. Springer Science + Business
Media, LLC, 2006.

[2] Stephen Boyd and Lieven Vandenberghe. Convex
Optimization. Cambridge University Press, 2004.

[3] Afshin Rostamizadeh Mehryar Mohri and Ameet
Talwalkar. Foundations of Machine Learning. MIT
Press, Cambridge, MA, 2012.

[4] S. Schaal. The sl simulation and real-time control
software package. Technical report, 2009.

[5] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. The MIT Press, Cam-
bridge, MA, 1998.

