
Ball Balancing Along a Trajectory

Jochen Gast Björn Wild
TU Darmstadt TU Darmstadt

Abstract

Learning complex behavior in real robot
scenarios is a challenging problem that
requires solving several tasks simultane-
ously. Traditional reinforcement learning
techniques, however, often favor experiments
with a single challenge. Although such
experiments are well suited for examining
the performance and robustness of learning
algorithms they may omit difficulties that
may occur in combined tasks.

In this work, we address the problem
of a combined task that requires learning
both controller gains and a trajectory.
Initially, we make use of a state-of-the-art
policy search method to learn each behavior,
respectively. Based on the results we finally
learn a behavior for solving the combined
challenge.

1 Introduction

In order to learn the combined task of balancing a
ball on paddle along a trajectory we generally have
to learn behavior for two different subtasks. First, we
require the controller gains for balancing the ball and,
second, the robot has to learn the parameters for the
trajectory. Both tasks can be tackled as reinforce-
ment learning problems that require trial-and-error
episodes of the robot in order to iteratively improve its
behavior. Policy search is an approach that has been
successfully applied to various reinforcement learning
problems with repeating episodes. However, standard
methods such as stochastic finite-difference gradient
(SFDG) often suffer from premature convergence. In
[BS03] Bagnell and Schneider identified the problem

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume 22 of JMLR:
W&CP 22. Copyright 2012 by the authors.

being the loss of experience after non-covariant policy
updates. Based on this inside Peters et al. developed
a method that constraints the relative entropy of a
robot’s policy between consecutive policy updates
[PMA10]. The resulting method Relative Entropy
Policy Search (REPS) is sound, robust and, hence,
suited for learning the controller gains and trajectory,
respectively. Furthermore, REPS is able to handle
different disturbances of the environment which makes
it applicable for the combined task that is balancing
a ball while the robot follows a trajectory.
For learning the trajectory we require an appropri-
ate parametrization that allows the robot to learn
plausible trajectories in joint space. To address this
issue Kober et al. introduced Dynamic Movement
Primitives (DMP), a template mechanism that encap-
sulates basic movement primitives in time dynamical
systems [JK]. Based on both REPS and DMP we are
finally able to solve both subtasks.

The rest of this report is divided into four parts. In
section 2 we give a brief introduction to the computa-
tional framework of reinforcement learning including
an algorithmic introduction to SFDG and REPS.
Section 3 covers the evaluation of both methods in
various experiments. We then present our solution to
the combined task in section 4. Finally, in section 5
we give a conclusion and an outlook of what may be
worth investigating in future.

2 From Reinforcement Learning to
Policy Search Methods

Traditional reinforcement learning techniques as found
in [SB98] treat reinforcement learning as a Markov de-
cision process involving two interacting entities:

• An agent that constantly makes decisions about
what action to perform next and

• an environment which is affected by the agent’s
actions and may subsequently change options and
opportunities available for the agent.

Ball Balancing Along a Trajectory

In our scenario the agent is represented by a robot
arm whereas the environment may be related to both
the environmental disturbances and the robot’s states
such as joint configuration etc. The goal of the learning
process is to figure out how the agent should optimally
behave with respect to some feedback by the environ-
ment. The behavior of the agent is fully characterized
by a policy

a∼ π(a|s), (1)

that maps states of the environment to actions. In
the learning process the agent now tries to estimate
which policy is best. Feedback of the environment is
perceived by following functions:

• The reward function r(s,a) maps the agent’s ac-
tions and the environment’s states to an immedi-
ate reward which indicates how good the action u
is when the environment is in state x.

• A value function V (s) that maps a state to the
accumulated reward an agent may expect when
starting from state x.

Solving reinforcement learning problems is quite
different from traditional well-defined solutions for
supervised learning problems. Rather than having a
set of training samples D = {s,a}i available which
possibly allows the learner to infer the intrinsic
structure of the problem, only a reward signal r(s,a)
is available for the learner. Indeed, it is the responsi-
bility of the learner himself to explore which actions
give the most reward by trying them out. There
are basically two approaches to tackle reinforcement
learning problems, value function methods and policy
search.

Value function methods have historically been
the driving force of reinforcement learning in the
1990s [Gor95, Bai95]. After iteratively computing
the value function V (s) for each state, the policy is
obtained either as a final step (value iteration) or
is consecutively improved in each iteration (Policy
Iteration). As this only works for a limited class of
systems, approximations exist, e.g. in the form of
Q-Learning [Wat89]. Unfortunately, value function
methods have the drawback of being reliable on filling
up the state-action space. This makes it hard to solve
high-dimensional problems such as robot-learning
tasks.

Policy search, on the other hand, represents a more
recent approach which tries to estimate the policy
directly. Its proceeding is shown in table 1:
Given a update strategy f(r, s, s′) we initialize our
policy with π0 and start to improve our policy

Input: update strategy f(r, s, s′)

Initialization: π0 = π0(s|a, θ)

For each iteration k

Evaluation: (ri, s
′
i)← πk(s|a, θ)

Update: θk+1 = f(ri, si, s
′
i)

Output: πfinal

Table 1: Policy Search. We start exploration from
an initial policy π0. Based on rewards ri, states si
and corresponding following states s′i we iteratively
improve the policy with the update strategy f .

iteratively. In each iteration the current policy πk
is evaluated within the system. Based on rewards,
states and corresponding following states a new
improved policy is then computed in the update step.
In contract to value function methods policy search
is able to make use of expert’s knowledge. To begin
with we may start learning with an initial policy
based on domain knowledge. As a result of that policy
search does not necessarily have to explore the whole
state-action space but just the local area around the
expert’s suggested policy.

In the horizon of this work we consider two rather
different approaches to compute policy updates
introduced in sections 2.1 and 2.2.

2.1 Stochastic Finite Difference Gradient

The SFDG approach computes a policy update by ap-
proximating ∇θJ , the gradient of the reward w.r.t. to
the policy. The policy update rule then is

θk+1 = θk + α∇θJ, (2)

where the learning rate α limits change allowed in con-
secutive iterations. In order to approximate the gra-
dient we utilize the first order Taylor approximation

J(θ + δθ) = J(θ) + δθT∇θJ (3)

⇔ J(θ + δθ)− J(θ) = δθT∇θJ. (4)

For given samples we can use linear regression to ap-
proximate the gradient as

∇θJ = (ΘTΘ)−1ΘT b, (5)

Θ =


δθT1
δθT2

...
δθTN

 b =


δJθ1
δJθ2

...
δJθN

 , (6)

Jochen Gast, Björn Wild

where δθi denote roll-outs around the current policy θ
and δJθi = J(θ + δθi) − J(θ) their corresponding dif-
ferences of received reward. Note that it is common to
normalize the gradient afterwards to assure improve-
ment steps to have the same magnitude.

2.2 Relative Entropy Policy Search

One drawback of classical policy search methods such
as SFDG is premature convergence. The problem here
is the policy update step. That is an agent taking pol-
icy updates only in the direction of steepest ascent
discards knowledge from exploration made in previous
iterations. The consequence is a loss of information
that could have helped the agent in the most recent
update step. REPS addresses this issue by constrain-
ing the information loss between consecutive iterations
where the agent itself draws actions from a stochastic
policy π(a|s) which we represent by a linear Gaussian
model ∼N(b + sF |Σ). The observed data distribution
as produced by current policy is denoted by q(s,a)
while the joint distribution of the new policy is given
by p(s,a). The difference between these distributions
can be represented by the Kullback-Leibler divergence
KL(p||q) and the information loss can be bounded by

KL(p||q) =
∑
s,a

p(s,a) log
p(s,a)

q(s,a)
≤ ε, (7)

where ε is the maximum loss of information.
REPS now obtains a new policy by solving the prob-
lem:

max
π

J(π) =
∑
s,a

p(s,a)r(s,a) (8)

ε ≥
∑
s,a

p(s,a) log
p(s,a)

q(s,a)
(9)

∑
s,a

p(s,a)φ(s) =
∑
s,a

q(s,a)φ(s) = φ̂ (10)

1 =
∑
s,a

p(s,a), (11)

where the goal is to maximize the expected reward
(8) under the constrained information loss (9). Equa-
tion (10) assures that the policy will be able to deal
with various states. More precisely, we assure the
new distribution p(s,a) not only to match state-action
pairs with high rewarded states but also pairs with less
promising states by making the expected features be
compliant with the observed ones.

A solution to this optimization problem can be ob-

Input: max information loss ε, feature transform φ(s)

Initialize: π = π0(a|s)

For each iteration k

Generate Samples: (ri, si,ai) for i = 1...N

Obtain Features: φi = φ(s) for i = 1...N

Minimize dual function:
minη,θ g(η, θ) = η log(Z′) + ηε+ θT φ̂

Z′ =
∑
s,a

q(s,a) exp(
r(s,a)−V (s)

η)

Policy update: Calculate πk(a|s) by
Maximum-Likelihood estimation

Output: policy π(a|s)

Table 2: REPS

tained using Lagrangian multipliers and is given by

p(s,a) = q(s,a) exp(
r(s,a)− V (s)

η
)Z−1 (12)

Z =
∑
s,a

exp(
r(s,a)− V (s)

η
), (13)

where V (s) = θTφ(s) denotes the value function which
can be obtained by minimizing the dual function

min
η,θ

g(η, θ) = η log(Z ′) + ηε+ θT φ̂ (14)

Z ′ =
∑
s,a

q(s,a) exp(
r(s,a)− V (s)

η
). (15)

The overall algorithm is given in table 2. After having
obtaining η and θ we compute the new policy with a
maximum likelihood estimate based on the samples.

3 Experiments

In this section we cover the evaluation of various exper-
iments. First, we will test REPS on a reward function
containing states using different parameter settings.
Finally, SFDG and REPS are compared using both
an state-less reward function and a physically-based
simulation.

3.1 REPS with different parameter settings

Various parameter settings of REPS are evaluated on
a reward function given by

r(s,a)∼N(µr,Σr), µr = (1 2 3 4 5)T , Σr = 5E,

Ball Balancing Along a Trajectory

0 50 100 150
−2

0

2

4

6

8

10

12

14

16

18
x 10

−5

Iterations

R
ew

ar
d

N = 10 ε = 0.60 REPS
N = 30 ε = 0.60 REPS
N = 10 ε = 1.00 REPS
N = 30 ε = 1.00 REPS

Figure 1: REPS on evaluating a state-action space of
dimension 5. Note that ε = 1.0 allows larger steps than
ε = 0.6. However, given fewer samples both algorithms
fail to converge within 150 iterations.

where the state dimension is |s| = 3 and the action
dimension is |a| = 2. Reward for a given state-action
pair then is evaluated at N(x|µr,Σr) by concatenat-
ing them to x = (sT aT)T . Furthermore, we generate
initial states for the problem by drawing samples si
from

s∼N(µs,Σs), µs = (0 0 0)T , Σs = 0.05E.

Exploration is initially started from:

π0 = (0 0 0 0 0)T , Σ0 = 30E

that is, not having prior knowledge in the first place we
allow a large variance of generated actions. Figure 1
shows the resulting rewards for 150 iterations where
the bounds {ε = 0.6, ε = 1.5} and sample sizes
{N = 10, N = 30} were the configurations. Follow-
ing observations can be made:

• For ε = 0.6 and ε = 1.5, respectively, having more
samples available improves the convergence rate.
This is due to the fact that more samples represent
the state-action space more accurately. However,
having a higher sampling size may be expensive
when solving a optimization problem in a simula-
tor or even on a real robot.

• Allowing a higher change in relative entropy be-
tween consecutive iterations gives a better con-
vergence rate. This is not necessarily true in gen-
eral as we state in the original motivation of us-
ing REPS. By allowing the policy differ too much
from the current one, we actually loose informa-
tion which we accumulated up to the current it-
eration. Note that convergence actually breaks
down when ε = 1.5 as compared to ε = 1.0.

0 50 100 150
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

R
ew

ar
d

N = 30 α = 0.10 SFDG
N = 30 α = 0.25 SFDG
N = 30 ε = 0.5 REPS
N = 30 ε = 1.5 REPS

Figure 2: Comparison of SFDG vs REPS in a two di-
mensional state-space. Both algorithms were 30 times
for 70 iterations. Both REPS parameter settings have
an edge on the corresponding SFDG iterations.

• In general we noticed that using ε 1.0 gives good
performance in most scenarios.

3.2 SFDG vs REPS

State-less Reward Function

We evaluated the performance of SFDG vs REPS in a
two dimensional state- action space where we chose

r(s, a)∼N(µ,Σ) µ = (5, 3)T Σ =

(
5 0.5

0.5 5

)
to be a Gaussian reward function that simply joins
states and actions. Both SFDG and REPS initially
start their exploration from π0 = (0 0)T . Again, the
initial variance of the policy is set to a high variance

Σ0 =

(
10 0
0 10

)
(16)

in order to allow a wide exploration. Note that SFDG
will use the same variance to compute its approxima-
tion of the gradient. Figure 2 shows the results of
running both algorithms 30 times for 70 iterations, re-
spectively. Thereby, the mean reward is plotted as well
as a tube consisting of two standard deviations around
the mean. The sampling size was set to N = 30 and
both algorithms were run with two different parame-
ter settings. That is SFDG was run with α = 1 and
α = 0.25 and REPS was run with ε = 0.1 and ε = 1.0.
Following observations can be made:

• REPS outperforms SFDG both with ε = 0.5 and
ε = 1.5 right from the beginning.

Jochen Gast, Björn Wild

Figure 3: The Ball on a Beam task.

• REPS with a higher bound ε = 1.5 on the infor-
mation loss converges the fastest.By allowing the
algorithm to make bigger changes in relative en-
tropy consecutive policy updates make give larger
improvements. Note that the difference between
ε = 0.5 and ε = 1.5 consist only during the first
15 iterations.

• The variance of runs with ε = 0.5 is higher than
the variance for runs with ε = 1.5. This is due to
the fact that restricting the policy updates, also
restricts its change from the starting policy which
has a comparatively high variance Σ0. The mag-
nitude then is taken over until convergence.

• During the first 100 iterations SFDG with α =
0.25 has a big advantage over SFDG with α = 0.1
but oscillates around the solution.

Ball on a Beam

Furthermore, we tested SFDG vs REPS in a
physically-based environment where we used both ap-
proaches to optimize the policy for balancing a ball on
a beam as shown in figure 3. Thereby, the learners
have to obtain two controller gains for one dimension.
The ball’s initial velocity in the length direction of the
beam was set to vx,0 = 0.5.

Both learning algorithms were run for 20 iterations
with N = 30 samples. While SFDG was trained with
α = 0.25, REPS was set up with ε = 0.6. We set the
initial policy to

π = (0 0)T , Σ0 =

(
0.1 0
0 0.1

)
(17)

0 2 4 6 8 10 12 14 16 18 20
−1200

−1000

−800

−600

−400

−200

0

200

Iterations

R
ew

ar
d

N = 30 α = 0.25 SFDG
N = 30 ε = 0.60 REPS

Figure 4: The resulting rewards for the Ball on a Beam
task.

including our domain knowledge that the required
gains are rather small. The resulting rewards over it-
erations are shown in figure 4. We observe:

• REPS convergences faster than SFDG, however,
the difference is marginal.

• When SFDG oscillates a couple of times after
reaching local optimum. This is no surprise as
it continues to approximate the gradient from its
found optimum.

• REPS, on the other hand, still continues to im-
prove its policy after being close to convergence.
These improvements are rather small, however,
subtle improvements in reward are still interest-
ing when trying to find the best possible policy.

4 Ball Balancing Along a Trajectory

The following sections cover our solution to the com-
bined task. At first, we discuss balancing a ball on a
paddle. Independent from the first step, we then learn
a trajectory that moves through two given points in
task space. Finally, we use the results of both sub-
tasks to develop a learning process for the combined
task.

4.1 Balancing

Although the balancing task is similar to the ball on
a beam experiment in section 3.2 we have to make a
few adjustments in order to make it applicable as an
initial policy for the combined task. In contrast to
ball on a beam where we restricted the problem to
one dimension we now face both a two dimensional

Ball Balancing Along a Trajectory

Figure 5: Balancing a ball on a paddle.

problem and a smaller area where we want to balance
the ball in (as shown in figure 5). Furthermore, states
are used while learning as the robot should be able to
to cope with different initial situations. We selected
the ball velocity s = (vball,xvball,y)T to be the states
our robot should adapt to.

The reward is evaluated for a given state and an action
in one episode by

r(s,a) = −
T∑
t=0

(0.1||xball,t − xpaddle,t||2 −
∑
j

||q̈t,j ||2),

(18)
where T denotes the length of an episode, ||xball,t −
xpaddle,t||2 is the L2-norm of the relative difference of
the ball’s and the paddle’s position and q̈j are the
robot’s joints. While the first term assures the ball
to be pushed back into the middle, the latter term
desires small joint accelerations. In other words fast
movements of the robots are punished. It turns out
that the task can be learned sufficiently well in about
150 iteration as shown in figure 6. Note that the re-
sulting gains are suitable for low disturbances of the
ball, while the robot fails to balance the ball when we
use higher initial velocities. However, this is not sur-
prising since for high velocities a human is only able to
balance a table tennis on a paddle after a long time of
training. In the end we do not prematurely optimize
the resulting gains of this subtask as they only serve
as a starting point for the combined task.

4.2 Trajectory

As mentioned in the introduction we make use of dy-
namic movement primitives (DMP) to learn a trajec-
tory. Detailed descriptions of DMP can be found in

[JK, DNP12, DNKP13] yet a detailed explanation of
DMP is not within the horizon of this work. Generally,
DMP allows us to parameterize a generic trajectory in
the joint space through radial basis functions. For our
task such a parametrization requires

q0 = q(t0), (19)

q̇0 = q̇(t0), (20)

qT = q(tT), (21)

wi = wi,const, i = 1...NRBF (22)

where q0, q̇0 is the initial joint configuration and joint
velocity, respectively, qT is the final joint configura-
tion, T is the length of the episode, wi are weights
that influence the width of the radial basis functions
and NRBF is the number of radial basis functions. The
weights wi correspond to parameters θi that are ob-
tained from learning a DMP. We set

T = 4000 (23)

NRBF = 4 (24)

q0 = (0 0 0
π

2
) (25)

q̇0 = (0 0 0 0] (26)

qT = (0 0 0
π

2
), (27)

which means our movement will start from an initial
position with zero velocity and return to that position
again at t = T . Note that we set the remaining three
joints to zero for all time steps as the controller should
adapt them to the ball state when executing the com-
bined task. Furthermore, two via points are placed in
task space at

xball1 = (−0.2 − 0.65 − 0.85)T , (28)

xball2 = (0.3 − 0.65 − 0.7)T . (29)

as shown in figure 10.

In order to learn the trajectory we use both REPS and
DMP where we set the reward function to

r(a) =
∑
j

||q̈t,j ||2 −
2∑
i=1

min
t∈[0,T]

||xcart,t − xi,t||2. (30)

Thus, we penalize high accelerations and sum up the
squared difference of the minimum distance between
the two via points and the end-effector. As shown in
figure 6 REPS is able to learn the desired trajectory
within 150 iterations. The resulting trajectories of the
joints are depicted in figure 7

4.3 Balance a Ball on a Paddle Along a
Trajectory

For the combined task we require the results of the
previous sections. That is the agent moves along the

Jochen Gast, Björn Wild

0 50 100 150
−0.025

−0.02

−0.015

−0.01

−0.005

0

Iterations

R
ew

ar
d

N = 15 ε = 1.00 REPS

Figure 6: Development of the average rewards while
learning the trajectory.

0 500 1000 1500 2000 2500 3000 3500 4000
−1

−0.5

0

0.5

1

1.5

2

q1
q2
q3
q4

Figure 7: Smooth joint trajectories as generated by
REPS + DMP.

trajectory as learned in section 4.2. The robot now has
to keep track of the ball so that it does not drop which
can be achieved by using a controller at the same time.
We identify following issues:

• As far as control is concerned the problem dif-
fers from the standard balancing task quite a bit.
While we have an artificial known state distribu-
tion during the learning process of the balancing
task, we are faced with unknown states that pos-
sibly change over time. A solution may consist
in learning a trajectory for the controller gains,
however, we explain a different approach in the
following sections.

• Hence, it is not trivial to identify an initial state
distribution. For this reason we have to design a
way receive the actual state distribution from the
robot’s simulation.

• Since the paddle is now moving around in task
space, we include the ball’s relative position into
the state. Additionally, the absolute velocity dif-
ference between the ball and the paddle has to be
changed to relative velocity difference.

• Furthermore, we have to rotate the states w.r.t.
the end-effector’s current orientation.

Our solution consists of two key concepts which we ex-
plain in the following sections. First, we develop a way
to make our agent adapt the actual state distribution.
And second, we present a way to overcome the issue
that the state- action space is considerably harder to
explore than in the previous tasks.

Adapting the State Distribution

As mentioned before one problem of the combined
task is to estimate the actual state distribution. The
goal here is to estimate a good linear transformation
matrix F that results in robust performance for the
whole trajectory. To approximate the actual distribu-
tion we apply following technique as depicted in table
3 and 8. The REPS interface for the proposed so-
lution is shown in 3. The key idea is the following:
Having defined a frequency ∆tobserve we reset the ac-
tions given the constant linear transformation F every
∆tobserve time steps. For this reason state-less action
samples are drawn for each episode by setting the state
s = 0. The simulator receives these actions together
with the linear transformation F and the observation
frequency ∆tobserve. As a result the learning algo-
rithm obtains states s0, s1,sM and the reward for
the whole episode. In order to reconstruct the applied
actions within the simulator we have to apply the lin-
ear model again to finally obtain samples (si,ai, ri).

Ball Balancing Along a Trajectory

REPS

For each iteration:

Initialize:
S = ∅, A = ∅, R = ∅

For each episode:

Draw state-less action: b = π(a|s = 0)

Simulation:
(s0, s1, ..., sM , r)← runEpisode(b, F,∆tobserve)

Adapt to actual State distribution:
(s0,a0, r) a0 = b + s0F
(s1,a1, r) a1 = b + s1F
(s2,a2, r) a2 = b + s2F

.

.

.
.
.
.

(sM ,aM , r) aM = b + sMF

Accumulate samples:
S = S ∪ si i = 1...N
A = A ∪ ai i = 1...N
R = R ∪ ri i = 1...N

Minimize Dual Function

.

.

.

Table 3: REPS Part.

That is we associate the reward of an episode together
with all states and actions that occurred in the episode
with the observation frequency. For each iteration the
obtained states, actions and rewards are accumulated
in sets (S,A,R) as these are required in the next op-
timization step. Setting the observation frequency is
not trivial. A high frequency results in a lot of samples
which then are used in the optimization step. Hence,
computational performance may slow down. However,
setting a low frequency may not give accurate results
of the state distribution over the whole episode.

The interface call to the simulator is shown in table
8. The episode is run with the given state-less action
b, linear transformation matrix F and the observation
frequency ∆tobserve. For consecutive time steps the
actual actions a are then updated with the observa-
tion frequency. While the reward is accumulated for
all time steps, states st as only used in the update step
are remembered in a set S. Finally, all states and the
reward are returned to the REPS interface.

SIMULATOR

runEpisode(b, F,∆tobserve):

Initialize: S = ∅, r = 0

For each timestep t:

Simulate Physics: st = simulateTimestep(t)

if (mod(t, ∆tobserve) == 0)

a = b + stF

S = S ∪ st

Accumulate Reward: r = r + reward(a, st)

Output: S, r

Figure 8: SL Part.

Coarse-to-Fine Estimation

In order to overcome the hard exploration of the state-
action space we exploit the ability of policy search
methods to easily integrate expert knowledge. How-
ever, since we have no expert knowledge available we
have to create some knowledge first. In order to gather
insights on the problem we apply following trick: In-
stead of learning the desired actions from actions on
the small paddle, we increase the paddle size to learn
the combined on a big one. As a result of that learning
will be easier and hence more robust. We then initial-
ize the policy for learning on a smaller paddle with the
obtained policy. In our case it turns out that the con-
troller gains as obtained of a paddle with double the
size are a reasonable initialization for learning on the
original paddle. Note that the learning process for the
coarse paddle was initialized with gains as obtained in
the first subtask 4.1.

Reward Function

The general form of the selected reward function is
given by

r(s,a) =− α penaltystepover (31)

− β penaltyddQ

− γ penaltyδx

− δ penaltyδv,

where penaltystepover penalizes whenever the
ball drops, penaltyddQ desires low accelerations,
penaltyδx/δv penalizes the relative difference of the

Jochen Gast, Björn Wild

0 10 20 30 40 50 60 70 80 90 100
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Iterations

R
ew

ar
d

N = 15 ε = 1.00 REPS

Figure 9: Learning process for the combined task of
balancing a ball on a paddle.

ball’s and the paddle’s position/velocity, respectively.
The resulting behavior is depicted in figure 10 and
the resulting learning process is shown in 9. With the
help of coarse to fine estimation the robot is able to
start exploration from a good initial policy. However,
note that the ball is not centered during the whole
trajectory but it moves around the center depending
on the current velocity of the paddle.

5 Conclusion & Outlook

In this section give a brief overview over issues we no-
ticed and a final outlook All in all, we made following
final observations:

• When implementing the optimization algorithms
one has to pay attention to numerical stability.
Especially, when very slow numbers are involved
numerical stability becomes an issue.

• Bootstrapping is a useful technique when train-
ing agents on various tasks. Reusing a resulting
policy of a previous learning process saves a lot of
time.

• Finding the right reward function is not trivial.
Even after careful optimizing one may make a few
adjustments to get even a more robust policy.

• There is a trade-off between learning a specific
task very well and learning it sufficiently well with
the ability to generalize well. For instance, in the
combined balancing-trajectory task we may find
a policy that keeps the ball centered, however,
solutions that allow the ball to move around the
center a more robust to disturbances.

Figure 10: Balancing a Ball Along a Trajectory. While
the trajectory is learned in a independent step, the
controller gains are updated as the robot moves along
the trajectory.

In future we may investigate the generalization
ability of the provided solution. Once the linear
transformation matrix for the states is learned, we
may actually be able to apply the same matrix in
a setup with a completely different trajectory.

References

[Bai95] Leemon Baird. Residual algorithms: Re-
inforcement learning with function ap-
proximation. In In Proceedings of the
Twelfth International Conference on Ma-
chine Learning, pages 30–37. Morgan
Kaufmann, 1995.

[BS03] J. Andrew Bagnell and Jeff Schneider. Co-
variant policy search, 2003.

[DNKP13] Christian Daniel, Gerhard Neumann,
Oliver Kroemer, and Jan Peters. Learning
sequential motor tasks, 2013.

[DNP12] Christian Daniel, Gerhard Neumann, and
Jan Peters. Learning concurrent motor
skills in versatile solution spaces, 2012.

[Gor95] Geoffrey J. Gordon. Stable function ap-
proximation in dynamic programming. In
IN MACHINE LEARNING: PROCEED-
INGS OF THE TWELFTH INTERNA-
TIONAL CONFERENCE. Morgan Kauf-
mann, 1995.

Ball Balancing Along a Trajectory

[JK] Christoph H. Lampert Bernhard Schölkopf
Jan Peters Jens Kober, Katharina Mülling
Oliver Kroemer. Movement templates for
learning of hitting and batting.

[PMA10] Jan Peters, Katharina Mülling, and
Yasemin Altün. Relative entropy policy
search, 2010.

[SB98] Richard S. Sutton and Andrew G. Barto.
Reinforcement learning: An introduction,
1998.

[Wat89] Christopher J. C. H. Watkins. Learning
from Delayed Rewards. PhD thesis, King’s
College, Cambridge, UK, 1989.

