
Robot Beerpong: Model-Based Learning for Shifting Targets

Fabian Wagner Felix Schmitt Supervisor: Oliver Kroemer

Bsc. Stud. Computer Science TUDa Msc. Stud. Mathematics TUDa IAS TUDa

Abstract

De�ning controls for robot to achieve precise
goal-directed movements can be hard when
using hand crafted solutions. Reinforcement
Learning, particularly policy-search meth-
ods provides a promising alternative which
has already been successfully used for robot
learning. Here the task is learned using
a function that rewards desired movements
and an algorithm that seeks to maximize
the reward. In this paper we address the
motor-task of Beerpong, that was solved us-
ing reinforcement learning in the simulation-
environment SL. We extended a model-based
method to the setting of bandit-type reward,
showing that it is able to out perform two
benchmark algorithms in terms of rollouts
on the setting of a stationary cup. Also, we
proofed capability of our approach to gener-
alize to changing environment.

1 Introduction

Imagining a future use of robot companions in daily
live, there is a high number of abilities needed. As
one would want to give as less feedback as possible to
the robot, e.g. only a appraisal after execution of the
movements for a desired task, the robot has to deal
with single rewards in reinforcement learning. Typical
task could be throwing movements where only the only
the coordinates of the landing point are given back,
hammering a nail using a evaluation of the stability at
the end of the task, fast reaching movements or even
the right stopping of a autonomous car at a desired lo-
cation. All these task can in principal be transformed
to our test-problem, hence a successful algorithm for
the distinct problem is expected to solve also the other.

Appearing in Proceedings of the 15th International Con-
ference on Arti�cial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume 22 of JMLR:
W&CP 22. Copyright 2012 by the authors.

Another challenge is, that the real word is sub-
ject to changes that occur during learning and might
as well e�ect the desired task. For example the
target for the throwing task could change its position.
However the robot should be able to quickly adapt to
the new situation and generalize the past experience.
Desirable would be that even unsuccessful attempts
are remembered for future use in more appropriate
situation.
Our proposed One Step PILCO (OSP) algorithm uses
a �exible parametrization and a sophisticated model,
which is trained during learning, to deal with poor
reward information and e�ciently uses the gained
experience in a changing environment.

1.1 Robot Environment and Task

We worked on the BarrettTM robot arm with seven de-
grees of freedom using the open-source robot-simulator
SL [1].
All learning algorithms were executed in Matlab and
trajectories were sent to the simulator using a shared
memory communication between Matlab and SL. We
also passed an additional variable to change the cup
position between the trials of a running algorithm.
The given trajectory was followed by the simulator us-
ing a model-based controller with PD feedback.

Figure 1: Beerpong environment

Robot Beerpong: Model-Based Learning for Shifting Targets

As shown in �gure 1, the BarrettTM is hanging from
the ceiling, facing one table and a cup placed on the
table. At the beginning of a rollout a ball is placed in
ball-holder mounted on the end-e�ector.
The robot was given the task to throw the ball such
that it bounces once on the table and then lands in
the cup according to the game Beerpong. The cup
position was initially set randomly and kept for the
�rst two experiments. In the last experiment the cup
position was changed after every 10 rollouts.

The release of the ball is not explicitly controlled but
occurs when:

‖ẍball − ẍrack‖ ≥ frelease/mball,

where ẍ. is the acceleration of ball and rack respec-
tively, and the right-hand side is a release threshold.
Hence, there is no release time of the ball, instead the
ball lies loosely in the end-e�ector. The robot controls
the ball only with the trajectory in joint-space until it
leaves the rack.
Without loss of generality, we restricted the variations
in the cup-position in the distance from the robot
while keeping the height and orientation �xed. It
is therefore only necessary to control the robot-
movements in a y-z plane which can be done by only
actuating the joints ShoulderAbductionAdduction,
EllBow, WristFlexionExtension and keeping the rest
�xed. All other positioning of the cup would be man-
ageable by setting the shoulder-joint appropriately as
shown in �gure 2.

Figure 2: Variating in x-direction can be solved by chang-

ing the shoulder-joint. Θ(SFE) = Θ(SFE) + α

Beerpong is a di�cult skill for robots, as a high pre-
cision of the 2nd bounce is needed to get the ball into
the cup. Although only three joints have to be con-
trolled a successful execution of the task is not easy:
First, the release is not directly controllable, so that a

step-wise parametrisation of the trajectory has to deal
with the minor relevance of control-points past and a
high importance of the entire movement before the
release, that varies in time.
Second, rewards will have a discontinuity appearing
at movements where the second bounce hits the cup's
boundary from outside, which makes it a harder skill
to learn.
Third, there is a variety of possible solutions to the
task,resulting the reward landscape to be highly multi-
modal. You can see two di�erent ball trajectories for
the same task in �gure 3.

Figure 3: Two possible, yet strongly di�ering ball trajec-

tories of a high-reward rollout.

1.2 Reward

As an expressive and yet simple reward-function is cru-
cial for reinforcement-learning applications, we used a
reward function inspired by Jens Kober's work on ball-
in-a-cup [4] and [7]:

r = exp (−10 ·∆)

∆ =‖x2nd bounce − cbottom‖2

+ 0.1‖x2nd bounce − cmid‖2

+ 0.1‖x2nd bounce − ctop‖2,

where x2ndbounce is the position of the second bounce,
cbottom is the bottom of the cup, cmid is the middle of
the cup and ctop ist the top of the cup.

Figure 4: Location of cbottom, cmid and ctop

Fabian Wagner, Felix Schmitt, Supervisor: Oliver Kroemer

To calculated the reward during a rollout, the posi-
tions of all bounces on the table and their correspond-
ing time-points are stored in SL. After 2000 ms (1000
time steps) the simulation is ended and the reward
function is called. If only one bounce occurred, the re-
ward is set to 0, otherwise we use 10 time steps before
and 2 after the second bounce to calculate the nearest
ball position to cbottom, cmid and ctop. The weighted
minimal squared distances are summed up in ∆ and
transformed by a radial-basis function exp (−10 ·∆).
The motivation for this saturating reward comes from
experiments in human learning [7] and has several ad-
vantages which are utilized in one of the evaluated
methods.

1.3 Shifting Cup Scenario

For our last experiment we changed the learning en-
vironment to the harder task of learning to throw the
ball in a cup with a varying position. The true position
is always given to the robot at before each rollout, but
is changed during the between rollouts. This is an ex-
ample for Transfer-Learning where the agent (robot)
has to learn how to generalize from a (half) learned
policy to another one due to changes in the environ-
ment. For future use of robots in daily life these kinds
of scenarios will be of high importance. Hence ad-
vanced algorithms have to be developed to solve the
resulting di�culties.

2 Description of Used Methods

From the vast variety of possible algorithms for solv-
ing the Beerpong task we decided on the o�-the-shelf
method Finite Di�erence Gradient Sampling(FD)
and the state-of-the-art method Policy Learning by
Weighting Exploration with the Returns (POWeR) as
benchmarks, as well as a Gaussian Process model-
based approach One Step PILCO [8] (OSP).

2.1 Dynamic Movement Primitives

In policy search, the robot needs a suitable
parametrized policy for representing throwing
movements. This policy should be �exible and
suitable for robot applications, e.g. also usable for
kinesthetic teach-in to initialize the learning process

A well established method for parametrising motor
tasks [5] are discrete Dynamic Movement Primitives
(DMP). Instead of being explicitly speci�ed, the
trajectory y(t), ẏ(t) of every joint is implicitly given
by a Ordinary Di�erential Equation (ODE).
The �rst part consists of a 2nd order linear ODE,

that has a point attractor g, the so called goal state.

τ ż = αy (βy (g − y)− z) + f, τ ẏ = z.

By appropriately setting αy, βy (default are αy, βy =
[25, 25/4]) , desired stability properties of the dynamic
system, e.g. critical damping y → g, can be achieved.
Additionally, an external force f is added to the sys-
tem, speci�ed by

f(x) =

∑
i ψi(x)wix∑
i ψi(x)

ψi(x) = exp
(
−hi (x− ci)2

)
τ ẋ = −αxx [usually αx = 25/4].

This forces is steered by a 1st order ODE on the
phase x which controls the activation of the force basis-
funcions ψi that are weighted by wi.

ci = exp

(
−αx (i− 1) +

1

2 · (N − 1)

)
hi =

10

13

1

‖ci+1 − ci‖2

The trajectories used in the task are therefore
parametrized by the weights wi and the goal-state g
only. Fixing all but g, wi also facilitates the learning
process, as the transition between time-steps depends
linearly on the remaining open parameters which
makes it also usable for imitation learning.

2.2 FD Gradient Sampling

Finite Di�erence Gradient Sampling is the basic
method for optimization of a black-box, which is a
reward function r : Θ→ R that is only given by eval-
uation on a real system and assumed to be stochastic.
Motivated by the fact that f(θ)−f(θ0) = ∇θf(θ0)·(θ−
θ0) +O(‖∆θ‖) for a deterministic, di�erentiable func-
tion, the gradient of E(r)(.) in θ0 is approximated by
evaluating a set of samples θi ∼ N (θ0, σ

2I) and com-
puting least-squares estimation on the rewards r(θi).
The gradient estimate Gθ0 is given by:

Gθ0 =
[
∆ΘT∆Θ

]−1

∆ΘT∆r.

The computedGθ0 can be used for stochastic steep-
est ascent. Although gradient estimation is relatively
simple and medium scalable (one just needs enough
samples), the algorithm needs in application a tuning
of the step-size, which can be di�cult.

Robot Beerpong: Model-Based Learning for Shifting Targets

2.3 POWeR

Additionally to FD Gradient Sampling we also imple-
mented the Policy Learning by Weighting Exploration
with the Returns algorithm, as presented in [4]. The
method overcomes the problems of de�ning a good
step-size using an Expectation Maximization EM ap-
proach to performing the policy updates in the learn-
ing algorithm.
In [4] it is shown, that for a (DMP) trajectory τ , πθ0(τ)
a given policy (in our case a sampling rule with mean
θ0 for the parameters, that results in di�erent trajec-
tories), D(.‖.) the Kullback-Leiber divergence and C a
positive constant

logEπθ (R(τ)) ≥ −C ·D (πθ0(τ)R(τ)‖πθ(τ)) = Lθ0(θ).

Therefore maximization of Lθ0(θ) increases the lower
bound and results, as the bound is tight, in a param-
eter update with higher expected reward.

Using the DMPs results in trajectories of the
form τ = (θ + ε)TΦ(t), where t = [0, . . . , t, . . . , tend]
is the discretized time and ε additive noise used for
exploration, if one would explicitly calculated the
steps yt of the ODE-solver.
In combination with a Gaussian sampling rule
θ 7→ θ + εi, ∀Ni=1ε

i ∼ N (0, ε2), N number of samples,
the POWeR-algorithm simpli�es to the update-rule:

θi+1 = θi +

∑N
j=1 ε

j · r(τπθi+εj)∑N
j=1 r(τ

π
θi+εj

)

2.4 One Step Pilco

In the context of the Transfer-Learning Sce-
nario, it is reasonable to learn a forward model
M : Θ → R : θ 7→ d2 form parameters θ to the
resulting y-coordinate of the 2nd bounce d2. Assume
that there is already some data of parameters Θ
and resulting distance of the 2nd second bounce
d2 given. As the reward r ≈ exp

(
− 1

2b · (d2 − t)
2
)
,

d2 ∼ GP (θ|Θ,d2) can be used to guide the parameter-
search. Additionally, as the state of the environment
will change during learning, using information gained
on a di�erent target results in a more e�cient learning
process. One could also learn an inverse Model, but
that is likely to lead into problems when the mapping
is not one-to-one as in our highly multi-modal case.

The GP -regressor is especially suited for the task,
as it gives not only a prediction mean, but also the
prediction variance expressing the model uncertainty.
Following [6], the GP -regressor for approximation of
a mapping y = f(x) + ε, ε ∼ N (0, ε2) by sample data

X,y at point x? is given by(
y
y?

)
∼ N

(
0,

(
K(X,X) + ε2

noise
δi,j k(x?,X)

k(X,x?) k(x?,x?)

))
with a positive de�nite Kernel K : X× X→ R+ .
Therefore, the predictive distribution
p(y?|x?,X,y) = N (µGP (x), σ2

GP (x)) is de�ned by:

µGP (x) = k(X,x?)
[
K(X,X) + ε2δi,j

]−1
y,

σ2
GP (x) = k(x?,x?)

− k(X,x?)
[
K(X,X) + ε2δi,j

]−1
k(x?,X).

We used the common Squared-Exponential Kernel with
automatic relevance detection (SEard) given by

k(θ1, θ2) = s · exp

(
−1

2
(θ1 − θ2)TΣ−1(θ1 − θ2)

)
,

where s de�nes the scale of the basis-function and Σ
is a diagonal-matrix containing the length-scales li for
every input dimension.

Iterations

Given the current forward-model, set the next param-
eters to evaluate on the robot to the optimum of the
stochastic Non-Linear Program (NLP) resulting from
maximizing the expected reward E(r|θ) given the GP-
model:

θ? = argθ max E
[
exp

(
− 1

2b
· (d2 − t)2

)]
s.t. d2 ∼ N

(
µGP (θ), σ2

GP (θ)
)
.

In [7] an analytic formula for the expected reward in
case of a Gaussian input d2 is given by

F (µ, σ2) = ([1 + σ2/b]−
1
2 · exp

(
−1

2

1

σ2 + b
· (µ− t)2

)
,

that turns the stochastic NLP into the deterministic:

θ? = argθ max F
(
µ, σ2

)
s.t.

µ = k(Θ, θ)
[
K(Θ,Θ) + ε2δi,j

]−1
d2,

σ2 = k(θ, θ)− k(Θ, θ)
[
K(Θ,Θ) + ε2δi,j

]−1
k(θ,Θ).

Additionally [7] shows that this saturating reward is
well-suited for reinforcement-learning, as it balances
exploitation and exploration with respect to the
model uncertainty and the achieved reward. One
can interpret our approach as a signi�cant eas-
ier to implement and still powerful one-step version
of the PILCO algorithm for reinforcement-learning [8].

Fabian Wagner, Felix Schmitt, Supervisor: Oliver Kroemer

As the derivatives can also be calculated by means of
the derivative the of kernel-function ∇θ [K(θ,Θ)],

∇µ,σ2F
(
µ, σ2

)
=

(−F
(
µ, σ2

)
1

σ2+b (µ− d)

1
2F
(
µ, σ2

) [
1

σ2+b

]2
((µ− d)2 − 1)

)
∇θµ(θ) =∇θ [k(θ,Θ)] ·[

K(Θ,Θ) + ε2δi,j
]−1

d2

∇θσ2(θ) =− 2∇θ [k(θ,Θ)] ·[
K(Θ,Θ) + ε2δi,j

]−1
k(θ,Θ)

Sequential Quadratic Programming SQP can be
applied to solve the NLP and the optimal parameters
θ? can be evaluated on the robot.

Afterwards, the data is updated wit the new
evaluation data θ → Θ, di(θ) → di and the forward-
model is retrained. This process is iterated until the
2nd bounce reaches the desired position.

3 Evaluation

In this section, we demonstrated the ability of pre-
sented methods to solve the Beerpong-task and the
application of OSP to the shifting cup scenario. There-
fore we �rst explain implementation details of the three
algorithms. Furthermore numerical results on the SL
simulation environment are illustrated at two �gures
and �nally we give an interpretation of the evaluation.

3.1 Experimental setup

We now describe the setting of the hyperparameters of
the algorithms and especially show several implemen-
tation details of our presented OSP method.

3.1.1 FD Gradient Sampling

In our implementation of the FD Gradient Sampling
we used one independent DMP for each of the three ac-
tive joints and 4 basis-functions, for reasons of compar-
ison to OSP, to generate the movements. The number
of basis-functions did not play a big role for FD nor for
POWeR, as computation and convergence scaled with
the increase of samples due to higher dimension.
The solution of the ODE de�ned by the DMPs was
done with a explicit 2/3 Bogacki-Shampine Runge-
Kutta integrator which is the standard in both Mat-
lab/Octave. Initialization was for all methods θ0 =
[1.25 + 0.2ε, 1.2 + 0.2ε, 0.4ε, ε1:3] ε ∼ U([−0.5, 0.5]).
As mentioned earlier it was necessary to get a good
step-size rule and our best results were achieved using
σ = min (30(1− r(i))σ0, 10σ0) where σ0 = 0.01 for 20
parameter samples ∼ N (θ, σ2) and step-size for the
normalized gradient.

3.1.2 POWeR

We used the POWeR-algorithm in combination with
the DMP trajectory generator as proposed in [4],
in the same setting as FD for matters of compara-
bility. The policies where set to τ [π(θ)], π(θ) ∼
N (θ, [(1−R)/40]

2
).

We sampled 10 parameters in each iteration and ad-
ditionally followed [4] and reused the best 5% of roll-
outs in each update.

3.1.3 OSP

Although OSP seems very sound from theoretical
view, it is the most complex of the methods to im-
plement, but still considerably more straightforward
then full Pilco. First, it is important to set the
hyper-parameters s, li, ε to a appropriate size. Hence
we used [3] to maximize the marginal likelihood [6]
on a set of data collected in rollouts. In order to
use only one sample to initialize the OSP, the ε had
to be scaled down, to not wash out data from real
evaluation in early stages of the algorithm. During
iteration ε was slowly increased with the growth of
data.
Given the small amount of data, the dimension of Θ
had to be reduced (initially 16) using only 4 basis
functions. In this manner, the forward model had to
be learned in only a 15-dimensional space

One natural choice for initializing the policy search
is to search all collected data for the best θ0 and
apply descent from there. However, this approach
usually ended in getting stuck near the initialisation,
as the low noise made the variance of the GP-model
increases too strong away from the initial point that
SQP did not produce a expressive solution.
First, we added the Variance of the reward
k2 · V

[
exp

(
− 1

2b · (d2 − t)
2
)]

to the objective as
proposed in [7] to increase the exploration by reward-
ing rollouts in uncertain regions.
Second, we initialized θ0 + ε, ε ∼ N (0, 0.035 · I) and
discarded NLP solutions when to distant for reasons
of safety. These parameters were not executed but
incorporated in the model setting d2 = 0 to prevent
the robot from damaging itself and trying again.

3.2 Results

For evaluation we executed 20 trials, each with a ran-
dom cup position ∼ U([2, 3.7]). FD and POWeR were
run for 30 parameter-updates and OSP for 50 itera-
tions. As the di�erent methods use a varying number
of rollouts per parameter-update, the total number dif-
fers as it can be seen in �gure 5.

Robot Beerpong: Model-Based Learning for Shifting Targets

Figure 5: Evaluation on static cup scenario: red FD, blue

POWeR and green OSP.

Thick line E(r), thin lines normal error ν, black line average

reward for successful throw.

The black line at 0.93 indicates the average reward
over the di�erent cup positions, a successful throwing
movement achieves.

Figure 6: Evaluation of OSP on shifting cup scenario

changing the cup postion every 10 rollouts

For the shifting cup scenario �gure 6, the cup was
moved to a random cup position ∼ U([2, 3.7]) every
10 iterations of the OSP algorithm.

3.3 Discussion

As a rather unspeci�c FD needed the most rollouts
and had also the highest variance in the rewards.

POWeR performed signi�cantly better and needed
half of the rollouts to reach a successful policy and
was the fastest method in terms of computation.
However, it �rst seemed as if the discontinuity in the
reward function caused problems when reusing old
good rollouts, as roll outs which hit the cup's outside
where not discarded from the best 5% and stop the
algorithm from reaching higher rewards. But �nally
this issue was solved by the use of a more elaborate
reuse-rule incorporating the current reward.

OSP, although needing by far the most compu-

tation time, clearly outperformed the other methods,
needing on average only 40 rollouts (13 of POWeR
and less than 1

10 of FD) to achieve a successful
movement. The reason, can be found in the fact that
the method uses an explicit forward model to decide
on parameters to evaluated. The stochastic nature
of the GP-regressor, combined with the functional,
consisting of expected reward and variance, automat-
ically produces e�cient exploration, steered by the
present model uncertainty, as reported by [7].
In the scenario of the shifting cup, �gure 6 shows, that
OSP is capable of quickly generalizing the throwing
movements. Directly after moving the cup, the reward
breaks in for the �rst two to three iterations and
recovers after a few more iterations in the �rst half of
the experiment. In the second half the model is good
enough to directly perform a high reward movement
in the new situation. Finally in the end OSP produces
successful rollouts even if the cup position changes.

4 Conclusion and further work

In this paper we presented the motor-task of Beerpong
and explained why it is a relevant and interesting
problem for reinforcement learning. Furthermore
we showed that the task is solvable using a DMP
parametrisation and the presented three methods.
We also extended the previous work of [8] to the
special single, bandit-type reward setting in Beerpong
which resulted in the proposed OSP-algorithm, that
we derived directly from a GP-forward-model-based
approach and the saturating reward function. Our
simulated experiments showed that OSP can learn
faster than the two benchmark algorithms FD and
POWeR.
Finally we changed the Beerpong-task to the more
di�cult shifting cup scenario and successfully evalu-
ated OSP.

In future work we are planning to investigate
how to simultaneously track the GP-hyperparameters
during the learning process iterations. Therefore, it
is also worth considering the use of a prior on the
hyperparameters.
Additionally, we will perform a comparison to
Cost regularized Kernel Regression [2], a kernelized
extension of POWeR, on similar generalization tasks.

Acknowledgements

Thanks to Chris for his help on SL and the matlab
interface and to the barber who took care of the marks
SL left in Felix hair.

Fabian Wagner, Felix Schmitt, Supervisor: Oliver Kroemer

References

[1] S. Schaal. The SL Simulation and Real-Time Con-
trol Software Package Computational Learning
and Motor Control Laboratory, Computer Science
and Neuroscience, University of Southern Califor-
nia, Los Angeles

[2] J. Kober, E. Oztop and J. Peters. Reinforce-
ment Learning to adjust Robot Movements to New
Situations. Proceedings of Robotics: Science and
Systems (R:SS), 2010

[3] C. E. Rasmussen and H. Nickisch. GAUS-
SIAN PROCESS REGRESSION AND
CLASSIFICATION Toolbox version 3.2 for
GNU Octave 3.2.x and Matlab 7.x. from
http://www.gaussianprocess.org/.../code/,
2005-2013

[4] J. Kober and J. Peters. Policy Search for Motor
Primitives in Robotics. Advances in Neural Infor-
mation Processing Systems 22 , The MIT Press,
Cambridge, MA, USA, NIPS 2007

[5] S. Schaal, P. Mohajerian, A. Ijspeert. Dynamic
Systems versus Optimal Control - A unifying view.
Progress in Brain Research, Vol. 165, pages 425-
445. Elsevier B.V. 2007

[6] C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. Adaptive Com-
putation and Machine Learning. The MIT Press,
Cambridge, MA, USA, 2006.

[7] M. P. Deisenroth. E�cient Reinforcement Learn-
ing using Gaussian Processes PhD thesis, in Uwe
D. Hanebeck (eds.), 9, KIT Scienti�c Publishing.

[8] M. P. Deisenroth and C. E. Rasmussen PILCO: A
Model-Based and Data-E�cient Approach to Pol-
icy Search. International Conference on Machine
Learning (ICML 2011)

