
Comparison of Different Learning Algorithms for Beer-Pong in SL

Andreas Wieland David Hoppe
Darmstadt University of Technology Darmstadt University of Technology

Abstract

In this paper we compare two different re-
inforcement learning algorithms for learning
how to play the game of beer pong with a
robotic arm. A robot arm with seven de-
grees of freedom learned to throw a ball into
a cup after letting it bounce off a table. We
use a gradient method as a first approach to
solving the problem. There, we estimate the
gradient and we use Finite Difference for up-
dating. The second method used is a policy
search method called PoWER. For trajectory
generation we used fourth order splines. We
applied our approach on a simulated robot.
We used the SL Simulation environment for
implementation and evaluation of the algo-
rithms. Further the results of the two algo-
rithms are described and compared.

1 Introduction

Robotic learning has become a very popular research
area during the last decade due to the importance of
robots who can adapt to the environment. To this end,
robots are very difficult to be trained to anticipate ev-
ery possible outcome, thus novel learning approaches
have been developed. Robots capable of learning new
behavior are necessary in order to be applicable to
real world scenarios [5], where they have to constantly
adapt to small changes in their environment. Thus,
in order to achieve adaptive robots machine learning
methods suitable to meet the requirements in that par-
ticular area have to be developed. As stated by Peters
and Schaal [5] many reinforcement strategies do not
provide convenient solutions due to their scalability.
Also, without an initial solution a robot could break
before it finds a useful solution. Therefore the op-
timization should only be achieved in small steps in
term of the policy to prevent the robot from being
damaged.

The goal of the project was to implement different
learning algorithms in order to solve a game called

Figure 1: Simulation environment and task description

beerpong. A robotic arm holding a ball is placed in
front of a table. In our task a cup is placed in a fixed
position on the table. The goal is to throw the ball on
the table and then into the cup. A suitable trajectory
for the ball is drawn as a black line in Figure 1. While
the robotic arm has seven degrees of freedom, we
decided for simplicity to reduce the problem to only
two degrees of freedom. Additionally, not all seven
degrees of freedom are needed to solve the task.

Reinforcement learning methods have been applied
to solve the beer pong task in the past. Isaac and
Kroenig [2] used policy-search methods (e.g., Finite
Difference Gradient) in order to solve the problem.
Further Wagner and Schmitt [7] extended the task
by shifting the cup between iterations. The approach
presented in this paper was implemented within
the SL Software Package [6]. Figure 1 depicts our
general set up of the task within the SL-Simulator.
SL offers simulation and real-time control while being
very close to programming a real robot. As SL is
written C the implementation of the algorithms can
be time consuming. It is particular not suitable
for fast prototyping. Hence, we used a MATLAB
[4] interface. The communication between SL and
Matlab is realized through a shared memory [1].



BEER-PONG IN SL

This paper is structured as follows: First the model
used to solve the beerpong problem is outline. We
then shortly discuss the main approaches applied to
the problem of learning the parameters of our model.
In the subsequent section we present our results for
each algorithm. Finally we discuss the differences of
the algorithms and we compare the two approaches.

2 Method

In order to apply the different algorithms we first mod-
eled a goal trajectory in joint space. We chose to
model the trajectory by dividing it into two fourth
order splines.

A(w) =

{
f(t) if t ≤ tthres
g(t) if t > tthres

(1)

where tthres is denoting the time when the ball is
thrown

f(t) = η4t
4 + η3t

3 + η2t
2 + η1t+ η0 (2)

g(t) = ξ4t
4 + ξ3t

3 + ξ2t
2 + ξ1t+ ξ0 (3)

In addition we introduced the following constraints for
f(t):

f(0) = xstart (4)

f ′(0) = 0 (5)

f ′′(0) = 0 (6)

f(tthres) = xthres (7)

f ′(t) = vthres (8)

We set a fix initial position to xstart and because
the arm of the robot is not moving at the beginning.
Therefore the initial velocity as well as the initial ac-
celeration also concludes to zero. Finally the velocity
at the point xthres where the ball is thrown is set to
vthres. When applying these constraints to f(t) we
obtain

η = A−1


xstart

0
0

xthres
vthres

 (9)

where η is defined as follows

η =


η4
η3
η2
η1
η0

 (10)

After deriving f(t) two times we optain A with

A =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

t4thres t3thres t2thres tthres 1
4t3thres 3t2thres 2tthres 1 0

 (11)

For the second part of the trajectory we defined the
following constraints for g(t)

g(tend) = xend (12)

g′(tend) = 0 (13)

g′′(tend) = 0 (14)

g(tthres) = xthres (15)

g′(tthres) = vthres (16)

This leads to the following solution for ξ

ξ = B−1


xend

0
0

xthres
vthres

 (17)

where ξ is defined as follows

ξ =


ξ4
ξ3
ξ2
ξ1
ξ0

 (18)

After deriving g(t) two times we can define B as fol-
lows

B =


t4end t3end t2end tend 1
4t3end 3t2end 2tend 1 0
12t2end 6tend 2 0 0
t4thres t3thres t2thres tthres 1
4t3thres 3t2thres 2tthres 1 0

 (19)

We set a fix end position xend at which the velocity
and the acceleration is set to zero. For a smooth
transition at tthres we set the position and the velocity
at this point to the same value as in the first spline,
which are xthres and vthres.

From these formulas we can extract the parameters
which the algorithms will be learning, these parame-
ters are as follows:



BEER-PONG IN SL

Distance Cup - End

Penalty for under the table

Distance Cup - Trajectory

Penalty for before the table

Figure 2: Visualization of the different parts of the
reward function

θ =

 xthres
vthres
tthres

 (20)

with 0 ≤ tthres ≤ tend

2.1 Reward Function

For the reward function we combined different distance
measures in order to obtain a suitable function.

r =− α · d(xcup, xballend)−
β · d(xcup, xballnearest) + γ (21)

The distance d(x, y) is the euclidean distance between
x and y. And therefore d(xcup, xballend) describes the
euclidean distance between the ball and the cup af-
ter the ball is thrown and the time is up. The dis-
tance d(xcup, xballnearest) describes the euclidean dis-
tance between ball and cup where xballnearest is the
nearest position of the ball to the cup in the entire
trajectory of the ball. In order to prevent the reward
from being high when the ball is thrown under the
table γ is introduced as penalty. It also includes the
penalty for a throw in front of the table which is a local
maximum. Suitable values for α and β were chosen.
Figure 2 depicts how the different parts of the reward
function are measured.

γ =

 −100 if the ball is thrown under the table
−50 if the ball halts in front of the table
0 else

2.2 Finite-Difference Gradient

In order to optimize the parameters of the trajectory
a finite-difference gradient approach was used. The
algorithm contains the following two steps: Gradient

estimation and parameter update. After adding some
random perturbations, the gradient is computed as fol-
lows

gFD = (∆ΘT ∆Θ)−1∆ΘT ∆J (22)

The gradient is used to properly update the parame-
ters by

θt+1 = θt + αgt (23)

where α is the learning rate. We tried out different
sample sizes N . New samples were drawn from a gaus-
sian distribution with zero mean and covariance σI.
We fine-tuned σ to 0.001. And obtain a set of samples
Θ as follows:

Θ =


θt + εt,1
θt + εt,2
θt + εt,3

...
θt + εt,n

 (24)

with ε = N (0, σI)

2.3 POWER algorithm

Policy learning by Weighting Exploration with the Re-
turns (PoWER) [3] is another popular algorithm. The
principle is that it calculates a distribution Model for
the parameters and trys to tie down the variance in
respect to the rewards of the current sample. In each
step we calculate a random sample in respect to:

Θt = N (θ∗t−1,Σ
∗
t−1) (25)

where θ∗t−1 is the weighted arithmetic mean calculated
from the sample Θt−1:

θ∗t =

∑N
i=1 wiθi∑N
i=1 wi

(26)

And Σ∗t−1 is the the biased weighted covariance matrix
calculated from the previous sample Θt−1

Σ∗t =

∑N
i=1 wi

(
∑N

i=1 wi)2 −
∑N

i=1(wi)2
·

N∑
i=1

wi(xi − θ∗t )T (xi − θ∗t ) (27)



BEER-PONG IN SL

1 2 3 4 5 6 7 8 9 10 11
40

50

60

70

80

90

100

110

120

130

Iteration

C
os

t
Finite Difference Method

10 sample
20 sample
30 sample
40 sample
50 sample

(a) Results of the Finite Diffrence Gradient Method for 11
Iterations and different samplessizes

0 10 20 30 40 50 60
30

40

50

60

70

80

90

100

110

120

130

Iteration

C
os

t

Finite Difference Method

10 sample
20 sample
30 sample
40 sample
50 sample

(b) Results of the Finite Diffrence Gradient Method for 50
Iterations and different samplessizes

By using the reward ri as the weights wi we can assure
that better throws have a higher influence on the next
iteration so that the algorithm converge to maximze
the Reward.

3 Results

In this section we will discuss our results for the two
different learning methods and compare them with
each other. For the purpose of comparing the two
methods we took the most frequent values in the re-
sulting array of the PoWER method. In Figure 3a you
can see that for 11 iterations the finite difference gra-
dient method does not converge for any sample size
compared to the Power Method which converged for
all sample sizes greater than 20 (see Figure 3c). For

1 2 3 4 5 6 7 8 9 10 11
−10

0

10

20

30

40

50

60

70

Iteration

C
os

t

POWER Method

10 sample
20 sample
30 sample
40 sample
50 sample

(c) Most frequent values in array for the POWER Method
over 11 Iterations and different samplessizes

0 10 20 30 40 50 60
−10

0

10

20

30

40

50

60

Iteration

C
os

t

POWER Method

10 sample
20 sample
30 sample
40 sample
50 sample

(d) Most frequent values in array for the POWER Method
over 50 Iterations and different samplessizes

higher iterations we see that the finite difference gra-
dient is converging but only for the smallest sample
size. A bigger sample is in fact contra-productive and
probably needs more iterations to converge. In addi-
tion to that more fine tuning of the start parameters
and the learning rate could produce better results.

4 Discussion

In this paper we presented an approach to a robot
competing in the game beerpong based on the finite
difference method and the POWER algorithm. We
implemented both algorithms on the SL Simulation
Framework. In accordance with the results of Wag-
ner and Schmitt [7] we observed the Finite Difference
Gradient to converge slower and to show a higher vari-



BEER-PONG IN SL

ance with respect to the rewards. Our results are
even more unstable compared to theirs. One reason
for that could lie in the fact that our approach incor-
porated more degrees of freedom and therefore more
parameters. We also observed Finite Difference to get
more stable results when the sample size is low. Since
PoWER converges to a local maximum there is still
room for improvement. The simplifications made in
our reward function could cause this convergence. It
is also possible that further experimentation with the
parameters α and β could improve the results. For
this project we set the parameters to one. Hence both
reward measures are equally weighted.

5 Limitations and Future Work

While we applied reinforcement methods to the beer-
pong problem we made some simplifications to task.
We only used two of the seven degrees of freedom.
Although policy gradient methods scale well even
beyond three degrees of freedom [5] by using only
two degrees of freedom we could have chosen other
reinforcement strategies as well. Another simplifica-
tion we made is setting the cup’s position fixed. If
the cup’s position changes during the learning of the
policy transfer learning and therefore more complex
algorithms are needed to complete the task [7].

The choice of a suitable reward function is crucial in
reinforcement learning. We combined multiple rather
simple to compute measures (e.g., Euclidean distance
between the ball’s end-position and the cup) and
added a penalty for the ball landing under the table.
Another more expensive with respect to implementa-
tion but rather convenient reward function is the po-
sition of the ball bouncing on the table for the second
time.

References

[1] C. Daniel, G. Neumann, and J. Peters. Complacs
robot arm evaluation scenarios.

[2] J. Isaak and M. Kroenig. Beer pong. PhD thesis,
2013.

[3] J. Kober and J. Peters. Policy search for motor
primitives in robotics. (1-2):171–203, 2011.

[4] MATLAB. version 8.1 (R2013a). The MathWorks
Inc., Natick, Massachusetts, 2013.

[5] J. Peters and S. Schaal. Policy gradient methods
for robotics. In Proceedings of the IEEE Interna-
tional Conference on Intelligent Robotics Systems
(IROS 2006), 2006.

[6] Stefan Schaal. The SL Simulation and Real-Time
Control Software Package. Technical report, March
2006.

[7] F. Wagner and F. Schmitt. Robot Beerpong:
Model-Based Learning for Shifting Targets. PhD
thesis, 2013.


