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Abstract

This paper gives an overview of recent work in the domain of biological motor
control. In particular we addresses the question of how the central nervous system
represents and solves the transformation of a goal into the appropriate motion.
Therefore we focus on studies from [dAve 05] and [Over 08] which suggest that
motor control is accomplished using a modular structure of muscle activations.

1 Introduction

To illustrate the complexity of motor control let us consider a task which is accomplished by our
central nervous system (CNS) every day like the transformation of a goal into an action. Taking the
example of primate grasping, discussed in [Over 08] and reducing it only to the phase of a monkey’s
arm reaching for a specific object. This action can be achieved by an infinite number of trajectories.
Each trajectory can be created by several combinations of joint motions of the corresponding parts
of the body, like arm and wrist and additionally these single motions can be created by multiple
muscle combinations. In order to accomplish such a task one has to solve the so called problem
of “inverse dynamics”’[Muss 00]. The “direct” dynamics problem is the calculation of a trajectory
given a certain force, which can be achieved using integration and deriving the limbs acceleration.
But the CNS must solve the inverse problem, given a planned trajectory it must calculate the required
force and the appropriate muscles. Additionally taking into account that multiple combinations of
muscles can result in the same torque, thus the dimensionality of the search space gets very high,
also known as Degrees of Freedom (DOF) problem.

One way for the CNS to manage this complexity is to find statistical regularities in the environment
and operate using these regularities rather than individual variables [Tres 06]. In the visual system
this concept is applied using “features” of the environment, like edges and bars encoded in the visual
cortices [Hube 59] to facilitate the analysis of visual scenes. Several studies have found support for
the hypothesis that the motor control has also a modular organization and does not operate directly
with individual muscles.

For Example the study of [Bizz 95] the spinal cords of frogs shows that the stimulation of the in-
terneuronal circuitry leads to a specific balance of muscle activation. They measured mechanical
responses of muscles by attaching the frog’s limb to a force transducer and electrically stimulating
the lumbar spinal cord. The evoked contractions then generate force patterns that direct the frog’s
limb towards an equilibrium point in space [Muss 00], depicted by Figure 1. A further observa-
tion is that the simultaneous stimulation of two sites, each generating a different force field results
in the vector sum of the two fields [Bizz 95], thus the force-fields follow the principle of vectorial
addition. Such patterns not only serve the CNS to reduce the Degrees of Freedom but the strategy
can be applied in the field of robotics in order to reduce the search space for the appropriate drives
for a certain motion, what should positively influence the learning of movements. Moreover these



findings build the basic for further hypothesis stating that the modular organization of motor control
is based on muscle synergies, which define groups of muscles activated by a single neuronal signal.
In the following sections we will cover the different models proposed for muscle synergies, as the
synchronous and time-varying synergies. In particular we will focus on the studies of [dAve 05] and
[Over 08].
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Figure 1: Force field induced by electrical and chemical stimulation of the spinal cord in frogs ([Bizz 95]) (a)
The hindlimb was placed at the locations indicated by a by the dots. At each location a stimulus was derived
at a fixed site. The resulting force was measured by a force transducer. (b) Force vectors recorded at the nine
locations from (a). (c) “The work-space of the hindlimb was partitioned into a set of non-overlapping triangles.
Each vertex is a tested point. The force vectors recorded on the three vertices are used to estimate, by linear
interpolation, the forces in the interior of the triangle.”[Muss 00] (d) Interpolated force field.

2 Muscle Synergies

The task of finding a muscle combination to perform an appropriate sequence of movements in
order to achieve a certain goal turns out to be very complex. As stated above the Degree of Free-
dom (DOF) Problem must be solved. Many researches have investigated on this topic([dAve 05],
[Bizz 95], [Over 08], [Hart 10]), their suggestion is that the central nervous system (CNS) uses a
hierarchical structure of muscle modules to simplify motor control. A module can be represented
as a set of synergies, which are defined as a set of muscles recruited by a single neural command
signal[Torr 06]. So the generation of complex patterns consists of the combination of a few muscle
synergies [dAve 05]. The following subsections discuss the representation and characteristics of the
different synergy models.

2.1 Synchronous Synergies

A synchronous synergy can be explained as the simultaneous activation of a set of muscles. Such a
synergy is represented by [dAve 05] as a vector of real numbers, where each component is one of the
simultaneously activated muscles. The muscle activation waveform of each synergy is constructed
by scaling each component with an amplitude coefficient c. Finally the muscle pattern is represented
by the sum of the generated waveforms.

m(t) = ei(t) x w; (1)

i=1

In Equation | we can see a muscle pattern m(t) covering P muscles at time ¢. The amplitude
coefficient ¢;(t) scales the ith synergy, w; at time ¢. If sampled at discrete time intervals Equation |
results in

M =WC. 2



Fraction for each no. of synergies

Frog Behavior 2 3 4 5 6 7 8

F10 Jumping 075 082 08 090 092 094 095
F11 Jumping 071 085 08 091 093 095 096
F17 Jumping 0.71 0.80 0.86 0.90 0.92 0.94 0.96
F10 Swimming 0.78 0.84 0.89 0.91 0.93 0.95 0.96
F11 Swimming 0.68 0.77 0.82 0.88 0.91 0.94 0.95
F17 Swimming 0.59 0.69 0.76 0.81 0.86 0.90 0.94
F10 Walking 0.56 0.72 0.85 0.89 0.92 0.94 0.96
F11 Walking 0.68 0.79 0.89 0.91 0.94 0.95 0.97
F17 Walking 0.55 0.73 0.80 0.87 0.91 0.93 0.95

Figure 2: Data Variation explained by synchronous synergies [dAve 05]

Where M is a P x K-matrix, W contains the synergies and C is a K x N-matrix. In order to
reconstruct the data it this model requires the adjustment of a large number of parameters, which are
represented by C, thus there are K x NN free parameters.

This model covers constant relationships of activation amplitudes as the spatial structure of a muscle
pattern. In order to reconstruct the data it requires the adjustment of a large number of parameters,
the combination coefficients, which is the total number of samples K times the number of synergies.

In the past years several studies have investigated on the question whether the motor control archi-
tecture can be proven to be composed of units like muscle synergies. In most cases techniques like
the correlation between muscle pairs met only little success [dAve 02]. Nevertheless an analysis of
muscle patterns in frogs using a non-negative matrix factorization algorithm was the first to state
support for the hypothesis of muscle synergies ([dAve 05]).

This study investigated the electromyographic activity of 13 hind limb muscles of three adult bull
frogs. The electromyographic (EMG) data was collected while the animals were freely jumping or
walking in a large cage, or swimming in a tank. Analysis of the extracted synchronous synergies
show, that the total variation in the data increased with the number of synergies, ranging from an
average 0.67 with two synergies to an average of 0.96 with eight synergies as shown by Figure 2.
Thus a great part of the data can be explained with a smaller number of patterns than the dimen-
sionality of the data, which is 13 patterns. To ensure that the algorithm captures real structure the
reconstruction error of the extracted synergies was compared to the reconstruction error of synergies
obtained from structureless simulated data. The resulting R? value of synergies from the real data
was significantly higher than the R? value based on the simulated data. As the amplitude of each in-
dividual muscle was identical in the real and simulated data this implies that the algorithm captures
amplitude relationships among muscle activations.

A further comparison of five synergies from the same behaviour of different frogs showed that those
synergies were in most cases significantly similar. Indicating that the captured spatial structure does
not vary among individuals.

2.2 Time-Varying Synergies

Time-varying synergy is also a term introduced by [dAve 05]. In contrast to synchronous synergies
a time-varying synergy is obtained by “scaling different synergies, each sequence multiplied by
a single amplitude coefficient, shifting the synergy onset ¢; in time, each sequence shifted by a
single timing coefficient, and finally summing them muscle by muscle.”[dAve 05] This practice is
illustrated by Figure 3 and can be expressed with the following equation as defined by [dAve 02]:

N
m(t) =Y e x wi(t —t;) 3)
=1
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Figure 3: Example of the muscle pattern construction based on three time-varying synergies, taken from
[dAve 02]. In this example each time-varying synergy (left) is constituted by a sequence of 50 activation levels
in 5 muscles chosen as samples from Gaussian functions. The muscle pattern (top right, shaded) is constructed
by the scaling of by an amplitude coefficient (C}, represented by the height of the horizontal bars on the bottom
right corner) and a shift in time (73, represented by the position of the bars). At each time step, the components
are summed together.

Compared to the synchronous model the pattern m(t) adds the temporal dimension to the previous
model and thus covers the spatiotemporal relations. w;(7) is the ith synergy, which is a sequence
of P-dimensional vectors representing the P activated muscles at time 7 after the synergy onset
[dAve 05]. The parameter ¢; is the synergy onset and c; the amplitude coefficient like in Equation 1.
If the vectors in the sequence that define the time varying synergy are all of the same direction, this
model reduces to the synchronous synergy model.

Regarding the complexity of this model the number of free parameters appears to depend on the
amount of instances, where the amplitude and time parameter have to be adjusted. Nevertheless the
temporal overlap of different instances of the same synergy is constrained by a refractory period, in
general the number of instances of each synergy is less then the number of data samples divided by
the number of samples for each synergy (K/Q)[dAve 05]. This means that the number of parameters
is K/Q x N x 2. Where the 2 represent the timing and amplitude coefficient. Despite of the
additional dimension the time-varying synergy model requires a lower number of parameters than
the synchronous synergy approach. This can be positive, as there are less parameters to control but
it can also lead to a less exact data reconstruction as in the case of [Over 08].

The study on muscle synergies analysing muscle activity of the hind limbs of frogs, explained in sec-
tion 2.1 also analysed time-varying synergies. The goal was to investigate whether muscle synergies
are not only based on fixed activation amplitudes but also involve relative muscle activation timings.
As for the analysis of synchronous muscle synergies, time-varying synergies were extracted. The
variation analysis shows that “the fraction of the total variation in the data explained by the combi-
nation of the synergies in each set increased with the number of synergies, ranging from an average
R? value of 0.65 with two synergies to an average R? value of 0.83 with eight synergies”[dAve 05].
Moreover a comparison of the detected spatial structure of five time-varying synergies to the ex-
tracted synchronous synergies showed their high similarity. A further investigation on synergies
from the same behaviour of different frogs revealed that they are significantly similar, which means
that the extracted spatiotemporal synergies are to a large extent similar across the examined animals.

A further research group [Over 08] extended the synergetic model to a particularly complex system,
the hand. In addition they analyzed an interesting aspect, the modulation of synergy recruitment by
task variables. They collected EMG data of forelimbs from two rhesus macaques while grasping,
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Figure 4: Modulation of synergy amplitude coefficients by object properties (From [Over 08]). A, B, The
averaged scaling coefficients from reconstruction of all trials performed by monkey G1 (A) and G2 (B) are
plotted versus object shape and size. The object shape is shown at the bottom, whereas the object size is
represented as mass along the linear scale for each object. Each point is the average coefficient value across
40 trials in a given object condition thin lines represent one standard deviation. The amplitude of the second
synergy co appears to covary particular strongly with object size.

transportation and release of object of various size and shapes. Synergy extraction was done via an
iterative decomposition algorithm using the synergy model defined by Equation 3. The results show
that three synergies explained up to 81% of the data variation across 1519 muscles, 100 time points,
and 25 object conditions for each monkey. The extracted synergies of one monkey could be uniquely
matched to synergies from the other, whereas only two of three exeeded significant similarity. To
determine the covariations of each synergys amplitude and timing coefficient with object shape and
size, they “used an analysis of covariance (ANCOVA) in which object mass was the (continuous)
predictor and shape was the (discrete) grouping variable of the coefficient data”’[Over 08]. This
analysis confirmed the observation that especially the ¢, coefficient depends on object size and shape
as illustrated by Figure 4, whereas the timing coefficient shows only minor variation for different
shapes and sizes.

2.3 Shared and Specific Synergies

The idea of the central nervous system using modular control schemes to cope with the muscu-
loskeletal redundancy and the neural complexity in order to generate movements is widespread.
The group of [dAve 05] therefore investigated not only synchronous and time-varying synergies but
also whether such synergies are shared between different behaviours. The existence of shared syn-
ergies would mean that some synergies are reused in various actions. Implying the reduction of
the total number of synergies what also decreases the search space for the appropriate synergy set
for a planned task. The following paragraph discusses the synchronous and then the time-varying
synergies identified by [dAve 05].

The research on similarities of synchronous synergies in the hind limbs across different behaviours
revealed three synergies that are present in walking, jumping and swimming motions of frogs (see
Figure 5). Additional synergies where extracted in order to reconstruct each behaviour with five
synergies. The reconstruction of the dataset using these synergies resulted in an R? value of 0.87
which is essentially similar to that of the episodes of individual behaviour (jumping and swimming
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Figure 5: Behavior-independent and behavior-specific synchronous synergies (From [dAve 05]). The three
shared synergies are extracted from the entire dataset of muscle patterns recorded during jumping, swimming,
and walking in three frogs. One synergy (jump-walk) is extracted from only jumping and walking episodes.
The other behavior-specific synergies (jump, swim, and walk) are extracted from only the muscle patterns of
individual behaviors. Each synergy is normalized to the maximum over all muscles.
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Figure 6: Behaviour—independent and behaviour—specific time—varying synergies (From [dAve 05]) . Each
synergy represents the activation of the 13 muscles with specific activation waveforms (20 samples for a total
duration of 500 ms; amplitude is colour coded) and it is normalized to the maximum over all samples of all
muscles. Three shared synergies are extracted from the entire dataset, whereas the other behaviour—specific
synergies are extracted from only the muscle patterns from two behaviours (jump-swim and jump-walk) or a
single behaviour (swim and walk).

0.86, walking 0.81)[dAve 05]. Thus a set of synchronous shared and specific synergies can recon-
struct the data set with a comparable accuracy as synergies extracted from the individual behaviour.
The same investigation accomplished for time-varying synergies resulted in three significantly sim-
ilar pairs across all behaviours and four synergies between jumping and swimming, and jumping
and walking, which are depicted by Figure 6.“Each of the three shared time-varying synergies has
a spatial organization similar to one of the three synchronous shared synergies while, in addition,
possessing distinctive temporal characteristics”[dAve 05]. Concluding, the outcome shows that a
set of synchronous and time-varying synergies can be used as units to construct a large repertoire of
movements, where some units are shared and others remain specific to certain behaviours.

3 Algorithms for Synergies

Many studies have investigated on the topic of motor control and its modular organization based on
muscle synergies. In most cases matrix factorization was used where the observed data is modeled
as a linear combination of a small set of basis vectors, as in [dAve 02], [dAve 05], [Hart 10] or
[[van 06]. In this section we will cover one of this algorithms, the non-negative matrix factorization
(NMF) technique used and extended by [dAve 02] and [dAve 05]. We will discuss both, the synergy
extraction algorithm of the synchronous and time-varying model.

As defined in Section 2.1 synchronous synergies are represented as the linear combination of non-
negative vectors. In order to obtain such synergies out of the recorded EMG data [dAve 05] used



a non-negative matrix factorization algorithm, illustrated by Algorithm 1. It minimizes the total
reconstruction error by repeating two steps, consisting of an update of coefficients based on the syn-
ergies followed by a further update of the synergies. This is repeated until the reconstruction error
gets minimal.

Algorithm 1 Synchronous Synergy Extraction

Initialize the algorithm with random nonnegative synergies (/') and coefficients (C')
Given: W and C

Minimize the reconstruction error:

while Reconstruction Error > minimal do

Cij = Cyj (E/VWTTTMC{)J” > M is the muscle pattern from eq. 2
T
Wi; = Wi % > Update synergies using the adjusted C'

end while

The in Section 2.2 presented time-varying model which expands the previous model by a time di-
mension, requires another approach for synergy extraction. The time-varying model depends not
only on muscle activation amplitudes but also on a relative muscle activation timing, which has to
be considered during the synergy extraction. The here presented approach is an extended form of
the NMF algorithm, developed by [dAve 02]

Algorithm 2 Reconstruction error minimization

Initialize the algorithm with N random nonnegative synergies (W) and coefficients (C).
{Witiz1..n, Wi = [w;(0)...w; (T — 1)], ¢;5(> 0) = ith coefficient of the episode s
for all episodes s do
1. Find the delays ¢;s as described in Algorithm 3
end for
Update the scaling coefficients cy; by gradient descent
for all episodes s do
2. Acs = —pcV B2
end for
Update the synergy elements by gradient descent
for all synergies w; do
3. Awi; = —pwV,, E?
end for

For a given set of episodes we search for the a set of N non-negative time-varying synergies that min-
imizes the reconstruction error. As defined in Section 2.2 a synergy w;(t) is a linear combination of
nonnegative vectors representing the activated muscles at the point of time ¢. The set of coefficients
is defined by C, where c;, is the ith coefficient for the episode s. Synergies and the coefficients are
initialized to non-negative random values and all negative values appearing during computation are
substituted by zero. This is due to the always positive nature of muscle activations.

Algorithm 3 Match synergy delays

Initialize the algorithm with N random nonnegative synergies (W) and coefficients (C )
{Witiz1..n, Wi = [w;(0)..w; (T — 1)], ¢;s(> 0) = ith coefficient of the episode s
for all synergies w; do
1. Compute the scalar product cross-correlation at delay ¢
bui(t) = 32, my(r)Twi(r — 1)
2. Select synergy and delay with highest cross-correlation
3. Subtract the selected synergy from the data (after scaling and time-shifting by the selected
delay).
end for

In order to minimize the reconstruction error the three steps of Algorithm 2 are applied iteratively. At
first the delays t; are computed for each episode, given the synergies W; and coefficients c;s. This



is done by a procedure based on cross-correlation, illustrated by Algorithm 3. Once the delays are
obtained similar to the Algorithm | the scaling coefficients and synergies are updated using gradient
descent. It is an optimization algorithm often used to find local minima. In this case it serves to
adjust the coefficients and synergies causing a minimal reconstruction error. Which is defined as

E* =) E?

Ts

E2=Y"

t=1

N 2

ms(t) — Z Csiwi(t — tsi)

t=1

“4)

According to a study of [Tres 06] comparing different algorithms for synergy extraction like Factor
Analysis (FA), Independent Component Analysis (ICA) and NMF on their performance on different
data sets, that the NMF algorithms performed similar to the other algorithms regarding the synergy
detection and was consistent across data sets.

4 Conclusion

We have seen that even if the CNS controls a large variety of movements with ease, motor control
has still a high complexity. A simple movement like the reaching for an object, can be executed
in a large amount of different manners. There is possible variation in trajectory, torque and muscle
combinations creating a high dimensional search space for the appropriate movement. Several stud-
ies, like those of [dAve 02], [Over 08] and [Ivan 06], confirm the hypothesis that motor control has
a modular organization. [dAve 05] have found out that these modules consist of muscle synergies
which can be represented by two different models, the synchronous or the time-varying synergy
model. The synchronous model represents the spatial relationship of activated muscles. The obser-
vation of [dAve 02] made clear that several muscles presumed to be part of the same synergy are
activated asynchronously, having a slight delay. In order to match those synergies the time-varying
model extends the synchronous model by an additional time-dimension.

The results of [dAve 05] on the muscle activity of freely moving intact frogs, show that synchronous
synergies are invariant among individuals and even that three synchronous synergies are shared
across the considered behaviours jumping, walking and swimming. The analysis of time-varying
synergies confirms these results. This indicates that the organization of motor control is highly
invariant among individuals and that there must be a hierarchical architecture of synergies, allowing
the reuse of basic modules. A further characteristic of the motor control was revealed by [Over 08].
They studied a more complex action, the grasping of monkeys for different objects. The most
interesting outcome of their investigation is that certain synergies dependent on size and shape of
the objects. [Over 08] suggest that the covariations between synergies and object properties may
result from recruitment of invariant muscle synergies, like task parameters.

The here presented studies support the statement that the CNS uses a modular organization of mus-
cles to reduce the complexity of motor control. Their results show that there are modules which can
be reused across different behaviours but some modules remain task specific. The modular organi-
zation of motor control can be applied to the field of robotics. Especially the reuse of certain models
reduces the search space and can improve the flexibility of robotic motion.
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