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Abstract

The Grand Challenge by the Defense Advances Research Projects Agency
(DARPA) got a great impact on Machine Learning and Computer Vision research.
Stanley was the first robot which firstly was able to drive autonomously a 175 mile
course in desert terrain which was a great success in autonomous driving which
may be leading to autonomous cares in urban environment in the future. Stan-
ley faced a bunch of problems which needed to be solved to drive autonomously
through the course. Some of those Problems are the terrain which has obstacles
which need to be avoided and another is the driving speed which has to be main-
tained to win the challenge. Stanley uses therefore GPS, laser range scanners
and a color camera to classify the road into drivable and non-drivable area. This
classification is used to control speed and steering of the robot.
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1 Introduction

Figure 1: Stanley and a section of the GPS Waypoints.

The Grand Challenge was launched by the Defense Advanced Research Projects Agency (DARPA)
and was a race of autonomous driving cars. The first DARPA Grand challenge was held in 2004
and no team was able to drive more than 5% of the course which was a 142-mile long in the Mojave
desert. The winning team should win 1M $. One year later the DARPA Grand Challenge was held
again with an raised price of 2M $ where the robot Stanley was able to drive the course in under 7
hours winning the competition.

The rules where simple: All teams use the same car, so the challenge is really one of the algorithms
and not in building cars that can drive more easily in desert terrain. The course was given by
DARPA in terms of 2935 GPS waypoints. They also include speed limits and road corridor widths.
Meaning no global path planning was needed. The challenge was purely to stay on the road and
avoid obstacles. Also if one vehicle is faster than another the slower car would be stopped by
DARPA officials so it could be treated as normal obstacle, no dynamic processing was needed.

Thrun et. al. explained in their paper [5] in detail how Stanley is build and how he is internally
working. I want to give an wrap up of their work by looking on it from an Learning and Vision point
of view. This means that here the Problems which they had to face when driving in a desert terrain
and how they solved them through vision and learning techniques. All the Details on how Stanley
is build up internally and how he is doing its path planning and how exactly the learning results are
used to change driving direction and speed are mostly skipped.

The rest of this paper continues with a short wrap up of Stanleys components which are used in
the learning algorithms. Then the problems which the team around Stanley encountered in desert
terrain. The main part is then the important algorithms that do pose estimation and terrain labeling
(both using laser scanning and also using computer vision). Finally I conclude the results in the last
chapter.

2 Stanley

All the tech Stanley needs to solve the Problems when driving in desert Terrain is mounted on the
roof of the car. The important components here are:

• 5 laser range scanners with different tilt angles to view the terrain at different distances,
Each of the laser scanners generates a vector of 181 measurements which are spaced 0.5◦
apart. These measurements are put together in a 3d point cloud (including measurements at
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Figure 2: Stanleys Laser Range Scanner

different time steps) The Laser Scanners should be used to detect obstacles up to 25 meters
in front of the car.

• gps receiver which is mounted on top of the roof rack where the signal is at least obstructed.
GPS is used to get the position of the car and such determining the direction to the next
waypoint. Also what is import for obstacle detection it is one factor in determining the
vehicle pose.

• a trunk-mounted inertial measurement unit (IMU) which also is used together with the
GPS-receiver to determine the vehicle pose.

• color camera which should be used to detect obstacles ranged further away than the laser
scanners range can sense.

3 Challenges and their Solution through Vision and Learning

Autonomous driving in desert terrain yields several problems. Problems they encountered are the
following:

• pose estimation:
– the ground is slippery and vehicle movement often is not predictable with a simple

model in which the vehicle only moves in driving direction, because of sliding and
skippering of the wheels on desert underground

– gps reception is not the best and there can be long times of gps outtakes in which the
car must keep a valid estimation of its position and pose

• terrain labeling
– there will be obstacles on the road and also conditions of the ground which are not

drivable with a certain amount of speed, without damaging the robots equipment
– small errors in pose estimation can lead to great errors on terrain labeling results with

laser scanners. Robust algorithms needed to be found.
– the achieve high driving speed which is needed to win the challenge laser scanning is

not enough because there is also prediction needed to make, which go further than the
range of the scanners.

– using a camera to label terrain as drivable and non-drivable is not trivial

3.1 Pose Estimation

Stanley needs to have a consistent state vector all the time which includes 16 variables like in figure 3
shown. This is needed to keep Stanley on course and also for further calculations in terrain labeling.
We will see, that small errors in pose will have a large impact on the results in terrain labeling, so
this must be as good as possible.

Like already said the terrain can let the car slide and slip and so it can happen that the car could move
in any direction. For this reason as long as gps is available the model used is the one of a moving
mass that can be moved in any direction. GPS will give enough data so that pose estimation stays
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Figure 3: State Vetor for Pose Estimation

accurate with this model. But unfortunately this is not the case in gps outtakes. Therefore it doesnt
represent driving of a car clear enough. So the model in GPS outtakes will switch to a more precise
model in which the car can only move in the direction in which it is pointing and including wheel
motion into the model. The state vector which gives the pose of the car is then robustly estimated
through Kalman filtering.

In Kalman filtering [6] information on the previous states is used to predict the next state. Therefore
the model in which a transition to one state to another is used to give a clue to how a state change
can look like ans such eliminate outliers on gps and accelerometer data.

Figure 4: Uncertainty of the Pose estimation. With moving mass model a) and more restricted model
including wheel motion b)

To make this even more accurate Stanley uses an unscented Kalman filter [3]. In a normal Kalman
filter the next state is linearly predicted using previous ones. But the transition function may not be
linearly and so depending on when the prediction is made this could be inaccurate. In an unscented
Kalman filter the transition function is sampled to pick a set of sampling points. Then the mean of
linear predictions on this sampling points is used to get the next state.

Figure 4 shows the uncertainty of Kalman filtering without a) and with the more restricted model b).
The improvement can clearly be seen seen and Stanley could drive over one km and only accumulate
an error of 1.7m.

3.2 Terrain Labeling

The key to avoiding obstacles in Stanleys system lies in perceiving and labeling the area in front as
drivable or not drivable. To achieve this laser scanners and also an vision extension using a digital
camera is used to increase the range in which Stanley can detect obstacles and thus drive faster. Like
already states this includes many challenges which needs to be solved and good algorithms need to
be found.

3.2.1 Laser Scanning

The first approach to determine if an the road in front of the vehicle is blocked by an obstacle is
using the point cloud which results from laser scanning. The space in front of the vehicle is divided

4



Figure 5: Small Pose Estimation errors causing misclassification through laser scanning forcing
Stanley of the road.

into a 2d grid. for each grid point points in the point cloud are selected which are near. The grid
cell is then declared as occupied, free or unknown by looking at the vertical difference of nearest
measurements:

|Zi
k − Zj

m| > δ(1)

i and j are the indices for the points and k and m are the time stamps at which the measurements
were taken and δ is a critical value to decide for:

• occupied: if two or more measurements are near and formula (1) is true.
• free: if two or more measurements are near but none of them makes formula (1) true.
• unknown: if no two nearby measurements can be found.

Figure 6: Correlation of time difference in measurements and Z distance of measurements.

Now we can see where the problems arise with small errors in pose estimation. Because we compare
measurements from different time steps in which due to pose errors not completely correlate to
each other. This will result in misclassification and terrain which isn’t been blocked is classified as
occupied forcing the car of the road.

In fact by looking at figure 6 we can see, that the distance between nearby measurements and the
time difference are correlated. Stanley models this as a normal distribution which variance scales
linearly with the time difference |k −m|. Obstacles can then be detected with an probabilistic test:

p(|Zi
k − Zj

m| < δ) > α(2)
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where α is a confidence threshold (e.g. α = 0.05)

The parameters δ and α are tuned by supervised learning. Labeled training data therefore is gathered
by human driving. The driver is instructed to only drive over obstacle free terrain. Thus this is
labeled as obstacle free and left and right of the car in a distance (which is set by hand based on
average road width) is all labeled as obstacles. Although this is not all obstacles it is sufficient
enough approximation to tune the parameters.

3.2.2 Vision Extension

Figure 7: Vision extension: a) imput image b) projected laser scanning results c) classification results
d) sky removal

The range at which the laser mapper could be used for terrain labeling doesn’t give a sufficient
enough range to win the challenge as it only allows for driving speed of up to 25 mph. To win
Stanley needed speeds of 35mph. To increase the labeling range Stanley uses the also installed color
camera. But using a camera only to label terrain in drivable and non-drivable is not easy due to
changes in road appearance caused by different factors which are not easy to measure like material
changes, lightning changes, dust, . . . which is trying to be solved by many scientists [4][1][2]

Therefore Stanley can simplify the problem because he doesn’t need to rely on camera image only.
Fore a limited range Stanley already knows drivable terrain cause of the laser scanning. This can be
used to get training data on the fly for the actual road condition. Therefore a quadliteral in front of
the vehicle which is all labeled as drivable is projected onto the actual camera image like shown in
figure 7 b). Pixels on this projected can be used as positive labeled training data which can be used
to build a mixture of Gaussians which classify drivable pixel colors. Each of n Gaussian mixture
components are formulized through a mean RBG color µi, covariance σi and a number of pixels mi

which were used to train this Gaussian.

For the learning algorithm it is important that it can smoothly adapt to new lightning conditions but
also rapidly change if the material of the road changes resulting in completely different pixel colors.
Therefore when a new image arrives k¡n new Gaussian mixture components are generated out of the
projected image region. Compare the jth new Gaussian to the already saved Gaussian in memory
with the mahaboli distance:

d(i, j) = (µi − µj)
T (Σi + Σj)

( − 1)(µi − µj)

based on this distance find mixture component i which is nearest end decide on the following

• if the distance d(i, j) <= Φ use the new mixture component to refine the old one using the
formula:

µi :=
miµi

mi +mj
+

mjµj

mi +mj

Σi :=
miΣi

mi +mj
+

mjΣj

mi +mj

mi := mi +mj

• if the distance d(i, j) > Φ then add this new mixture component and eventuelly delete an-
other mixture component which pixel count mi is smallest if already n mixture components
are set.
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Using this mixture components Stanley can classify pixels that are not in the region which is pro-
jected with the laser scanner results as drivable.

These results still don’t guarantee to classify non drivable regions right. Since some changes in road
properties are normal. If they road changes von stone to grass outside the laser scanner range the
pixel intensities will clearly differ and so not be classified as drivable. So instead using this results
to change driving direction it is instead used to control Stanleys speed. If no drivable corridor can be
found in front at the actual driving direction the car is slowed down to a speed where laser scanning
is sufficient enough. This means the vision extension can give an early warning that there might be
an obstacle so better slow down but there doesn’t need to be one.

4 Conclusion

Figure 8: Average driving speeds

I introduced into the problems which arise at autonomous driving in desert terrain which where
for example bad gps signal, bad road condition full of obstacles and the need for speed to win the
challenge. and Computer Vision the Stanley team was able to solve the problems at an extend to
finish to course far ahead of all other participating robots. Figure 8 shows the average driving speeds
which Stanley could achieve throughout the course. Using Machine Learning. The two key algo-
rithms to this success where a robust pose estimation and terrain labeling. In pose estimation using
an unscented Kalman filter on switching models deciding in gps availability was the key. In terrain
labeling firstly laser scanning together with an probabilistic approach give a robust classification on
the terrain at close range. This classification is used to project it onto the camera image and use an
learning algorithm to extend the range of obstacle detection.
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