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Abstract

Time series data of high dimensions are frequently encountered in fields like
robotics, computer vision, economics and motion capture. In this survey paper we
look first at Gaussian Process Latent Variable Model (GPLVM) which is a proba-
bilistic nonlinear dimensionality reduction method. Further we discuss Gaussian
Process Dynamical Model (GPDMs) which are based GPLVM. GPDM is a proba-
bilistic approach to model high dimensional time series data in a low dimensional
latent space with a dynamical model. We also discuss variational approximations
of GPLVM and Variational Gaussian Process Dynamical System (VGPDS) which
is a dynamical model based on these variational approximations.

1 Introduction

Probabilistic modeling of high dimensional time series data like human motion is an interesting
machine learning problem. Applications for this form of probabilistic modeling have also been
evaluated in the areas of speech synthesis [11] and modeling high dimensional video sequences [5].
In this survey paper we will discuss the topic of Gaussian process dynamical models (GPDMs) [1]
with respect to human motion modeling, as most research in GPDMs is spurred by the need to model
human motion for the purposes of tracking or activity recognition or just animating more human like
characters.

Approaches before the GPDMs dealt with learning probability distributions over the space of poses
and motions to learn motions which are similar to those in the training data. This task is challenging
as the human motion is a high dimensional data and the motions are complex. Observations indicated
that the poses of similar activities lie near a lower dimension nonlinear manifold. This observation
led to the decoupling of motion and pose model in lower dimensions – motion is modeled by a
dynamical process defined on the lower dimensional latent space and poses are generated by an
observation process from the latent space to the high dimensional space [1].

Modeling of the time series data is achieved using dynamical systems. These can range from the
simple hidden Markov models to the more expressive nonlinear dynamical systems like in [3] which
use nonlinear basis functions. GPDMs are based on nonlinear methods as they use GPLVMs for
dimensionality reduction. GPDMs use Gaussian Processes (GP) for regression in the latent space
[1]. A Gaussian Process in [6] is defined as ”a probability distribution over functions y(x) such that
the set of values of y(x) evaluated at an arbitrary set of points x1 . . . xN jointly have a Gaussian
distribution”. The point to notice here is that the joint distribution over N variables y1 . . . yN is
defined by second order statistics of mean and variance [6]. Hence to train these models all we
need are the mean and variance of y(x) where mean can be assumed to be zero and the variance is
calculated by,

E[y(xi), y(xj)] = k(xi, xj) (1)
The kernel k determines the properties of the generated function. For a smooth output function we
can use squared-exponential covariance function as a kernel for a more noisy of Brownian like out-
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put we can use an Ornstein-Uhlenbeck kernel [7]. The GP is used in GPDMs for two purposes – one
as a prior for the dynamical model and the other as a part of GPLVM’s for dimensionality reduction.
Dimensionality reduction involves finding a suitable low dimensional representation for a high di-
mensional data which represents the most important features of the high dimensional data set. We
have linear methods and non linear methods depending on the nature of the latent subspace mani-
fold and mapping to the subspace. GPDMs use Gaussian Process latent variable model (GPLVMs)
[2] which gives a joint distribution of the latent subspace data and the observed (high dimensional)
data. GPLVM is a probabilistic approach which optimizes the points in the latent space (variables)
most likely to represent the observed data and also optimizes over the hyperparameters it uses to
represent the observed data space with respect to the latent space. This optimization does not give
very good results as it is done simultaneously over the latent space and the hyperparameters. Hence
some variational approximations are done to improve this optimization in a series of papers [4] [5].

The next section will describe the GPDMs and GPLVM in detail. In Section 3 we will discuss the
improvements brought upon by the variational methods and finally in Section 4 we would have some
concluding remarks about GPDMs.

2 Gaussian Process Dynamical Models

Modeling of high dimensional time series data is split into two problems- one of dimensionality
reduction, for projecting the data from the latent space to observation space and other of a dynamical
model in the latent space. We will first discuss dimensionality reduction methods leading up to
GPLVM and GPDM.

2.1 Different Methods for Dimensionality Reduction

Dimensionality reduction is used to provide a mapping between an observed space Y ∈ RN×D to
a latent space X ∈ RN×d. The simplest example of dimensionality reduction would be Principal
Component Analysis (PCA). PCA is defined as ”an orthogonal projection of data onto a lower di-
mensional linear space, known as the principle subspace, such that the variance of the projected data
is maximized” [6]. There have been other non linear methods like kernel PCA and multidimensional
scaling which use the proximity in the high dimensional data to model its latent projections. These
methods use a kernel or similarity measure as proximity which can be nonlinear to obtain the projec-
tion [2]. GPLVM also uses kernels as similarity measure between the latent variables. Probabilistic
PCA (PPCA) is a Bayesian formulation of the PCA method. PPCA is a method that projects la-
tent space data into observed space [2]. All the dimensionality reduction methods discussed before
PPCA projected observation space data to latent space. There are difficulties in projecting latent
space data to high dimensional space, primary being that the solution can be one to many.

Let us assume we have a D dimensional data Y = [y1 . . . yN] at N points. The d dimensional latent
space data points corresponding to these high dimensional data points can be X = [x1 . . . xN].
Hence the relationship between the latent space data and the high dimensional data with Gaussian
noise added would be

yi = Wxi + ηi (2)
where mapping W ∈ RD×d and noise ηi ∈ RD×1 [2]. The noise is an independent sample from a
spherical Gaussian distribution

p(ηi) = N (ηi|0, β−1I) (3)
where β−1I is the covariance and the noise mean is zero [2]. From [2] the likelihood for a data point
can be written as

p(yi|xi,W, β) = N (yi|Wxi, β
−1I). (4)

We integrate over the latent variables to get the marginal likelihood

p(yi|W,β) =

∫
p(yi|xi,W, β)p(xi)dxi (5)

where p(xi) = N (xi|0, I) is the prior over the latent variables [2]. This gives the the marginal
likelihood of each data points as

p(yi|W,β) = N (yi|0,WWT + β−1I) (6)
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using which the likelihood of the full data set can be given as

p(Y |W,β) =

N∏
i=1

p(yi|W,β). (7)

The parameters W are found by maximization of Eq. 7 [2]. This solution is achieved when the
mapping W spans the principal sub-space of the data [2]. This model therefore has a probabilistic
interpretation of PCA[2]. Marginalizing the latent variables and optimizing the parameters to in-
crease the marginalized likelihood using maximum likelihood is the standard approach for fitting
latent variable models like the PPCA [2]. The GPLVM is a dual to the PPCA and marginalizes and
optimizes the other way around as will be described below.

2.2 Gaussian Process Latent Variable Model

GPLVMs are used to map latent space variables to observational space and it operates in the same
direction as PPCA. However in the GPLVM framework the mapping parameters W are viewed as
random variables with a prior of

p(W ) =

N∏
i=1

N (wi|0, I), (8)

which is a spherical Gaussian distribution with zero mean [2]. Furthermore instead of marginalizing
out the latent variables as in PPCA we marginalize out the weight vectors from Eq. 4 to get

p(Y |X,β) =

D∏
d=1

p(y:,d|X,β), (9)

where y:,d is the dth column/ dimension of Y [2] and has a joint probability of

p(y:,d|X,β) = N (y:,d|0, XXT + β−1I). (10)

It can be seen from Eq. 10 that the marginal likelihood can be represented as a zero mean process
with the covariance of K = XXT + β−1I [2]. Where each element of K, k(xi, xj) can be written
as

k(xi, xj) = xTi xj + β−1δij, (11)

this covariance function or kernel is similar to that of a Gaussian Process prior over a space of linear
functions as described before. The marginal likelihood for dual probabilistic PCA is therefore a
product of D independent Gaussian processes [2].

This means that the marginal likelihood of a latent variable representing a variable in a high dimen-
sional space can be modeled using a GP. The next step would then be to train this GP so that it
gives a mapping between the latent space and observational space. This is done by maximizing the
marginal likelihood in Eq. 9. This can be done by substituting the individual marginal likelihoods in
Eq. 9 from those in Eq. 10, taking a negative log and minimizing the log likelihood w.r.t. the latent
variables and hyperparameters of the kernel. The negative log likelihood is given by the equation

L =
N

2
ln(2π) +

1

2
ln |K|+ 1

2
tr(K−1S), (12)

which needs to be minimized w.r.t. the latent variables X and hyperparameters of the kernel matrix
K, where S = D−1Y Y T. The hyperparamters are needed for learning the kernel which would give
the required output function based on the training data. This kernel can be a ”linear + RBF” kernel
used in [1]

k(xi, xj) = α1 exp(−α2

2
‖xi − xj‖2) + α3x

T
i xj + α−1

4 δxi,xj
, (13)

which has properties of smoothness and nonlinearity for the output function. The hyperparameters
are the α parameters. Otherwise the kernel can be the automatic relevance determination (ARD)
kernel used in [5]

k(xi, xj) = σ2
ard exp(−1

2

D∑
d=1

wd(xi,d − xj,d)2), (14)
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Figure 1: The Gaussian process as a latent variable model. Y is the observational space variable, X
is the latent space variable and θ are the hyperparameters. Figure and caption from [2]

which allows training to switch off certain dimensions by reducing the parameter wd to zero for
unnecessary dimensions. In ARD kernel the hyperparameters are the wd parameters.

Minimizing the Eq. 12 w.r.t. the hyperparamters of the kernel and latent variables is needed to
maximize the likelihood. K is a nonlinear kernel w.r.t. X and hence the optimization has no closed
form solution in case of GPLVMs. Gradient descent is used to find local minimas w.r.t. X and the
hyperparameters of K, with initialization of X being done using PCA and the optimization using
sparse methods to increase the speed of optimization. This is an intractable analytical optimization
w.r.t. X and is solved in [4] where Bayesian approach is used to optimize the latent variables using
a tight lower bound on the marginal likelihood. The graphical model of the GPLVM is shown in
Fig.1 and the result of dimensionality reduction on the Oil Data Set explained in [6] with GPLVM’s
and PCA is given in Fig.2 . Notice the confidence bounds of the GPLVM latent space w.r.t. their
mapping to an observational space point the more brighter a region the more confident the model
is of the mapping at that point. Also quality of these visualizations were compared using nearest
neighbour classification in the two dimensional latent space and GPLVM had better results than
kernel PCA, Multidimensional scaling etc [2].

Figure 2: Visualization of the Oil data with (a) PCA (a linear GP-LVM) and (b) A GP-LVM which
uses an RBF kernel- the more brighter a region the more confident the model is of the mapping at
that point. Figure and caption from [2]

GPLVMs give us a probabilistic approach to model mapping between the points in observable space
and in latent space. These models generalize well to new latent space points whose corresponding
observational space points can be computed by GP regression since the model is GP based. The
method for GP regression is simple and involves computing the new mean and covariance functions
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Figure 3: Time series graphical model - GPDM model Dynamical model in the latent space and
projection to observational space. Figure from [12]

for new latent space point observed. More details can be found in [7]. Dynamical models are
introduced in the next subsection.

2.3 Gaussian Process Dynamical Models

GPLVMs allow us model joint probabilities of observational and latent space data points. GPDMs
allow us to model time series data using a dynamical model in the latent space based on a GP and
also uses another GP to map the latent space data to observational space. This can be seen in Fig.3.
The basic model can be written as

xt = f(xt−1, A) + nx,t, (15)

yt = g(xt, B) + ny,t, (16)
where f(x;A) =

∑
i aiφi(x) and f(x;B) =

∑
j bjψj(x) are linear combinations of nonlinear basis

functions and ny,t and nx,t are zero-mean, isotropic, white Gaussian noise processes [1]. Since f
and g are linear in terms of A and B, A and B can be assumed to have an isotropic Gaussian prior
allowing them to be marginalized out [1]. This gives us the following marginal probability for the
observation model

p(Y |X, β̄,W ) =
WN√

(2π)ND|KY|D
exp(−1

2
tr(K−1

Y YW 2Y T)), (17)

where β̄ are KY kernel matrix parameters between input latent variables. The kernel used is the
RBF kernel, and W is the scale diagonal matrix to make sure each observational dimension is of the
same length scale and exerts the same influence in optimization of the kernel parameters β [1]. The
marginal probability for the dynamical model after marginalizing A is

p(X|ᾱ) =
p(x1)√

(2π)(N−1)d|KX|d
exp(−1

2
tr(K−1

X X2:NX
T
2:N)), (18)

where ᾱ are the kernel matrix hyperparameters between the previous i.e. N−1 input latent variables.
The kernel matrix itself is ”RBF + linear”, hence has non linear input terms which can only be
locally optimized [1]. The improvement to this optimization is dealt in [5]. Since the conditional
distributions are in a GP formulation prediction to next instant of the observational model can be
done by using the GPDM as a prior as like in a GP [1]. Learning the GPDM model is learning
the optimum parameters X, β̄, ᾱ,W for observed training data Y . The training data used in [1]
was the Carnegie Mellon University motion capture (CMU mocap) database. We would explain
the Maximum a posteriori (MAP) estimation method and mention the other methods used in [1] for
optimization of GPDMs.

MAP estimation for GPDM is performed to minimize joint negative log posterior of the hyperpa-
rameters given as − ln p(X, ᾱ, β̄,W |Y ), this is given as

L = LX + LY +
∑
j

lnβj +
1

2κ2
tr(W 2) +

∑
j

lnαj, (19)
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Figure 4: Models learned from a walking sequence comprising two gait cycles. (a) The PCA ini-
tializations and the latent coordinates learned with (b)GPLVM and (c) GPDM are shown in blue.
Vectors depict the temporal sequence. (d) − ln variance for reconstruction shows positions in latent
space that are reconstructed with high confidence. (e) Random trajectories drawn from the dynamic
predictive distribution by using hybrid Monte Carlo (HMC) are green, whereas the red trajectory is
the mean prediction sample. (f) Longer random trajectories drawn from the dynamic predictive dis-
tribution. (g), (h), and (i) − ln variance for reconstruction, random trajectories, and longer random
trajectories created in the same fashion as (d), (e), and (f), using a model learned with the linear dy-
namics kernel. Note that the samples do not follow the training data closely, and longer trajectories
are attracted to the origin. Figure and captions from [1].

where,

LY =
D

2
ln |KY |+

1

2
tr(K−1

Y YW 2Y T)−N ln |W |, (20)

LX =
d

2
ln |KX |+

1

2
tr(K−1

X X2:NW
2XT

2:N) +
1

2
x1x

T
1 , (21)

The latent coordinates are initialized using PCA and minimization of L is done by alternatively
minimizing W in closed form and X, ᾱ, β̄ using Scaled Conjugate Gradient (SCG) [1]. The result
for this model learning is shown in Fig.4 as the GPDM on a 3D latent space is learnt using the
training data of two gait cycles of a person walking. It can be seen that the trajectories of GPDM
are much smoother and consecutive poses are much closer to each other than that of GPLVM which
consists of a dynamic model in the observation space and is hence more jerky when uncertain. Also
since it is a probabilistic model using GP new trajectories can be generated with latent space input
and missing trajectories of a missing frames can be generated.

There are other variations of the optimization methods available in the GPDMs. One deals with
scaling the LX term in Eq. 19 by D/d such that the latent dynamical module is optimized by the
same factor as the dimensionality reduction module, this leads to smoother trajectories for GPDMs.
Also are methods which optimize the hyperparameters separately in one MAP stage and the latent
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variables in another MAP stage and this two stage MAP method gives the best result for motions
with high variance. The two stage MAP estimate is computationally quite expensive compared to
other learning methods. The detailed algorithm for each of these methods is available in [1].

The GPDMs in [1] have dynamical models without a control input making them unsupervised in
their methods. In [8] we have Bayesian filtering to estimate the state of a dynamical system based
on prediction and observation models. The Bayesian filter apart from input state X also consists of
a control variable U to get the observed measurements Y . The observation model is represented as
a GP with mean and variance based on previous states and output measurements. The prediction
model is represented as a GP based on mean and variance calculated using previous input states and
control signals. These models mirror those of GPDMs as the prediction model is a dynamical model
except it is also dependent on a control input making it supervised in nature [1]. The Observation
model is comparable to the dimensionality reduction module of GPDMs as it maps the input state to
the output measurement state. The results of [8] show that the GP based non-parametric Bayesian
filters perform much better compared to their parametric counterparts when plugged into different
types of filters like particle filters and extended Kalman filters.

In all the methods mentioned above the optimization of the marginal likelihood of Eq. 12 or Eq. 19 is
intractable analytically as the kernel consists of nonlinear input terms which can not be marginalized
analytically. Hence the latent variables get optimized to a local minima or when given more latent
dimensions the likelihood of the data went up because of overfitting. Now we look for variational
methods which will make the likelihood marginalization tractable analytically hence improving the
quality of results of GPDMs.

3 Variational Gaussian Process Dynamical Systems

The marginal likelihoods of Eq. 12 or Eq. 19 are analytically intractable as mentioned before. Tit-
sias and Lawrence in [4] developed a Bayesian approach to marginalization the latent variable X
and optimize the resulting lower bound for the hyperparameters to obtain much better likelihood re-
sults. These hyperparameters can allow us to automatically detect the number of dimensions needed
to represent the data in the latent space and also help in model comparisons. We take a short glance
at the method itself describing the method used to compute the intractable lower bound. Then men-
tion Variational Gaussian Process Dynamical Systems(VGPDS) [5] which use these optimization
methods in a dynamical setting like GPDMs.

From Eq.17 we need to compute the following marginal likelihood

p(Y ) =

∫
p(Y |X)p(X)dX, (22)

which is intractable as X appears nonlinearly inside the inverse of the covariance KX + β−1I . A
variational distribution of q(X) is chosen such that it is flexible enough to approximate the posterior
distribution of p(X|Y ) [4].

q(X) =

N∏
i=1

N (xn|µn, Sn), (23)

Next the Jensen’s lower bound on the log(p(Y )) is then calculated as,

F (q) =

∫
q(X) log

P (Y |X)P (X)

q(X)
dX, (24)

F (q) = F̃ (q)−KL(q||p), (25)
The second term in 25 is the KL divergence and can be calculated as it is between two Gaussian
distributions [4]. The first term can then be written as

F̃ (q) =

D∑
d=1

∫
q(X) log(p(yd|X))dx, (26)

this integral is still intractable because of the log p(yd|X) which has X in a nonlinear function inside
the covariance matrix [4]. The idea in [4] is to introduce a GP latent function value fd ∈ RN such
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Figure 5: The last frame of the training video (a) is smoothly followed by the first frame (b) of the
generated video. A subsequent generated frame can be seen in (c). Figure and citation from [5]

that the complete likelihood associated with the marginal p(yd|X) is

p(yd, fd|X) = p(yd|fd)p(fd|X), (27)

Next we sample M auxiliary inducing variables [4] in ud ∈ RM . These are evaluated at inducing
input locationsZ ∈ RM×d. Using the inducing variables we augment the joint probability calculated
in Eq. 27,

p(yd, fd, ud|X,Z) = p(yd|fd)p(fd|ud, X, Z)p(ud|Z), (28)

The likelihood p(yd|X) can be equivalently computed from the above augmented model by
marginalizing out p(fyd, ud). Most importantly this is true for any value of the inducing inputs
Z [4]. This means that, unlike X , the inducing inputs Z are not random variables. Neither are they
model hyperparameters, they are variational parameters. Hence joint distribution of fyd and ud

p(fd, ud) = p(fd|ud, X)φ(ud), (29)

where φ(ud) is variational distribution over the inducing variables ud [4]. This can be substituted
in Eq. 28 and the KX matrix would not be inverted in the covariance of the distribution making
the marginalization tractable. The complete derivation is solved in [4]. This has been summarized
in [4] as ”‘ the variational method allows us to compute a Jensens lower bound on the GPLVM
marginal likelihood and the key to obtaining this bound is to introduce auxiliary variables into the
model similar to those used in sparse GP regression”’. The hyperparamters after this are calculated
using a MAP estimate or gradient descent as usual, but now the hyperparameters are optimized more
accurately allowing kernels like ARD to be used without overfitting [5].

Predictions in VGPDS are done like in any Gaussian process calculating the mean and covariance
based on GP regression of the marginal probabilities of the future output values based on current or
trained output values. With approximations in VGPDS the mean and covariance functions can be
calculated analytically. Experiments on modeling human motion capture data by VGPDS show that
it has better root mean square error performance than its counterparts. Also using the ARD kernels
the model figures out the dimensionality of the data itself. More interesting results were in form of
high definition video sequence modeling. The HD video sequence experiments of [5] include the
HD video of 150 frames of a woman talking named the Missa dataset. The video is of 103, 680
dimensions. Also trained are periodic sequences of a dog running consisting 60 frames and 230, 400
dimensions and a 9 × 105 dimensional artificial video of ocean waves. The models were tested by
extrapolating the videos by 7 frames over the total size of the video and comparing the new frames
to results with nearest neighbour reconstruction. VGPDS performed better than nearest neighbour
in all cases [5]. Another result which was interesting was to use the model trained by the dog data
set to run for 40 more frames. The result was 40 frames of high quality sharp images as shown in
Fig. 5 with comparison of length scales of ARD covariance function before and after training on the
dog data set in Fig. 6. As can be seen with the ARD kernel the weights of unnecessary dimensions
have been turned to zero.

4 Discussion

Probabilistic approach of modeling high dimensional time series data is shown to make the modeling
less complex and achieve more realistic results. In this GPDM’s have been more successful at getting
realistic results without jumps as in GPDMs the latent space poses are close to each other if they
occur together.
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Figure 6: the initial lengthscales (left) of the ARD covariance function and the values obtained after
training (right) on the dog data set - as can be seen with the ARD kernel the weights of unnecessary
dimensions have been turned to zero after model learning.Figure and caption from [5].

A few comparative studies [9] [10] have been done on GPDM, GPLVM, PCA, and other flavours of
GPLVM like back-constrained GPLVM (BC-GPLVM). The study in [9] is on animations and gen-
erating realistic looking poses from these similarly trained models. Their results take into account
metrics like mean error at a given number of latent space dimensions, learning time, interpolation
quality and they have reported that none of the GPLVM based methods have a significant advantage
over each other. The results are considerably better than PCA for the purpose of motion synthesis
and interpolation.

The study in [10] is done on robotic motion data with a 7- DOF robotics arm. The interpolation
error between the poses is measured with root mean square error in the joint or task space between
the original and the generated pose. The study suggests that GPLVM based methods do improve
the quality of interpolation. But methods in their standard settings do not necessarily lead to suc-
cessful reconstructions unless the data is densely sampled. It states for example that all GPLVM
based methods suggest initializing the latent space variables using PCA but better results have been
obtained with ad-hoc parallel lines. On a positive note [10] mentions that dimensionality reduction
produces more robust reconstruction in presence of noise also that adding more prior information
about the data sets improves the results.

VGPDS is a fully Bayesian approach for modeling dynamical systems through probabilistic non-
linear dimensionality reduction. It is a general method to model complex correlations in high di-
mensional data[5]. A prominent feature being ARD kernel usage which means we do not need to
select the number of latent dimensions. With regards to VGPDS any comparative studies could not
be found. VGPDS can probably solve some problems of initializing that were mentioned in [10].
Also VGPDS avoids the cubic complexity of GPs by using variational methods[5] hence it can take
in larger dimensional data than previous methods. Future work in this direction is to add more ap-
plication specific knowledge like sophisticated covariance functions for specific areas like robotics,
computer vision or finance.
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