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Abstract 

 

The robot is becoming more and more part of the normal life that 
emerged some conflicts, like: How could a safe physical human 
robot interaction happen and what kind of problems had to be 
solved for a successful interaction? This paper describes a scenario 
of interactions between human and robots and it pointed out the 
improvement of the robot motion using a machine learning 
algorithm based on Gaussian mixture models. 

 

 

1 Introduction  

The modern world robotic systems mostly remained in the realm of industry or academic 
research. Recently produced robot systems are specialized e.g. for the automation 
industry to produce with high frequency and without endangering human employees. 
Also there are highly realistic android robots and as the result of the ongoing process of 
development and research the robots expand to other areas of life such as offices. This 
expansion lead to the question - How could human and robot interact successfully? - The 
interaction between humans and robots – e.g. lifting a box together - is one of the biggest 
challenges for modern science. There are problems to be solved for a successful 
interaction like adaption to human behavior. Therefore a close contact is required in 
which the safety had to be guaranteed at all times. Furthermore the robot should react 
adequately e.g. based on the force the human interaction partner is using. Additionally 
the behavior of the robot had to be improved using a machine learning algorithm, which 
is still the most difficult task for physical human robot interaction caused on the 
different kinds of motion each human has. 

In this paper I present the related work on human robot interaction and also the machine 
learning algorithms which are used. Despite various obstacles the human robot 
interaction achieved successes which are also presented. In the end an outlook will point 
out some possible ways for further researches.  

 

  



2 Related Research  

Necessary and important aspects of the human-robot interaction have been researched 
for decades. A research project conducted by the European Network of Excellence 
(EURON) [1] focused on the discussion of important requirements for physical human 
robot interaction (PHRI) to be safe. The follow-up project was initiated to achieve more 
of the required aspects to be intrinsically safe. To achieve this goal new control 
algorithms and concepts are needed, as shown in [2]. Even extraordinary methods such 
as testing the impact force on crash test dummies [3] were used. However, there is no 
focus on learning or adaptation between humans and robots. 

Another possibility of doing a safe human robot interaction is to improve the sensors like 
using a new developed modern soft skin for robot to sensing the interaction all over the 
body as described in [7].  

Another way to modeling interaction is shown in [14]. This work presents the principle 
of maximum causal entropy, an approach based on causally conditioned probabilities. 
There are several outer animation based interaction learning algorithms like [15] , 
unfortunately they are invented for animation and could not get transfered to a human 
robot interaction in a simple way. 

 

 
 

Figure 1: process overview [13] 

 

One promising approach for human robot interaction described by Kwon S. et al. [13] is 

based on surface electromyography (sEMG) signals. These signals are collected and 
processed by an artificial neural network algorithm, trying to predict the motion of the 
human partner. The human and robot are shaking hands, and learning. The result also 
demonstrated that the manipulator began to move almost simultaneously with the 
movements of the human partner. 
  



In [9] a different entry of interaction learning is presented using four key issues  with a 
solving strategy displayed in the table below. 
 

 

Key issue Solution 

motion imitation marker control 

understanding motion primitives mimesis model 

understanding interaction primitives mimetic communication model 

physical contact establishment real-time motion reshaping and impedance 
control 

 

Table 1: key issues and solutions 

 

The marker control represents a simple human motion imitation and also the learning 
algorithms are designed for imitation of a human and active involvement. By modifying 
the communication mimetic they achieve communication in physical domain as well as 
the symbolic domain. In the physical domain the motion accordance with the human’s 
motions in real-time. The learning algorithm in this paper is based on the hidden markov 
model (HMM), which is quiet similar to the used algorithm described in this paper. 

 

The following parts of this paper are mostly based on the work of Amor et al. [4], 
providing a good overview of the topic. 

 

 

3  Human-Robot Interaction  
 

Human and robot are working together to achieve one common goal. Figure 1 gives an 

overview about the interaction. After the interaction the human partner should give a 

feedback whether the interaction was a successful or not. This may happen in various 

ways, e.g. by using a graphical user interface. This feedback information is stored and 

used for learning after a data optimization step. It is a human-in-the-loop learning 

system, which means that the human as well as the robot are reacting to each other. 

Passing some iteration the collected data is projected on a low-dimensional manifold, 

this reduces the calculation load and also stabilizes the learning by reducing the 

influence of some outliners. For each set of data a Gaussian Mixture Model (GMM) is 

learned. By computing the likelihood it is possible to choose, which action to perform. 

The more learning loop iterations the better is the action performed by the robot. 

 

 
 

Figure 2: physical interaction learning (like [4], p. 3) 

 

 



4 Learning 

The following part describes the machine learning algorithm, which is used in [4].  To 
demonstrate the algorithm a child-robot had the task to stand up with the help of a 
human. This task can be divided into three different postures. The first one in which no 
action occurs. Then the first switching posture, where the arms are pulled by the human 
partner and finally the second switching where the legs are bent more. This sequence 
also dictates the desired postures, the possible postures and a set of control desired 
postures. 

 

 

 
Figure 3: three desired postures in the standup task [4] 

 

The goal of this task is the timing between the switching of actions between different 
desired positions. The robot posture is a 52-dimentional vector that contains the current 
angels of each joint. The Database holds the last ten iterations by overwriting the old 
data or the unsuccessful action loop. After these ten iterations the data is used for 
learning with the goal of optimally changing the action to reach the new desired posture 
during the sequence. Therefore a GMM is used which produces a probabilistic model to 
indicate the desired posture based on the current position. At the beginning the 
dimension of posture vector is reduced using a principal component analysis (PCA)  [4], 
[15], [16]. 

 

 

 
Figure 4: PCA demonstration [16] 

 

This figure illustrated the transformation of PCA which reduces a large number of variables 
(genes) to a lower number of new variables termed principal components (PCs). Three-
dimensional gene expression samples are projected onto a two dimensional component space 
that maintains the largest variance in the data. This two-dimensional visualisation of the 
samples allows making qualitative conclusions about the separability of our four experimental 
conditions[16].  

A Gaussian Mixture Model is a parametric probability density function represented as a 
weighted sum of Gaussian component densities and is the next step of this algorithm for 
each of the three motion steps. This step is shown in the equation below.  
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With mean µk and covariance matrix Ck. The parameter estimation is performed by an 
expectation-maximization (EM) algorithm [5]. The EM algorithm is an efficient iterative 
procedure to compute the Maximum Likelihood (ML) estimate in the presence of 
missing or hidden data. 

To show the functionality of the EM algorithm it is assign to the k-means algorithm 
which is more common. The k-means clusters the given data into k clusters in which 
each data point belongs to the cluster with the nearest mean [5]. The E-step would be the 
initialization of the beginning cluster centers and the M-step would be the according of 
the data to the nearest center. 

 

After the EM steps three probability density functions are produced with five to ten 
Gaussians each. These functions are now used to calculate the likelihood of a state 
having to switch from one to another desired posture. The whole loop could now be 
computed as a maximum likelihood method. 

 

𝑥𝑛𝑒𝑥𝑡
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝𝑠(𝑥) 

 

For testing the machine learning algorithm some tests were performed doing the standup 
task before and after learning. When comparing the motion of the robot after the learning 
process and the motion performed by the robot initially, it becomes clear that through 
learning the motion gets smoother and, at the same time, appears more natural. The 
following figure shows the low-dimension trajectories of the robot before and after 
learning. It illustrates the success of the learning process, but also there is an oscillation 
around the point (0.5, -2) for the initial state, which might be caused by some inefficient 
motion steps of the robot. 

 

 

 
Figure 5: low-dimension posture trajectories [4] 

 



To underline the successful results a posture changing norm a(t) was used. This is a 
Euclidian distance between the data of a time step t and t-1 by using each joint angle as 
base.  

 

𝑎(𝑡) = ‖𝑥𝑡 − 𝑥𝑡−1‖2 

 

The following figure shows the computed posture change norm for each time step. There 
are several peaks indicating a large change in the posture of the robot. After each 
learning iteration the amount of peaks decreases. This supports the hypothesis that the 
physical human robot interaction can be improved by using this machine learning 
algorithm.  

 

 
Figure 6: posture change norm 

 

 

  



5 Conclusions  and future work  

In the main part of this paper I presented a simple machine learning algorithm to 
improve the behavior of the robot based on an evaluation by the human partner. 
Reducing the dimension leads to a decrease of the computational load and can be run 
online while the action is performed. In the task presented in this paper the robot is in 
close physical contact with his human partner and plays an active role in the 
performance of the common task. Through time measurement it is possible to show, that 
the robot´s performance was increased by using the learning algorithm. 

Thus far the system is not using all the information that is given. It is focused on the 
switching rule. For more complex interactions it might be necessary to adapt to the set of 
desired postures or/and to feedback gains. Another limitation is the given feedback, that 
is only handled in the case of success. 

In summary, the algorithms presented could increase the performance and lead to a 
successful interaction for simple tasks. To execute a more complex task, it is necessary 
to update the used algorithm by a method which is using feedback not only in a binary 
form.  

A new interesting approach is presented in [6], by using a so called intention-driven 
dynamic model (IDDM). The Model is trained by observing the human behavior, 
additionally an approximate inference algorithm is used to infer the human´s intention.  
The results of that work are so good, that this approach could be the new state of the art 
algorithm and open many directions to go for future human robot interaction. 
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