
Learning robot control

Max Mindt
Autonomous Learning System Seminar

Department of Computer Science
TU Darmstadt

Darmstadt, Germany
maxmindt@msn.com

Abstract

Learning is essential to expand the capabilities of a robot. But what is the mean-
ing of learning for a robot and how is the implementation of a learning task? This
question is a key question and in addition to what should be learned.
This paper defines a general learning model, classify robot learning and develops
a learning architecture for locomotion of a simple walker. These learning archi-
tecture contains a construction of the simple walker, the Q-Learning algorithm,
the development of an appropriate reward function and consider the convergence
of the learning system.

1 Introduction

Conventional robots are limited to their programmed abilities and a programmer can not implement
all possible tasks. But we need robots which expand their abilities by learning, since intelligent
autonomous systems becoming increasingly important in our world [7]. They can learn either by
themselves or with the help of human supervision. Application areas are e.g. assistive robots,
playmate robots in child education, robots for mentoring and assistance in manipulation tasks, and
robots that teach movement exercises [7]. As a result from this variety of areas, robot learning is
going to be a key ingredient because they can only find its way into these areas if they can learn new
tasks. But what is the meaning of learning for a robot. Human learning is based on mental, physical
and social skills. It is a process of change that occurs in behavior, thinking and feeling. Simon et
al. [9] defines learning as follows:

“Learning denotes changes in the system that are adaptive in the sense that they
enable the system to do the same task or tasks drawn from the same

population more efficiently and effectively the next time”

Learning for a robot means that he has to realize that a change in his actions can be more efficiently
the next time. The consequence from this realization is that he has to adapt or change its strategy.
But one of the key question is how to transform this process as a learning task into a robot envi-
ronment. In addition, the question arises what should be learned at all. First of all we need an
abstract description of learning for a robot, a formal specification is described in the next Section
2. Based on this description robot learning can be classified in Section 3. The focus of this paper
is the development of a learning architecture for locomotion and is described in Section 4. Espe-
cially the construction of a walker, the development of a learning algorithm and the arising problems
are described. Subsequently, we consider the convergence of the learning algorithm under different
specific parameters. The last Section deals with open questions and gives a summary of the whole
paper.

1

2 The Basic Model

This Section describes an abstract learning model and is based on [6]. The key question is what
should be learned. A learning control system should be abstract in adapting new learning strategies.
This idea contains the control policy π which depends on the time t, the actual state vector x of
the system and the vector α. The vector α is the problem specific parameter of the policy π and
needs to be adjust by the learning system. All these components and dependencies are illustrated
in Figure 1. The vector u represents the result of the control policy π and is described as follows

Learning
System

Movement
System

Control
Policy ⇡ u xDesired

Behavior

↵

Figure 1: Abstract diagram for learning control

u = π(x, α, t) (1)

Generally, the control system can be ex-
pressed as a nonlinear function

ẋ = f(x,u) =
(1)
f(x, π(x, α, t)) (2)

The task of a learning control system is to
find a function π which maps the vector
x on the desired behavior. But the control policy can be learned in many different ways which
depends on the task. This abstract description of finding a strategy represented as function π allows
discussing robot learning in terms of different methods. An overview of these different ways is
depicted in the next Section.

3 Classification

An approach to classify robot learning delivers Schaal et al. [8], shown in Figure 2. Schaal makes
the subdivision in three different types: direct versus indirect control, learning method and class of
task. Topics further out on the arrows can be considered more complex research topics than topics
closer to the center. This Section is based on [8].
Suppose you want to learn the Equation (2). One approach is to choose
a model like forward -, inverse -, mixed - or multi-step prediction model.
Each model has its advantages and disadvantages, exactly studied in [5].

Direct Versus Indirect Control Learning Method

Class of Task

Imitation Learning
Learning Representations

Learning Modularity
Reinforcement Learning

Supervised Learning

Model-Free Control
Model-Based Control

Complex/Composite Task
Periodic Task

One-Shot Task
Tracking Task

Regulator Task

Figure 2: Classification of control, learning method
and class of task in Learning robot control

And then compute a controller based on
the estimated model. After that, Equa-
tion (2) can be learned with function ap-
proximation. A Survey of model learn-
ing is described by Nguyen-Tuong et al.
[5]. Such techniques are summarized un-
der the name Model-Based Learning, In-
direct learning, or Internal Model Learn-
ing. In contrast, Model-Free Learning of
the policy is possible with a reward func-
tion. Here, an agent receives a reward and
a current state of the environment by per-
forming an action. This principle includes
Reinforcement Learning.
Schaal et al. [8] divides the class of task
because it is easier to address the goal of
learning. A Regulator Task tries to keep
the system in a particular state, e.g. cart-pole is such a task. A task in which a robot follows a
desired trajectory is called Tracking Task. An One-shot Task tries to terminate, e.g. grasping a cup
of coffee. Locomotion is a typical part of Periodic Movement Task. Complex/Composite Tasks
contains complex manipulation, like emptying a dishwasher.
Supervised learning learns the function π of given input and output pairs. Learning from reward
and punishment addressed reinforcement learning. The goal is to maximize the reward. All learning
methods will benefit and learn from the prior knowledge.
The next Section choose the learning method, the class of task and the control of our application and
is based on this classification.

2

4 Case Study: Reinforcement Learning of Locomotion Controllers

In this Case Study a robot walks on a flat plane, we call this robot simple walker. He has two rigid
massless legs at the hip, a point-mass at the hip, no point-masses at the feets, and no upper body. Our
task is a Periodic Movement Task and the goal is to build a learning algorithm for stable locomotion.
First, we consider some studies about Locomotion in the Subsection 4.1. Subsequently, the Sub-
section 5 describes the construction and the kinematic model of the simple walker. Afterwards,
the learning architecture will be presented which contains the Markov Decision Process and the Q-
Learning algorithm. The Subsection 4.4 shows implementation details of this Case Study and the
last Subsection 4.5 considers the convergence of the learning algorithm.

4.1 Related Work

There exist several papers about the simple walker and learning of locomotion. Garcia et al. [1]
develops a fully dynamic model for a walker and examined the stable running down of a shallow
slope. The only free parameter was the ramp slope γ. The model shows stable walking between
0 < γ < 0.015 rad. With increasing γ stable walk becomes more chaotic. However, this dynamic
model is to complex for our learning algorithm and walking of a shallow slope is out of scope.
Morimoto et al. [2] develops a model-based Reinforcement Learning algorithm which learns appro-
priately place the swing leg. His algorithm learns an adequate walking frequency for sloping ground
and not how the robot has to walk. However, our goal is to learn locomotion on a flat plane under
certain assumptions.
Nakamura et al. [3] develops a new Reinforcement Learning method for a central pattern genera-
tor (CPG). This method is called CPG-actor-critic method and rhythmic motor patterns which are
controlled by neural oscillators are referred to as CPG. The results of the walker was successful and
he walks on an upslope, downslope and rough ground but the learning process was still unstable.
However, it is difficult to determine an appropriate movement pattern and adjust the parameters for
the CPG. In our case movement patterns are out of scope. We focus on the general construction of a
simple walker in the next Subsection.

4.2 Construction

For the simple walker we use the kinematic model (compare
Equation (14) from the Appendix) from the SCARA-Manipulator.

Figure 3: Simple walker as SCARA-Manipulator

A construction of our simple walker is de-
picted in Figure 3. In our case we as-
sume l1 = l2. Based on the kinematic
model, we can determine the position of
the head and the foot in the coordinate sys-
tem S1. For a representation in S0 we
add the displacement vector b1

0. But ac-
tually the robot is not able to walk, be-
cause his base is attached to S1. This
situation is the reason for a little trick.
Let us assume we start with the angles
(θ1, θ2)

T = (3/4 π, 1/2 π)T , the foot ne-
gotiate the base and ends with (θ1, θ2)

T =
(1/4 π, 3/2 π)T . Now we change the
roles and the foot becomes the new base,
and vice versa. Additionally, the base vector b1

0 and the angles θ needs to be updated as follows1

θnew =

(
θ1,new
θ2,new

)
=

(
π − θ1,old
2π − θ2,old

)
b1
0,new = f31,old + b1

0,old

At this moment, the robot is, in S1, in its initial position and can make his next step. The only
permanent change is the displacement vector b1

0. Based on this construction the next Subsection
develops an appropriate learning architecture.

1The vector b10 is depicted in S0 and point out the origin of S1. Similar is the foot vector f3
1

3

4.3 Learning Architecture

Consider an autonomous agent acting in its environment. The agent can learn to choose optimal
actions, depending on the appropriate receive reward from the environment. This issue addresses
Reinforcement Learning and is the learning method of this application. The goal of the agent is to
chose sequences of actions that produce the greatest cumulative reward. This problem is based on the
theory of the Markov Decision Process (MDP), which is explained in Subsection 4.3.1. Q-Learning
is one reinforcement learning technique and can acquire optimal control strategies from delayed
reward, also when the agent has no knowledge of the effects of its actions on the environment.
This algorithm is explained in the Subsection 4.3.2 but it works only reliably if the defined reward
function is appropriately, explained in Subsection 4.4. The implementation details of the learning
architecture for the simple walker are also shown in Subsection 4.4. The convergence of the Q-
Learning algorithm is described in the last Subsection 4.5.

4.3.1 Markov Decision Process

The Markov Decision Process is a decision problem and the reward for an agent depends on his
decisions. The Markov assumption is the probability of reaching a state s′ from state s, is only de-
pendent on s and not of his predecessors. This assumption must be satisfied in each state transitions.
Ng et al. [4] defines a (finite) MDP is a tuple (S,A, {Psa}, γ, r), where

• S is a finite set of N states
• A = {a1, ..., an} is a set of n actions
• Psa(·) are the state transition probabilities upon taking a action a in sate a
• γ ∈ [0, 1) is the discount factor, i.e. a direct reward is better than later reward with the

same amount
• r : S 7→ R is the reward function, bounded in absolute value by rmax

In a MDP the agent perceives a set S of distinct states of its environment and has a set of A actions
that it can perform. At each discrete time step t, the agent senses the current state st, chooses a
current action at, and performs it. The environment responds by giving the agent a reward rt and
the next state st+1 depending on the formulas

rt = r(st, at) (3)

st+1 = δ(st, at) (4)
First, we assume the functions r and δ are deterministic and part of the environment. Also the
transition probabilities are Psa(·) ∈ {0, 1}. The functions are not necessarily known of the agent.
The solution of the MDP and task of the agent is to find a policy π : S → A. This policy selects the
next action at, based on the current observed state st, or formal π(st) = at. The question is how
the agent learn the policy? One solution is to require the policy that produces the greatest possible
cumulative reward. The cumulative value V π(st) for a policy π in an initial state st is defined as
follows

V π(st) = rt + γrt+1 + γ2rt+2 + . . . =

∞∑
i=0

γirt+i (5)

With this cumulative value, we can define the learning task. The optimal policy π∗ is the maximum
of the cumulative value for all states, or formal

∀s ∈ S. π∗(s) = arg max
π

V π(s) (6)

Often, to simplify the notation, V π(s) is written as V ∗(s). The next step is to develop an algorithm
which find an optimal policy π∗. An appropriate algorithm is Q-Learning, described in the next
Subsection.

4

4.3.2 Q-Learning

It is difficult to learn the policy directly because the training data does not provide any examples.
The only available training information is the received reward in a sequence. The consequence is
to learn a reward function to determine π. One possibility is that the agent tries to learn V ∗(s) as
reward function. With the condition to chose s1 instead of s2 if V ∗(s1) > V ∗(s2). But that would
mean that the agent has to decide between states and not actions. Resulting from this decision we
define the (Q)uality of a state-action combination as a mapping Q : S × A 7→ R. The Q-Function
depends on the current reward (3) and the cumulative reward (5) of the successor state

Q(st, at) =
(3)+(5)

r(st, at) + γV ∗(st+1) =
(4)
r(st, at) + γV ∗(δ(st, at)) (7)

And Q(st, at) can also be maximized instead of V ∗(st). So we can rewrite the Equation (6) as
follows

∀s ∈ S. π∗(s) = arg max
a

Q(s, a) (8)

The result of rewriting is that the agent learns the Q-Function and choose between actions and does
not require any information, in the scope of Equation (8), about the functions δ and r.
The next step is to develop an algorithm that learns Q and implicit π∗. This learning can be ac-
complished through iterative approximation but first, notice the close relationship between Q and
V ∗

V ∗(st) = max
at+1

Q(st+1, at+1) (9)

With the Equation (9) we can rewrite the Equation (7) and obtain the recursion

Q(st, at) =
(9)
r(st, at) + γmax

at+1

Q(st+1, at+1) =
(4)
r(st, at) + γmax

at+1

Q(δ(st, at), at+1) (10)

This recursion is the core of the algorithm. But the assumption the functions δ and r are deterministic
was wrong. There are nondeterministic, because the function r produce different rewards for the
same state, also the function δ. In summary, we have a nondeterministic MDP. Therefore we need
to adjust a few Equations. The cumulative value V ∗(st) (see Equation (5)) is now an expectation

V ∗(st) = E

(∞∑
i=0

γirt+i

)

Similar to V ∗(st), Q is also now an expectation and Equation (7) needs to be updated

Q(st, at) = E(r(st, at) + γV ∗(δ(st, at)))

= E(r(st, at)) + E(γV ∗(δ(st, at)))

= E(r(st, at)) + γ
∑
st+1

P (st+1|st, at)V ∗(st+1)

P (st+1|st, at) is the probability to choose an action at in state st that will produce the next state
st+1. The updating allows us the rewriting of the recursive Equation (10)

Q(st, at) = E(r(st, at)) + γ
∑
st+1

P (st+1|st, at)max
at+1

Q(st+1, at+1) (11)

Now we have a recursive Q-Function for the nondeterministic case with nondeterministic functions
δ and r. The Q-Learning algorithm is depicted in algorithm 1 with a learning rate α(st, at) ∈ (0, 1].
Q̂ is the notation for the estimated value by the learning agent of the function Q. The key idea
in this revised rule is, that the changes in Q̂ are more continuously than in the deterministic case
(compare Equation (10)). Resulting from this continuity is by reducing α at an appropriate rate, we
can achieve convergence to the correct Q function. Notice if α = 1 the resulting Equation is (10).
But a major component of correct learning is to find an appropriate reward function. This aspect and
the associated difficulties is described in the next Subsection.

5

Algorithm 1 Q-Learning algorithm

For each s, a initialize the Table entry Q̂(s, a) to zero
Observe the current state st
loop

Select an action at and execute it
Receive immediate reward r(st, at)
Observe the new state st+1

Update the Table entry for Q(st, at) with Equation (11) as follows
Q̂(st, at)← Q̂(st, at) + αt(st, at)[r(st, at) + γ max

at+1

Q̂(st+1, at+1)− Q̂(st, at)]

end loop

4.4 Implementation

First, we develop the MDP for the simple walker and in the second step we cater to the reward
function. The reward function is a major component of the learning algorithm because correct
learning depends on it. This function produces the most errors, therefore we will introduce some of
them.
For the MDP we need to define the tuple (S,A, {Psa}, γ, r). First of all the finite set of N states.
The simple walker can stand, move forwards or backwards, reach an illegal position or find a new
base. Formally, a set of states can be written as

S = {standing, forward, backward, error, newbase}
The learning algorithm can adjust the angles θ1 and θ2. For simplicity, the algorithm can subtract or
add one degree of each angle. Formally, a set of actions can be written as

A = {−1, 0, 1} × {−1, 0, 1}
If the action (−1, 1) was selected the new angles are (θ1,new, θ2,new)

T = (θ1,old − 1, θ2,old + 1)T .
For the transition probabilities we implemented the epsilon-greedy strategy. The value of the dis-
count factor γ will be discussed in Section 4.5.
Now we cater to the reward function. Before we deploy the reward function, we make some as-
sumptions

I. The head must always be between the foot and base.
II. The foot must always be below the head and above the bottom.

III. It has to be an adequate distance between foot and head, the foot must have passed the base,
and the foot must be in contact with the ground, before the base is changed.

To determine the head and foot we need the coordinates of them. The head is represented by the
vector h2

a and the foot by the vector f3a , in the coordinate system Sa. We need a representation in
the coordinate system S0 but first we can calculate them in S1 with these formulas

T 3
1 (θ1 + at,1, θ2 + at,2) =

(
R3

1 f31
0T 1

)
T 2
1 (θ1 + at,1, θ2 + at,2) =

(
R2

1 h2
1

0T 1

)
from the Appendix A.1. With the displacement vector b1

0 we get a representation in S0 as follows

f30 = b1
0 + f31

h2
0 = b1

0 + h2
1

With these coordinates and the assumptions we can define some useful functions2

h(h2
0,b

1
0, f

3
0) =

{
0, b10,x ≤ h20,x ≤ f30,x ∨ b10,x ≥ h20,x ≥ f30,x
1, otherwise

c(f30 ,g) =

{
1, f30,y = gy
0, otherwise

2h3
0,b

1
0, f

3
0 ,g ∈ R3 and vector g describes the ground

6

The function h provides zero if the position of the head is between the foot and the base, otherwise
it provides one. This function supports the first assumption. The function c provides one if the foot
has contact with the ground, otherwise it provides zero. Now the first steps for a reward function.
The conditions to get a bad reward are described in I. and II., and to get a good reward are described
in III., or formal

r(st, at) =

{
−1, h(h2

0,b
1
0, f

3
0) ∨ f30,y < gy ∨ f30,y > h20

1, c(f30 ,g) ∧ ‖f30 − b1
0‖ > 1 ∧ f30,x > b10,x

(12)

But this reward function is not sufficient for a proper walk. Actually, even nothing happens. So we
have to show him the “learning way”. One choice is to give him a reward for the traveled distance.

r(st, at) =


−1, h(h2

0,b
1
0, f

3
0) ∨ f30,y < gy ∨ f30,y > h20

1000, c(f30 ,g) ∧ ‖f30 − b1
0‖ > 1 ∧ f30,x > b10,x

100
‖b1∗

0 −b1
0‖
‖f30 − b1

0‖, otherwise
(13)

Here, b1∗
0 is the next estimated base and ‖b1∗

0 − b1
0‖ = const. This approach leads to an inap-

propriate learning. The result of this reward function is that the leg starts to shake in a particular
situation without further move (compare Figure 4(a)). The algorithm has learned that he gets a re-
ward and repeat the process to get again a reward. The question is how we can solve this problem?
Our implemented solution is to give him the reward only the first time. The result of this solution is
illustrated in Figure 4(b). More implementation details are described in the Appendix A.2.

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

(a) Tremor of the left
leg with Equation (13)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

2

(b) Resulting walk with the updated Equation
(13)

0 1 2 3 4 5 6 7
−0.5

0

0.5

1

1.5

2

(c) Competition between the best
and the worst simple walker

4.5 Results

This Subsection shows the results of the Q-Learning algorithm. One important point
is the convergence of the algorithm. We can adjust the discount factor γ ∈ [0, 1)
and the learning rate α ∈ (0, 1]. Figure 5(a) shows the results with four differ-
ent discount factors with a fixed learning rate α = 0.25 and 500 steps per episode.

0 500 1000 1500 2000
0

200

400

600

800

1000

1200

1400

1600

1800

Episodes

St
an

da
rd

 d
ev

ia
tio

n

α = 0.25 γ = 0.99

Figure 4: Standard deviation of 20 trials

The convergence with γ = 0.99 is the fastest
one with the highest total reward of ∼ 16000
after 100 episodes. All depicted discount fac-
tors converge after 500 episodes.
The next step is to consider the convergence
with the learning rate. Figure 5(b) shows the
results with four different learning rates with
γ = 0.99 and 500 steps per episode. The con-
vergence with α = 0.25 is the fastest one with
the highest total reward of ∼ 16000 after 200
episodes. The best adjustment of the parame-
ters is γ = 0.99, α = 0.25. The standard de-
viation of the total reward of this adjustment is
∼ 300 or ∼ 1.875% of the total reward after
600 episodes and exactly depicted in Figure 4.
Lastly, the comparison of a competition between the best and the worst simple walker, represented
in Figure 4(c). The picture shows the two walkers at the beginning, after 250 steps and at the end
after 500 steps. The result is that the best walker is, in the middle, 0.7 ahead of the worst walker and
at the end 1.4. Based on these results, the final Section 5 discusses future tasks and gives a summary
of the whole paper.

7

0 500 1000 1500 2000
−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Episodes

To
ta

l R
ew

ar
d

γ = 0.25
γ = 0.5
γ = 0.75
γ = 0.99

(a) Convergence with different discount factors

0 500 1000 1500 2000
−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Episodes

To
ta

l R
ew

ar
d

α = 0.25
α = 0.5
α = 0.75
α = 1

(b) Convergence with different learning rates

5 Conclusion

This paper provides an overview in Learning robot control. We define an abstract learning model
and addressed the questions: “How is the implementation of a learning task and what should be
learned?”, as subdivision and classification of the learning task. Subsequently, we classified the
learning task of the simple worker and constructed it with the well-known SCARA-Manipulator.
Subsequently, the learning architecture, which contains the MDP and the Q-Learning algorithm,
was explained and developed. A major component was the development of an appropriate reward
function. Step by step, the problems were explained and the reward function was adapted. We have
compared different simple walkers and have shown that the simple walker, with the highest reward,
goes faster than others. In addition, the convergence of the learning algorithm was studied. The
results show that the learning algorithm converges after 500 episodes and the best combination of
the parameters is γ = 0.99, α = 0.25 with a standard deviation of ∼ 300 or ∼ 1.875% of the total
reward.
The next steps could be to build a simple walker for an inclined plane or include obstacle. Also, our
assumptions can be replaced by a suitable physical model. In addition, the simple walker can get
knee joints, torso or swinging arms. There exist a lot of opportunities to expand the system.

References

[1] Ruina A Coleman M. Garcia M, Chatterjee A. The simplest walking model: stability, complex-
ity, and scaling. Department of Theoretical and Applied Mechanics, Cornell University, Ithaca,
NY 14853, USA, 2:281–8, 1988.

[2] J. Morimoto, G. Cheng, C.G. Atkeson, and G. Zeglin. A simple reinforcement learning algo-
rithm for biped walking. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE
International Conference on, volume 3, pages 3030–3035. IEEE, 2004.

[3] Y. Nakamura, M. Sato, and S. Ishii. Reinforcement learning for biped robot. In Proceedings of
the 2nd International Symposium on Adaptive Motion of Animals and Machines, pages ThP–II–
5, 2003.

[4] A.Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In Proceedings of the
Seventeenth International Conference on Machine Learning, pages 663–670, 2000.

[5] D. Nguyen-Tuong and J. Peters. Model learning for robot control: a survey. Cognitive process-
ing, pages 1–22, 2011.

[6] S. Schaal. Learning robot control. The handbook of brain theory and neural networks,, 2:983–
987, 2002.

[7] S. Schaal. The new roboticstowards human-centered machines. HFSP journal, 1(2):115–126,
2007.

[8] S. Schaal and C. Atkeson. Learning control in robotics. Robotics & Automation Magazine,
IEEE, 17(2):20–29, 2010.

8

[9] H.A. Simon. Why should machines learn. Machine learning: An artificial intelligence ap-
proach, 1:25–37, 1983.

A Appendix

A.1 Construction

For the simple walker we use the kinematic model from the SCARA-Manipulator with the DH-
Parameter (shown in Figure 5)

Link i θi di ai αi
1 θ1(variable) 0 l1 0
2 θ2(variable) 0 l2 0

Figure 5: DH-Parameter for the SCARA-Manipulator

and with the simplification l1 = l2 = 1 we get the following kinematic model

T 3
1 (θ1, θ2) =

cos(θ1 + θ2) − sin(θ1 + θ2) 0 cos(θ1) + cos(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2) 0 sin(θ1) + sin(θ1 + θ2)

0 0 1 0
0 0 0 1

 (14)

T 2
1 (θ1, θ2) =

cos(θ1) − sin(θ1) 0 cos(θ1)
sin(θ1) cos(θ1) 0 sin(θ1)

0 0 1 0
0 0 0 1

 (15)

A.2 MATLAB Code

This Subsections contains the important MATLAB functions of our Case Study.

%−−−
%−− T h i s f u n c t i o n c a l c u l a t e s t h e Q t a b l e
%−−−
%−− INPUT
% maxep i sodes [N] Maximum number o f e p i s o d e s
% f F u n c t i o n o f t h e ground
% alpha [N] Le a r n i n g r a t e
% gamma [N] D i s c o u n t f a c t o r
%
%−− OUTPUT
% Q [NxN] Q t a b l e
%−−−
f u n c t i o n [Q] = QLearning (maxepisodes , f , a lpha , gamma)

maxs teps = 500 ; % maximum s t e p s per e p i s o d e
e p s i l o n = 0 . 0 0 1 ; % p r o b a b i l i t y o f a random a c t i o n s e l e c t i o n

%I n s t a n t i a t i o n
env = e n v i r o n m e n t () ;

%For each s , a i n i t i a l i z e t h e t a b l e e n t r y Q(s , a) t o z e r o
Q = z e r o s (l e n g t h (env . s) , l e n g t h (env . a)) ;

f o r i = 1 : maxep i sodes

[Q] = e p i s o d e (maxsteps , Q , a l p h a , gamma , e p s i l o n , env , f) ;

e p s i l o n = e p s i l o n ∗ 0 . 9 9 ;

end

9

%−−−
%−− T h i s f u n c t i o n c a l c u l a t e s a e p i s o d e
%−−−
%−− INPUT
% m a x s t e p s [N] Maximum s t e p s o f t h i s e p i s o d e
% Q [NxN] Q t a b l e
% alpha [N] Le a r n i n g r a t e
% gamma [N] D i s c o u n t f a c t o r
% e p s i l o n [N] P r o b a b i l i t y o f a random a c t i o n s e l e c t i o n
% env Env i ronmen t
% f F u n c t i o n o f t h e ground
%
%−− OUTPUT
% Q [NxN] Q t a b l e
%−−−
f u n c t i o n [Q] = e p i s o d e (maxsteps , Q, a lpha , gamma , e p s i l o n , env , f)

%s <= a c t u a l s t a t e
[env , s] = i n i t (env , f) ;

%choose A c t i o n
[a , n] = e p s i l o n g r e e d y s t r a t e g y (Q, s , e p s i l o n , env) ;

%”do f o r e v e r ”
f o r i = 1 : maxs teps

%and e x e c u t e . r <= a c t u a l reward and s ’ <= new s t a t e
[env , r , s new] = a c t i o n (env , a) ;

%choose A c t i o n
[a new , n new] = e p s i l o n g r e e d y s t r a t e g y (Q, s new , e p s i l o n , env) ;

%Update t h e Q t a l b e f o r n o n d e t e r m i n i s t i c e n v i r o n m e n t s
Q(s , n) = Q(s , n) + a l p h a ∗ (r + gamma ∗ Q(s new , n new) − Q(s , n)) ;

%Update t h e c u r r e n t v a r i a b l e s
s = s new ; a = a new ; n = n new ;

%Basechange
i f s == env . s (5)

[env .TM , env . q c u r r e n t , env . ba se] = b a s i s c h a n g e (env .TM,
env . q c u r r e n t , env . ba se) ;

env . n e x t b a s e = [env . base (1) + s q r t (2) ; 0 ; 0] ;
end

end

end

%−−−
%−− T h i s f u n c t i o n c a l c u l a t e s max (Q(s t +1 , a t +1))
%−− w i t h t h e e p s i l o n−g re ed y s t r a t e g y
%−−−
f u n c t i o n [a , n] = e p s i l o n g r e e d y s t r a t e g y (Q, s , e p s i l o n , env)

i f (rand ()> e p s i l o n)
%a = g e t B e s t A c t i o n (Q, s) ;
[v n] = max (Q(s , :)) ;

e l s e
n = r a n d i n t (1 , 1 , l e n g t h (env . s)) + 1 ;

end
a = env . a (: , n) ;

end

10

c l a s s d e f e n v i r o n m e n t

p r o p e r t i e s
TM
q i n i t = [(3 / 4) ∗ pi ; pi / 2] ;
q c u r r e n t

%S t a t e s
s = [1 ; 2 ; 3 ; 4 ; 5] ;
%A c t i o n s
a = [[−1 ; −1] [−1 ; 0] [−1 ; 1] [0 ; −1]

[0 ; 0] [0 ; 1] [1 ; −1] [1 ; 0] [1 ; 1]] ;
ba se
n e x t b a s e
f
x

end

methods

%I n i t i a l i z a t i o n
f u n c t i o n [env , s] = i n i t (env , f)

env .TM = calcDHDirKin (wa lk e r () , env . q i n i t) ;
env . q c u r r e n t = env . q i n i t ;
env . ba se = [s q r t (2) ; f (s q r t (2)) ; 0] ;
env . n e x t b a s e = [2∗ s q r t (2) ; f (2∗ s q r t (2)) ; 0] ;
env . f = f ;
s = env . s (1) ;
env . x = 0 ;

end

%−−−
%−− INPUT
% a [2 x1] A c t i o n
%
%−− OUTPUT
% r [1] Reward
% s [1] S t a t e = { s t a n d i n g : 1 , fo rward : 2 , backward : 3 ,
% e r r o r : 4 , newbase : 5}
%−−−
f u n c t i o n [env , r , s] = a c t i o n (env , a)

%S e t new j o i n t p o s i t i o n
env . q c u r r e n t = [env . q c u r r e n t (1) + (1 / 1 8 0)∗ pi ∗a (1) ;

env . q c u r r e n t (2) + (1 / 1 8 0)∗ pi ∗a (2)] ;

%C a l c u l a t e k i n e m a t i c model
env .TM = calcDHDirKin (wa lk e r () , env . q c u r r e n t) ;

%C a l c u l a t e head and f o o t p o s i t i o n s
head = env . base + env .TM(1) . T (1 : 3 , 4) ;
f o o t = env . ba se + env .TM(2) . T (1 : 3 , 4) ;

%C o n d i t i o n f o r e r r o r
i f f o o t (2) > head (2) −0.5

| | h e a d O u t O f I n t e r v a l (head , env . base , f o o t , 0 . 0 0 1)
| | f o o t (2) < −0.001

r = −1;
s = env . s (4) ;

%C o n d i t i o n f o r new base
e l s e i f c o n t a c t (env . f , f o o t , 0 . 0 0 1) == 1

&& norm (f o o t−env . ba se) >= s q r t (2) / 2
&& f o o t (1) > env . ba se (1)

r = 1000 ;
s = env . s (5) ;

e l s e

11

%C a l c u l a t e reward
r = (1 0 0 / (2∗ s q r t (2))) ∗ norm (env . n e x t b a s e − f o o t) ;

%Backward
i f r < 0

s = env . s (3) ;
%S t a n d i n g
e l s e i f r == 0

s = env . s (1) ;
%Forward
e l s e i f r > 0

%Reward j u s t f o r t h e f i r s t t i m e
i f env . x < f o o t (1)

env . x = f o o t (1) ;
e l s e

r = 0 ;
end
s = env . s (2) ;

end

end
end

end

end

12

