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Abstract

In this seminar paper we give an introduction to the field of deterministic approx-
imate inference. We cast the problem of approximating a posterior distribution
over hidden variables as a variational minimization problem. In this framework
we describe three algorithms: Variational Factorization, Variational Bounds and
Expectation Propagation. We analyze the approximations obtained by the three al-
gorithms in terms of convergence and accuracy. This gives a hint on which method
is preferable in a specific problem at hand.

1 Introduction

Bayesian inference methods provide a very powerful and theoretically well-founded toolset to solve
various machine learning problems. In a standard scenario we will have observations or data, rep-
resented by D, and a probabilistic model that describes the dependencies between the data and
unobserved, hidden variables H1 . Usually, we would like to infer two quantities from this model.
The first is the posterior distribution over the hidden variables given the current observations, i.e.
p(H|D), that may, for example, subsequently be used to get a predictive distribution for a new par-
tially observed data point. The second quantity of interest is the model evidence or marginal data
likelihood, i.e. p(D), that measures, how well the underlying model explains the observed data and
that is usually used for model comparison and averaging. The relation between these quantities can
be expressed as follows, using Bayes’ theorem:

p(H|D) =
p(D|H)p(H)

p(D)
=

p(D|H)p(H)�
p(D|H)p(H)dH

So we see that calculating the posterior distribution over the parameters requires a normalization by
the model evidence that in turn requires an integration over the hidden variables. In many practical
problems it turns out, that this integration might not be feasible. The reason for this might either be
the analytical intractability of the problem, i.e. that no closed form solution of the integral exists, or
the computational intractability that could arise, for example, if the number of terms in the integrand
grows exponentially with the number of observed data points. In these cases approximate inference
methods may help.

There are several ways to carry out the approximation. One group of methods replace the posterior
distribution by a point estimate of the hidden variables2. This group includes the Maximum Like-
lihood and Maximum A-Posteriori estimates of H, where the point estimate is one of the modes
of p(D|H) and p(D|H)p(H) respectively. These methods capture just a single point of the true
posterior. So they might give a very poor approximation and in case of Maximum Likelihood they

1With the term “hidden” variables we denote parameters as well as latent variables.
2So the posterior distribution is given in terms of the Dirac measure for this point estimate
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are prone to overfitting. Sampling methods provide a stochastic approximation, where the true dis-
tribution is approximated by repeatedly drawing independent samples from it. A nice property of
sampling is, that it is guaranteed to give exact results after an infinite amount of time. Under practi-
cal considerations, however, they might suffer from high computational costs and as the results are
stochastic it is hard to tell, when the approximation is good enough. For details on sampling we
refer to [Bis06], chapter 11.

This seminar paper deals with a third kind of approximate inference methods that are deterministic,
i.e., the results of these methods applied to the same problem is not affected by randomness. These
deterministic methods can be much faster than sampling. The general principle is as follows: We
want to find a distribution q that is as close as possible to the true posterior. Because any sensible
notion of “closeness” would lead to p(H|D) being the best choice for q and we assume that working
with the true posterior is intractable, we have to restrict q in some way. These restriction will have
two consequences. The first is, that evaluating q is now tractable and the second is, that the optimal
q under this constraint will not be equal to p(H|D). Ideally, we want to find restrictions on q that
render the problem tractable and at the same time lead to an approximation that is as close as possible
to the true posterior.

The three methods that are described in this paper differ in the restrictions they impose on q, and
in the notion of “closeness”, i.e. the optimization objective for finding q. The first method, called
Variational Factorization (VF)3, requires q to factor in a certain way over the hidden variables and
then minimizes the Kullback-Leibler (KL) divergence KL(q�p) from q to the exact posterior p. The
second method, called Variational Bounds (VB), gives the restriction on q implicitly by defining a
family of lower or upper bounds of the joint distribution p(H,D) and setting q by normalizing this
bound. The integral over the bound with respect to the hidden variables represents a lower or upper
bound on the marginal data likelihood and the optimization is done by maximizing and minimizing
this bound respectively. The third method, called Expectation Propagation (EP), requires q to fac-
torize like the true posterior and each factor is approximated by a exponential family distribution.
In contrast to variational factorization, in EP the reverse KL-divergence KL(p�q) is minimized. In
section 5 we compare the properties of the different approximations obtained by the three methods.

This seminar paper is thought to give a basic understanding of the concepts behind deterministic
approximate inference, such that the reader is able to understand more detailed treatments of this
topic. Throughout the paper, we will supply further reading pointers as well as references to exam-
ples. The line of argumentation is strongly aligned to the one in [Bis06], but we fill in some gaps in
the derivations.

2 Variational Factorization

In this section, we seek a variational4 distribution q(H) that minimizes the Kullback Leibler diver-
gence KL(q�p) between q and the exact posterior p(H|D), i.e., we want to solve the variational
optimization problem:

min
q

(KL(q�p)) (1)

where the Kullback Leibler divergence is given by

KL(q�p) = −

�
q(x) ln

�
p(x)

q(x)

�
dx

If we place no constraints on q, the solution to (1) would be the exact posterior as KL(q�p) = 0 if
and only if q = p. This solution would not help, since we assume that evaluating the exact posterior
is intractable. Instead, we restrict the form of q. In this section we require q to factorize in n different
distributions q1, ..., qn, i.e.

q(H) = q1(H1)q2(H2)...qn(Hn) (2)
for a partition H1,H2, ...,Hn of the hidden variables H. A common choice is, to require a fac-
torisation between the latent variables and the parameters of a model. This factorization introduces

3This method is also often referred to as “Variational Bayes”.
4The term variational comes from the field of calculus of variations. A variational function can be seen as

a placeholder for functions just as a variable is a placeholder for scalars.
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artificial independence constraints to the model as in general the latent variables and the parameters
of a model are not independent given the data. We could now try to directly solve this constrained
variational optimization problem, but instead we have a look at how minimizing the KL diver-
gence KL(q�p) can be interpreted as maximizing a lower bound on the log marginal data likelihood
ln(p(D)). We first note, that for an arbitrary probability distribution q the following decomposition
of ln(p(D)) holds:

ln(p(D)) = ln(p(D))

�
q(H)dH =

�
q(H) ln(p(D))dH =

�
q(H) ln

�
p(D,H)q(H)

p(H|D)q(H)

�
dH

=

�
q(H) ln

�
p(D,H)

q(H)

�
dH−

�
q(H) ln

�
p(H|D)

q(H)

�
dH = L(q) + KL(q�p)

where we have defined
L(q) =

�
q(H) ln

�
p(D,H)

q(H)

�
dH

In the above decomposition, the second term KL(q�p) is the KL divergence from q to the exact
posterior p(H|D), i.e. the optimization objective of this section. As the KL divergence is always
non-negative, the first term L(q) is a lower bound for ln(p(D)). To get the tightest lower bound, we
can maximize the first term L(q) which is also equivalent to minimizing KL(q�p). The lower bound
will become an exact bound if we choose the exact posterior for our variational distribution q, as the
KL divergence will vanish in this case. Again, this would not lead to a simplified problem. We now
constrain q to factorize like in (2). Then we can write L(q) in the following way (where we leave
out the parameters of the qi for readability):

L(q) =

� 

qj

n�

i �=j

qi







ln(p(D,H))− ln(qj)−
n�

i �=j

ln(qi)



 dH (3)

There is no known solution of how to maximize this expression in terms of all qi at the same time.
So instead we pick out one particular qj and analyze, how L(q) can be maximized with respect to
qj when we assume, that the other qi, i �= j are kept fixed. Therefore, we single out the terms that
depend on qj , and equation (3) will look like this:
� 

qj

n�

i �=j

qi



 ln(p(D,H))dH−

� 

qj

n�

i �=j

qi



 ln(qj)dH−

� 

qj

n�

i �=j

qi




n�

i �=j

ln(qi)dH (4)

The second and the third integral can now be simplified by noting that the integrands consist of
densities over the Hi, i �= j and Hj respectively, multiplied with a factor that does not depend on
all of the hidden variables. So we can split the integrals over H into several integrals and make use
of the fact that integrals over the corresponding normalized densities qi equate to one:

� 

qj

n�

i �=j

qi



 ln(qj)dH =

�





� n�

i �=j

qidHi




 qj ln(qj)dHj =

�
qj ln(qj)dHj

� 

qj

n�

i �=j

qi




n�

i �=j

ln(qi)dH =

� ��
qjdHj

� n�

i �=j

qi

n�

i �=j

ln(qi)dHi =

� n�

i �=j

qi

n�

i �=j

ln(qi)dHi

Note that the last equation is independent of qj so we can absorb it into a constant term. We also
rewrite the first integral of equation (4) by splitting up the integration over H.

� 

qj

n�

i �=j

qi



 ln(p(D,H))dH =

�
qj






� n�

i �=j

qi ln(p(D,H))dHi




 dHj

=

�
qjEi �=j [ln(p(D,H))]dHj

Here Ei �=j denotes an expectation taken over all Hi �=j . Now we put the results back into equation
(4) and obtain

L(q) =

�
qjEi �=j [ln(p(D,H))]dHj −

�
qj ln(qj)dHj + const (5)
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The first two terms in the above expression for the lower bound look very similar to a negative KL di-
vergence for which we would know what the optimal qj should look like. But as Ei �=j [ln(p(D,H))]
is not necessarily a probability distribution, we first have to normalize it in order to reformulate (5)
in terms of a negative KL divergence. We therefore introduce a new distribution p̃(D,Hj) that is
just the normalized Ei �=j [ln(p(D,H))], i.e. the log of p̃(D,Hj) satisfies the following property5:

ln(p̃(D,Hj)) = Ei �=j [ln(p(D,H))]− ln

�
Ei �=j [ln(p(D,H))]dHj = Ei �=j [ln(p(D,H))] + const

(6)
If we plug this into equation (5) we get:

L(q) =

�
qj ln

p̃(D,Hj)

qj
dHj + const = −KL(qj , p̃(D,Hj)) + const (7)

So we see that maximizing L(q) is equal to minimizing KL(qj , p̃(D,Hj)) and hence the optimal q∗j
is equal to p̃(D,Hj). Thus we get two expressions for the optimal q∗j and the log of q∗j :

ln(q∗j ) = ln(p̃(D,Hj)) = Ei �=j [ln(p(D,H))] + const (8)

q
∗

j = p̃(D,Hj) =
exp(Ei �=j [ln(p(D,H))])�
exp(Ei �=j [ln(p(D,H))])dHj

(9)

Note that the optimal solution q
∗
j still depends on the other qi �=j through their expectations. A general

insight is, that if for some j, k the hidden variables Hj and Hk are independent in the original model
p(H,D) then this independence is carried over to the solution for q∗j as the expectation with respect
to qk can be absorbed into the constant term and thus q∗j will not depend on qk.

We can apply the result (8) to all qj , 1 ≤ j ≤ n to get a set of n equations that must be fulfilled
at a local maximum of L(q). We can now start with some initial distributions for the qi and update
each qi in turn while holding the others fixed. Each update to a specific qi will therefore increase
the lower bound L(q) unless the approximation is already at a local maximum. As L(q) is bounded
from above by the constant ln p(D) the algorithm is guaranteed to converge.

In order to take the expectations in the update equations we need the functional form of the factor
approximations. If we would just choose them arbitrarily it can well happen that it gets intractable
to calculate the normalization constants after a few iterations. So for the success of this variational
method it is crucial that the functional form of the approximating distribution are invariant under the
update equations. Sometimes it is possible to derive the functional form of the qj by simplification
of the update equations (8), but this may not always be the case. Even if the functional form of the
approximations can be derived, it may still be intractable to take the required expectations. In this
case the method of variational lower bounds, that is described in the next section, might help.

We now sum up the Variational Factorization method. In the first step, you have to choose a factor-
ization over the hidden variables for the approximation q. As a second step, the equation (8) for each
qi has to be analyzed in order to derive the functional form of qi. To actually optimize the qi, you
first initialize them. Afterwards, all factors are refined iteratively until some convergence criterion
is met, e.g. the lower bound L(q) does not get increased any further.

Examples and further readings The Bishop book [Bis06] exemplifies the application of the Vari-
ational Factorization method in the scenario of Gaussian Mixture Models and Linear Regression. For
Gaussian Mixture Models a factorization between latent variables and parameters is assumed and
from equation (8) the functional form of both factors is derived. It is then shown, that evaluating
the predictive density with the approximated posterior is tractable and that the lower bound on the
marginal data likelihood can be used to determine the number of mixture components, something
that is not possible with an EM treatment of the Gaussian mixture model.

In [Bea03] it is shown, that for a wide class of models, called the Conjugate Exponential Models,
by assuming a factorization between the parameters, the functional form of the approximation will
again be conjugate exponential, thus leading to simple update equations for the factors. In [Win04]

5It is not obvious, why this normalization should in general be possible, i.e., why Ei �=j [ln(p(D,H))] should
be bounded. Neither in [Bis06] nor in other references that make use of the factorized approximation a proof
could be found to that claim.
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the Variational Message Passing algorithm is presented as an application of the Variational Factor-
ization framework to conjugate exponential graphical models. The assumed factorization between
all the nodes of the model leads to a local message passing algorithm.

3 Variational bounds

The method in the previous section was based on minimizing the KL divergence between the ap-
proximated distribution q and the true posterior p. This leads to the lower bound L(q) on the log
marginal data likelihood ln p(D). In this section we start with generally considering bounds on
p(D). Our goal is to seek a function g(H,D) that can tractably be integrated and that is a bound
for the joint distribution, when holding the data fixed. Thus the integral over g will be a bound for
the integral of the joint distribution over the hidden variables, i.e. the marginal data likelihood. This
technique is especially useful when the joint distribution factors in a certain way, as we can replace
individual factors, one by one, with either only lower or only upper bounds until we get a bound
that can conveniently be integrated. By normalizing the bound, we also get an approximation to
the posterior. In general, the bounds are associated with free parameters that are to be optimized in
order to maximize the lower bound of the marginal likelihood or to minimize the upper bound, thus
getting the tightest possible bound.

Convex duality One method to find bounds for factors or functions in general is called convex
duality. To illustrate the general concept of convex duality, we will have a look at the log function,
which is non-linear in its input parameter. Because ln(x) is concave, for every x we can find a line
that is an upper bound of ln(x) and touches it at the point x, i.e., we can find a tangent. Simple math
shows us, that the tangent line for a point x is given by

y(t) =
1

x
t+ ln(x)− 1 (10)

y(t) = ηt− ln(η)− 1 (11)

where, in the last line, we substituted with η = x
−1. Equation (10) denotes a tangent line for a

specific x and as the log function is concave, the tangent line is an upper bound for the whole log
function. Hence, by letting η vary in equation (11) we get a family of upper bounds for the log
function as each η defines a tangent. Because the reverse also holds, i.e. every tangent line can be
represented like (11) for some η, we see that for every x there is an η for which the bound is exact
at x, i.e. ln(x) = y(x). Therefore, we can define the log function as a pointwise minimum over all
tangent lines:

ln(x) = min
η

(ηx− ln(η)− 1) (12)

So we can upper bound the non-linear log function by a linear function, at the cost of introducing an
additional free parameter η that can be optimized for every point x to give an exact bound. Figure
1a shows the log function as well as the upper bound for some choices of η. Note that every bound
is exact at one point x∗ and that the tightness of that bound within a small region of x∗ depends
on the magnitude of the derivative of ln(x) at that point. In the literature the intercept, written as a
function g(η) of η, is called the conjugate or dual function and in fact, any concave function f(x)
can be written as

f(x) = min
η

(ηx− g(η)) (13)

The dual function g is itself a concave function and can thus be written in terms of f :

g(η) = min
x

(ηx− f(x)) (14)

Figure 1b illustrates why the last relation holds. If we want the line ηx to become a tangent, we have
to move it by the minimal difference from the log function to the line. As the sum of the convex
function ηx and the convex function −f(x) is again convex, the term ηx − f(x) has a unique
minimum. Equation (14) also implies that we can determine g by setting the derivative of f to η in
case that f is differentiable. In case of f(x) being convex instead of concave the above relations
will again hold when taking maxima instead of minima. Additionally, these relations generalize to
vector valued x. In that case η will also be vector valued.
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(a) (b)

Figure 1: (a): The log function as well as several upper bounds for different settings for η. (b):
The intercept of the tangent line of a specific slope is given by the minimum distance from the log
function to the line through the origin.

One powerful application of the concept of convex duality is bounding the sigmoid function, which
plays an important part in machine learning, e.g. in logistic regression. The sigmoid function is
given by

σ(x) =
1

1 + e−x

Taking products of sigmoid terms is inconvenient, because the number of terms in the result will
grow exponentially. Our goal is to derive lower and upper bounds of the sigmoid function that can
nicely be multiplied together and then form a lower and upper bound on the product respectively.
First, we notice, that σ(x) is neither convex nor concave, but log concave, i.e. ln(σ(x)) is a concave
function6. We get the dual function g(η) by setting the derivative of ln(σ(x)) to η and some lines of
math give the following result

g(η) = −η ln(η)− (1− η) ln(1− η) = H(η)

where H(η) is the entropy of η. So for all η ∈ (0, 1) we have7

ln(σ(x)) ≤ ηx−H(η) ⇒ σ(x) ≤ exp(ηx−H(η))

Figure 2a shows the sigmoid function and some variational upper bounds. As in the case with the
log function, each upper bound touches the sigmoid function in exactly one point. The nice property
of this upper bound is, that it is an exponential of a linear function and thus several upper bounds
can nicely be multiplied together to give again an exponential of a linear function. It is also possible
to derive a lower bound for the sigmoid function and a derivation can be found in [Bis06]. Note that
in general, it might not be easy to find a suitable transformation of the input function such that, on
the one hand, the transformed function will be convex or concave and, on the other hand, the bound
will have the desired algebraic properties that simplify the integration.

To put the previous discussion into the bigger picture: Convex bounds are one way to approximate
individual factors of the joint distribution by lower or upper bounds. This leads to a bound for the
whole joint distribution and it should have the property that integration is now tractable. Assume
that we bounded the joint distribution by a lower bound g that depends on free parameters η

∀η : p(H,D) ≥ g(η,H,D) (15)

Integrating out the hidden variables will therefore give a lower bound on the log marginal data
likelihood

ln p(D) = ln

�
p(H,D)dH ≥ ln

�
g(η,H,D)dH = L(η) (16)

6That can be seen by observing that the second derivative −
exp(x)

(1+exp(x))2
is always negative.

7Here is a small caveat: For the relation (13) to hold, it is necessary that we restrict η to “nice” values, i.e.
to values where η could in fact represent the slope of a tangent line of f .
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(a) (b)

Figure 2: The sigmoid function and variational upper bounds (a) as well as lower bounds (b)

We can maximize L(η) with respect to the free parameters η to get optimal parameters η∗. The
parameters η∗ can be used to evaluate L(η∗) as an approximation to p(D). Furthermore we can get
an approximation q to the true posterior by normalizing g(η∗) with respect to the hidden variables:

q(H) =
g(η∗

,D,H)�
g(η∗,D,H)dH

=
g(η∗)

L(η∗)
(17)

To see why this is a good approximation, consider the case where the marginal data likelihood is
bounded exactly, i.e. p(D) = L(η∗). From basic properties of the integral we know, that for two
functions f and h with f ≤ h it holds that

�
f =

�
g if and only if f = g almost everywhere.

Therefore we see that p(H,D) = g(η∗
,H,D) almost everywhere and thus q would equal p(H,D)

almost everywhere. Note that in the previous section about variational factorization we also maxi-
mized a lower bound on the log marginal data likelihood. But with general lower bounds we cannot
interpret the difference between the bound and the exact value as a KL divergence.

For the optimization of the parameters η there are basically two different ways. The first is to solve
the integral for L(η) analytically to get a closed form expression. Now a suitable optimization al-
gorithm can be used to maximize L(η), e.g. conjugate gradient descent, Newton-Raphson, etc. The
second approach uses EM as a general optimization technique for monotone functions of integrals
to iteratively maximize the lower bound. In our case we can apply Jensen’s inequality to get a lower
bound on the lower bound L(η):

L(η) = ln

�
g(η,H,D)dH = ln

�
g(η,H,D)

q(H)
q(H)dH

≥

�
ln

�
g(η,H,D)

q(H)

�
q(H)dH =

�
ln (g(η,H,D)) q(H)dH− const

where q depends on an old estimate of the parameters ηold and is defined by equation (17) for these
parameters. Here, g(η,H,D) takes the role of the complete-data likelihood in classical EM and
thus we alternate between the E step, where we compute the expectation of the complete-data log
likelihood with respect to q(H), and the M step, where we maximize this expectation with respect to
the parameters η that then become the new initial setting ηold for the next iteration. As in classical
EM, this technique is espacially useful when pulling the logarithm inside the integral simplifies the
integration, for instance because the bound is an exponential of a simple function. Every step of the
EM algorithm will increase the lower bound, thus convergence to a local maximum is guaranteed.

Using lower bounds over upper bounds has the advantage that it is possible to combine lower bounds
with the Variational Factorization methodology of the previous section. In VF, we get the lower
bound L(q) on ln p(D). Evaluating the update equations for a single qj requires taking expectations
with respect to the other qi, i �= j. That may still be intractable and variational lower bounds can be
used to get a lower bound on L(q) such that maximization is now tractable.
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Readings and examples Jordan et. al give a great introduction to Variational Bounds [JGJS99].
They show how the factors of the joint distribution can be bounded incrementally to avoid bounds
that are too loose. Also the connection between Variational Bounds and Variational Factorization is
analyzed in more depth than we have made it here. They apply these bounds to different graphical
models and give many references for further reading. In [Bis06] variational bounds are combined
with the factorization approximation of the previous section to evaluate an approximate predictive
distribution for Bayesian Logistic Regression.

In [WG07] variational upper bounds are used for approximate inference in undirected graphical
models. They do not use the principle of convex duality but apply the weighted power means
inequality and the arithmetic-geometric means inequality to replace the intractable product over
potential functions with a sum of tractable products over approximate potential functions.

4 Expectation Propagation

In section 2 we started our discussion by considering variational distributions q(H) that minimize
the KL divergence KL(q�p) from q to the exact posterior p(H|D). In some sense, this is just the
wrong direction of the KL divergence, as KL(q�p) intuitively measures, how surprised you are when
you get a sample from distribution q, given that you assume p to be the true distribution. In this light
it seems more natural to seek a distribution q that minimizes the other KL divergence, i.e. KL(p�q),
as we actually do not want to be surprised to get a sample from the true distribution p, if we assume
our approximation q to be correct.

Minimizing KL(p�q) by moment matching We now show that minimizing KL(q�p), under the
constraint that q lies in the exponential family, can be done by matching the expectations of the
sufficient statistic of q. Therefore, let q be of the form

q(H) = g(η)h(H) exp(ηT
u(H)) (18)

where η denote the natural parameters of q and u(H) denote the sufficient statistic of q (e.g. for
Gaussian q, we have u(H) = [H,HHT ]T ). If we express KL(p�q) as a function of η we get the
following

KL(p�q) =−

�
p(H|D) ln

�
q(H)

p(H|D)

�
dH = −

�
p(H|D) ln q(H)dH+ const

=− Ep(H|D)(ln g(η))− Ep(H|D)(lnh(H))− Ep(H|D)(η
T
u(H)) + const

=− ln g(η)− ηTEp(H|D)(u(H)) + const
Taking the derivative with respect to η and setting it to zero results in the following equation

−∇ ln g(η) = Ep(H|D)(u(H))

It can be shown, that the negative gradient of ln g(η) is given by the expectation of the sufficient
statistic under the distribution q(H) (cf. [Bis06] chapter 2.4.1). So if we restrict q to be from the
exponential family we get the following condition for the q that minimizes KL(p�q):

Eq(H)(u(H)) = Ep(H|D)(u(H)) (19)
This procedure of equating the expectations of the sufficient statistics is called moment matching and
for a Gaussian q this boils down to setting the mean parameter to the mean of p(H|D) and setting
the variance parameter to the variance of p(H|D).

Expectation Propagation We shall assume that calculating the moments for the whole true pos-
terior is not tractable. We now write the posterior as a product over N factors:

p(H|D) =
1

p(D)

N�

i=1

fi(Hi) , Hi ⊆ H (20)

Note that the individual factors are not necessarily probability distributions and that the Hi need not
to be disjoint. In fact the above representation might also not be unique8. For notational convenience

8This factor model can be derived from so called factor graphs, that are a generalization of Bayesian Net-
works and undirected graphical models.
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we drop the index from the Hi from now on. In Expectation Propagation we want to approximate
each factor fi by a factor approximation f̃i, where we restrict each f̃i to be from the exponential
family. As this family is closed under multiplication, the resulting approximation q is also from the
exponential family and can be written as

q(H) =
1

Z

N�

i=1

f̃i(H) (21)

Here, Z is a normalization constant that ensures that the product of the factor approximations is a
valid probability distribution. So how do we find a good approximation for the factors fi? In EP
we try to find those factor approximations by refining each f̃j in the context of all the other current
f̃i, i �= j. We first show, how this works in detail and then give a short intuition, why this is sensible.

As a first step we initialize each f̃i and set the initial q to the normalized product of these factors.
Then we iteratively pick a factor f̃j that we wish to refine and define an unnormalized distribution
q
\j that we get by dividing our current approximation q by f̃j :

q
\j(H) =

q(H)

f̃j(H)
(22)

Now we minimize the KL divergence between fj and f̃j , both multiplied with the current estimate
of the other factor approximations q\j . We get a new approximation q

new of the whole posterior by
minimizing:

KL
�

1

Zj
fjq

\j

���� q
new

�
= KL

�
1

Zj
fjq

\j

���� f̃jq
\j

�
(23)

for the appropriate normalization constant Zj . The solution to that minimization problem is given
by moment matching as explained above. We assume that calculating the moments of the left-hand
side of the above KL divergence is a tractable operation, but in practice this operation is the hard
part in implementing Expectation Propagation for a specific problem9. Now we calculate the refined
version of f̃j . From q

new we get the new f̃j by simply dividing out the other factors q\j and scaling
by the above normalization constant Zj :

f̃j = Zj
q

new

q\j
(24)

Now q is set to q
new for the next iteration where a new factor gets refined. These updates are iterated

and several passes through all factors can be made, until some convergence criterion is met, e.g.
that the changes of the parameters of the single f̃i during a whole pass through the factors has not
exceeded some threshold. At the end, the last qnew gives an approximation to the posterior and we
can evaluate an approximation to the model evidence by calculating the normalization constant. To
sum up the algorithm, in EP you do the following:

1. Initialize each f̃i and set q ∝
�

f̃i

2. Repeat until convergence
(a) Pick a f̃j to refine and calculate q

\j = q
f̃i

as well as the normalization constant

Zj =
�
fjq

\j
dH

(b) Calculate q
new by matching the expected sufficient statistic of fjq\j

(c) Set f̃j = Zj
qnew

q\j
and q = q

new

We now give an intuition, why it is sensible to approximate each factor fj by f̃j in the context
of all other factor approximations q

\j . Figure 3 shows two plots of factors that occur in the so
called “clutter” problem [Bis06], as well as the factor approximation and the context. The context,
i.e. the product of all other factor approximations, controls, which parts of the true factor fj must

9In Tom Minka’s video lecture [Min09] about Expectation Propagation this moment matching operation is
called the “proj” operator
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Figure 3: Both plots show a factor fi of the clutter problem in blue and the context q\j in green. The
updated approximation f̃j (red) for the factor will be accurate where the context has considerable
mass. Figure taken from [Bis06]

be approximated accurately by the factor approximation f̃j . Ideally we would like to get factor
approximations that lead to an overall approximation q that is as close as possible to the best q∗
given by matching moments of the true posterior. Now assume that the context is already close to
q
∗ divided by the current factor under consideration. Multiplying the true factor to the context will

give a very similar result as multiplying the refined factor approximation to the context as the factor
approximation is accurate in the region where the context (and therfore q

∗\f̃j) has mass. Hence the
overall approximation will be very close to q

∗. The downside is, that there are no guarantees that
the algorithm will converge in such a way. It is even not guaranteed that EP will converge at all.
In practice, however, EP with unimodal approximations is found to converge very fast to very good
solutions if the true posterior has a unimodal shape. Otherwise minimizing KL(p�q) will cause q to
average over all modes, leading to a poor approximation.

Readings and examples A detailed introduction to EP can be found in [Min01b] and in [Bis06].
In the former it is shown that EP generalizes other well known approximate inference algorithms like
Assumed Density Filtering, the Kalman Smoother and Loopy Belief Propagation, and it is explained,
how EP can be applied to generic factor graphs. Another, nicely comprehensible introduction to EP
can be found at [Min09]. As a general hub for information on the diverse applications of EP we
refer to [Min07]. In [SN11] an extension to EP is presented that is both provably convergent and
very fast.

5 Properties of the Three Approximation Methods

In this section we will compare the different variational methods in terms of convergence, properties
of the resulting distribution that arise from the choice of the minimization objective and in terms of
the accuracy of the approximation.

Convergence We have seen, that in Variational Factorization as well as Variational Bounds a lower
bound on the log marginal data likelihood is maximized. In VF each refinement of the factors
will cause this lower bound to increase and thus the algorithm will converge. The same holds for
VB, where we can either directly optimize the lower bound or employ an EM algorithm, in which
the bound is consistently increased. For Expectation Propagation it can be shown, that if the fac-
tor approximations belong to the exponential family then there are fix points for the EP iterations
[Min01a], but the algorithm does not necessarily converge to one of these fix points. Furthermore,
it can be shown, that fix points of EP are associated with local minima of a specific error function.
It is possible to minimize this error function directly. By doing so, however, one would lose the fast
convergence properties of EP for well suited problems. In practice, EP with unimodal approxima-
tions will converge very fast to a good solution, if the true posterior is unimodal or very close to
unimodal. According to Minka [Min01a] the opposite also holds, i.e. if EP does not converge, then
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the true posterior has a multimodal shape and hence approximating it with EP might lead to a poor
solution anyway, but this claim is disputed [HZ02].

Minimization Objective In VF we seek a distribution q that minimizes the KL-divergence
KL(q�p) to the true posterior while in Expectation Propagation the opposite KL-divergence KL(p�q)
is the minimization objective. The choice of the minimization objective naturally has implications
for the resulting approximation.

Here we reproduce the formula for the KL-divergence to take a closer look at it:

KL(q�p) = −

�
q(x) ln

�
p(x)

q(x)

�
dx

Assume that in some region R the true distribution p is almost zero. If q would have any considerable
mass in R this would lead to a high value of the integrand as the logarithm will evaluate to a high
value which is weighted by some q(x) that is not almost zero. In this case, the KL divergence would
be big. In order to minimize the KL divergence, q must be chosen such that it does not put mass in
regions where p does not have mass. In the extreme case this means, that if p is zero in a certain
region, minimizing KL(q�p) will require q to also be zero in this region. This property is known as
the zero forcing property of KL(q�p) [Bis06].

Now we can put it the other way around to see the implications of minimizing KL(p�q). In this case
it is not so important that q has low mass in regions where p has low mass. Even if q has high mass
in this region, leading to a high value of the logarithmic term, this high value is weighted by a small
p. But in regions in which p does have considerable mass, q should also have mass. Otherwise the
integrand would have a high value again. So minimizing KL(p�q) will enforce that q is not zero in
regions where p is not zero. This is known as the zero avoiding property of KL(p�q).

Accuracy Now consider a multimodal posterior distribution that should be approximated. From
the previous discussion it is clear that the VF approximation will seek one of the modes whereas
EP, used with unimodal approximations, will lead to an approximation that averages over all the
modes, given EP converges at all. In this case, using VF might be the best choice, especially if the
multimodality of the posterior is due to symmetry, e.g. in mixture models the posterior distribution
of the mixing coefficients is invariant under permutations of the mixture component indices. This
kind of symmetry can be exploited [Bis06].

On the other hand, many posterior distributions will become more and more Gaussian shaped as
the number of observations increases. This asymptotic normality of the posterior distribution is a
consequence of the (Bayesian) Central Limit Theorem, but this assertion needs some conditions
to hold [GCSR03]. The most important conditions require an asymmetry of the parameters (e.g.
it should not be possible to simply exchange parameter indices to get an equivalent solution) and
that the number of parameters should not grow with the number of observations. For problems
in which these conditions do not hold, EP with Gaussian factor approximations should be a bad
choice. However, if these conditions do hold, EP can produce a Gaussian approximation whose
mean and variance are very close to the mean and variance of the true posterior due to the direction
of the minimized KL divergence. VF will produce approximations that consistently underestimate
the variance because of the zero forcing property of KL(q�p). Note that in EP we are free to choose
that we want to approximate the posterior with a Gaussian, whereas in VF the functional form must
be determined by the imposed factorization.

Unfortunately we could not find corresponding claims on the accuracy of VB approximations. We
assume that the properties of the VB approximations depend heavily on the way, the bound is cho-
sen.

6 Conclusion

In this seminar thesis, we gave a brief introduction to three methods for deterministically approx-
imating a probability distribution p. We have fit each method in a general framework, where we
define restrictions on the approximating family and a minimization objective. The first method,
Variational Factorization, assumes a certain factorization of the approximating distribution q and
minimizes the KL divergence KL(q�p). We derived expressions for the best approximating factors
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(equation 8). It is important that the functional forms of the factors can be derived out of these ex-
pressions in order to turn the variational optimization into an ordinary optimization problem. Then
we can optimize the parameters of the factors. The hard part of this method is choosing the factor-
ization and deriving the functional form of the approximating factors.

The second method, Variational Bounds, starts by bounding an unnormalized true distribution. If p
factors in a certain way, each factor can be bounded seperately. By doing so, the obtained bound
depends on some parameters, that can be optimized to give the tightest bound. The hard part of this
method is finding suitable bounds for the factors. Using convex duality, this is done by searching
for a transformation of the factor and/or its input parameters to obtain a convex or concave function,
which can then be bounded in terms of the dual function. Applying the inverse transformations must
yield an expression, that renders the original problem tractable. We have exemplified this with the
sigmoid function that plays an important role in Bayesian inference.

Expectation Propagation is the third method. It approximates each factor of the true distribution by
an approximation that has to be from the exponential family. The optimization objective in EP is the
KL divergence KL(p�q). That implies, that for EP, the best approximation can be found by moment
matching. EP now provides us with an iterative update scheme for the single factors. In each update
step we have to compute the moments from the product of the corresponding true factor and the
other approximated factors (the context) and this is the hard part for EP.
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