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Abstract

In this paper a state of the art sparse coding algorithm for image classification,
namely Hierachical Matching Pursuit(HMP), is compared to state of the art al-
gorithms using kernel methods(Efficient Match Kernels, Kernel Descriptors and
Hierarchical Kernel Descriptors).

HMP is faster and achieves slightly better results than the other algorithms when
run over several test-sets. But on the downside, there are set-ups, where the per-
formance of HMP declines. We review and explain all four algorithms and inves-
tigate, in which set-ups HMP shouldn’t be applied.

Introduction

Today there are many different problem-solving approaches for visual object recognition. It is one
of the main research fields in computer vision, machine learning and robotics. One of the difficulties
with this task is to make an algorithm suitable for large images with a high-dimensional space.

An insight of the last years is, that the key for a good object recognition algorihtm is learning rich
features. Today there are approaches to learn these features with machine learning methods, e.g.
Deep belief networks(DBNs)[14] or Convolutional neural networks(CNNs)[15].

We take a closer look at Efficient Match Kernels(EMK), Kernel Descriptors(KD), Hierarchical Ker-
nel Descriptors(HKD) and the Hierarchical Matching Pursuit-algorithm(HMP). These algorithms
have shown state of the art results in some experiments of object recognition. Three of them, namely
EMK, KD and HKD, use kernel methods for the feature extraction, whereas HMP uses sparse cod-

ing.

1 Kernel Methods

Bag of words(BOW)[21] is a very popular feature for visual object recognition. It is simple, com-
putational efficient and robust to scale and rotation variance.

A deficiency of BOW is that it represents each local feature with the closest visual word. According
to Liefeng Bo et al[5] this quantization can be too coarse and can lead to a decrease in performance.
BOW with a linear SVM can be viewed as spatial match kernels[5].

A formulation of BOW:

X = {1, ...,zp} is a set of local features,

V = {v1,...,v4} is the dictionary

w(w) = {p1(x), ..., pa(z)} " is a binary indicator vector,
with p;(z) = 1, if € R(v;), otherwise p;(z) = 0,
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0(z,y) = { 0, otherwise

To address the problem of too coarse quantization mentioned above, continuous kernel functions
can be used:

Kg(X,Y) = IXH |Zkay )

z€X yey

There are already some kernels invented, e.g. there is the sum match kernel by Haussler[13],
which adds local kernels over all combinations of two different sets of features, or neighborhood
kernels[20]. They integrate the spatial location into a sum match kernel.

The problem with the kernels mentioned are their significant computational costs. They need to
explicitly evaluate the full kernel matrix. For this reason they are impractical for large datasets. The
question we further pursue is, how to apply kernels descriptors without the need to compute the full
kernel matrix.

1.1 Efficient Match Kernel

Efficient Match Kernels(EMK) map local features to a low dimensional feature space. The resulting
features are then averaged to get a so called set-level feature.
EMK can be seen as a two-stages operation. The first is to map the features to a new feature space

[x A ¢(x)], and the second is to reconstruct ¢(z) with the matrix D (defined below).
To apply the first step, the match kernel of eq. (2) can be simplified as:
Ks(X,Y) = ¢(X) o(Y), (3)
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Eq. (3) is called an EMK and it can be applied to all finite dimensional kernels as shown in the
paper. ~

EMKSs allow us to first compute ¢(X), as this is a finite vector, and then apply a linear classifier on
the resulting set-level features.

Classification with EMK is linear in the number of images and also in the number of local features.

Now the second step has to be applied. An approximation of ¢(z) is needed. So local feature
maps have to be learned, whose inner products retain the values of the kernel functions as exact as
possible.

Therefore the dictionary D, D = {¢(z1),...,0(z4)} € R"*?, with its d feature vectors, Z =
[21, ..., zp], which span the low dimensional space, has to be selected. But let’s first start with the
approximation.

¢(x) can be approximated by minimizing the problem:

Uy :Irl}inH(b(x) — Du,||?, 4)
which can be solved analytically as a convex quadratic program:
7o = (D' D)7H(D " é(x)). (5)
The local kernel derived from the projected vectors:
ka(x,y) = o) 6(y) = [D0] " [Dv,) = ko(2) T K 5 1k (y), (6)



where ¢(x) = D@, which is the approximation of ¢(z).
k. isad x 1 vector with {k;}i = k(z, ) and K7z is a d x d matrix with {Kzz};; = k(z;, z;).
So ¢(X) can be computed like this:

o(X |X|DZ%. (7)

zeX

As mentioned before, now the dictionary D has to be selected. Kernel principal component
analysis(KPCA)[22] with a pool of randomly selected local features F' and the d topmost eigen-
vectors as basis vectors, cannot be used, since KPCA becomes too expensive for large F', which is
often required for good accuracy.

Instead it is preferable to use a constrained singular value decomposition(CKSVD):

argminy R(V, Z) Z l|p(x;) — Dvy|? (8)

Its partial derivations is:
Z
% =2D " Dv; — 2D " ¢(z;)
Vs

with V' = [v1,...up].

To make the optimization function computationally efficient, the parameter space has to be reduced.
V has to be eliminated from this minimization problem.

When the partial derivations are set to zero and Z is fixed, a linear system with respect to v, can be
created, with the optimal analytic solution T,.. Instead of directly optimizing R(V, Z), this solution
can be put into the minimization problem and then an equivalent optimization problem can be solved:

F
argming R*(Z) = = k.(2:) " K pk.(x;) ©)

i=1
With any gradient descent algorithm eq. (9) can be solved and the corresponding EMK is set up.

According to Liefen Bo et al[2] a problem with EMK is that it performs best when it is used with
non-linear SVMs.

It uses hand-crafted SIFT features as the basic building blocks, which can also be modified as shown
in the next subsection.

1.2 Kernel Descriptors

Based on the work of EMK a general
framework was proposed in NIPS 2010[2], :' f ,: ;‘ I I I

called kernel descriptors(KDs), to extract PR N e -

low level features from image patches. yVre N

For visual object recognition, orienta- Image patch gradient vectors SIFT or HOG  Image features

tion histograms such as SIFT[18] and

HOGI[11] are very common and success- Figure 1: The process of how to obtain a sift/hog fea-
ful features. According to the paper the ture from an image patch

match kernel in eq. (10) provides a kernel

view of HOG features:
=> > 8(2)"6(=") (10)

ze€P 2'€eQ
with do(e)
(=1L [FF]=i-1
0i(z) = { 0 otherwzse for hard binning
or

6:(2) = max(cos(A(z) — a;)?,0) for soft binning
where the gradient orientation is discretized into a d-dimensional vector 6(z) = [61(2), ..., da(2)]
and a; is the center of the i-th bin.



This equation only uses one pair of image patches (P and Q), but it is straightforward to do this for
sets of image patches.

Now that there is a kernel view of HOG it would be desirable to modify this kernel further to not
suffer from discretization errors.

So here is a modified kernel presented in the paper:

Kgraa(P,Q) =Y Y (2)m(2 ko (0(2), 0(2) by (2, 2') (1D)
ze€P 2'€Q

Y D0V _ . YAIE
with k, a gaussian position kernel over orientations: ko(H(z.), %Z )= e,Xp( %ol[0(2) = 6()|
with 0(z2) = [sin(0(2)) cos(0(z))]
kp is a gaussian kernel over positions, which measures the spatial distance between two pixels, and

z denotes the 2D position, normalized to [0, 1], of the pixel in the image patch.

So it doesn’t use hand-crafted SIFT features like EMK, but instead uses more accurate features. It
designs and learns them from scratch using kernel methods.

The kernel view of orientation histograms gives a simple and unified way of turning pixel attributes
into patch-level features. When applied to a bunch of different pixel attributes, like gradient, color
and shape, the combination of all match kernels, which are already strong in their own ability, is
much better than the best individual result[2].

To build such a low level feature extractor three steps have to be applied: (1) design a match kernel
using pixel attributes, (2) learn the basis vectors using KPCA, (3) construct kernel descriptors by
projecting the features vectors to a low dimensional space.

Step (2) and (3) consist of the two stages mentioned in the EMK-section with a slight modification.
To find a good projection from the high dimensional, potentially infinite, feature space to the low
dimensional feature space, a modified approach is used. (1) To find an approximation of the match
kernels, sufficient basis vectors are uniformly and densely sampled from the support region. (2)
KPCA is used to learn compact basis vectors. Unlike the approach used in the EMK-section with
CKSVD no local minima are involved.

The kernels in eq. (11) can be rewritten as inner products, e.g. k, can be rewritten as:

ko(0(2),8(2)) = 60(6(2)) T 60 (6(2")) (12)
So a feature over image patches can be derived:
Fyraa(P) = Z ﬁz(z)qbo(g(z)) ® ¢p(2) (13)
zeP

® is the Kronecker product and K g,qq(P, Q) = gmd(P)TFgmd(Q), with Fj,4q as an infinite
vector, because of the use of gaussian kernels.

Unlike EMK, the basis vectors for the approximation of the kernel function are computed directly,
without requiring any image.

The basis vectors are dense and uniformly sampled over the support region, using a fine grid. When
sufficient basis vectors are sampled, the approximation of ¢ can be achieved by its projection into
the lower dimensional space. As already shown in the EMK-section[eq. (4-7)], this procedure is
equivalent to using a finite dimensional kernel. So to get the approximation of the kernels eq. (7)
has to be applied:

Fyraa(P) = ) i(2)0(0(2)) ® 6p(2) (14)
zeP
For ¢, (0(2)) e.g.:
Po(0(2)) = D,
Because of the Kronecker product the dimensionality of the corresponding matrix can get too high
for practical use. To make it more practical the dimension of the low-dimensional feature space

has to be downsized further. Because orthogonality is not guaranteed by the sampling approach,
the basis vectors have a certain amount of redundance. So KPCA can be applied over joint basis



vectors: {¢o(21) ® ¢p(Y1), s Po(Ta,) ® Op(ya,)}, where ¢, (y,) are basis vectors for k,, and d,,
their quantity, with the t-th kernel principal component:

do dp
PC* =7 > ad0(xi) © 5 (y;) (15)

i=1 j=1

where aﬁj is learned with KPCA: K.of = Ata!, where K is a centered kernel matrix:

[Kc}ijst = ko(xia Ij)kp(ysv yt)72 Zi',s’ ko(xi’ ) zj)kp(ys’ , yt)+zi/7j/,s/,t/ ko(xi’a mj’)kp(ys/y yt’)
The gradient kernel descriptor(eq. (12)) now has the form:

do dp N
FouaP) =30, {Z m(2)ko(6(2), zi)kp(z, yj)} (16)

i=1 j=1 z€P

KDs perform best when used with EMK in combination with a modified version of the classical
orientation histograms. On the downside, the computation takes much longer than SIFT. For a
typical 300x300 image, the computation takes 4.0 seconds for the shape kernel function and 1.5
seconds for the gradient kernel function, compared to 0.4 seconds for SIFT.

And another problem is again, that it performs at its best when using in combination with non-linear
SVMs.

In the following subsection we will review a paper that speeds up the whole process.

1.3 Hierarchical Kernel Descriptors

In the paper ”Object Recognition with Hierar-

chical Kernel Descriptors”’[4] Liefeng Bo et al § 00 ?
who invented EMKs and KDs propose a mod- L !
ification of their previous work. The idea is to (000500
apply KDs recursively, layer by layer, to obtain it I : 0 0:
high level features by aggregating lower level iifhgEees ::o o

patch features. (fig. 1)

Hierarchical kernel descriptors(HKD) apply the il Focn  pawemeed oo

KDs over the pixels of the patches in the first

stage and over the resulting features in the fol- ) )
lowing stages. This can be applied, until the F.lgure 2: Layer by layer KDs are applied to obtain
final image-level features are obtained. high level features

The new match kernel also uses the spatial in-

formation and the patch variations to generate the features:

KP.Q =YY WaWakp(Fa, Fa)kc(Ca,Car) (a7
A€P A’eQ

WaWa[pr(Fa) @ ¢c(Ca)l T [dr(Far) @ ¢c(Car)]

A€P A’eQ
with kp(Fa, Far) = exp(—vr||Fa — Fa/||?), with F4 as the gradient, shape or color ker-
nel descriptor and ko (Ca,Ca) = exp(—vc||Ca — Car||?), with C4 the 2D center po-
sition of a patch(normalized to [0,1]) and k¢ measures the spatial relationship. W,y =
Wa/r /> ACP V[/f1 + €5, with €77 a small positive constant and W 4 is the average of gradient mag-

nitudes and standard deviations for gradient and shape kernel descriptor and always 1 for the color
kernel descriptor.

Again, the basis vectors for the compact low dimensional features have to be learned. The new
match kernel can be rewritten(eq. (17), second line), so that the containing kernels can be repre-
sented as inner products. Now ¢r(F4) ® ¢c(Ca) has to approximated with a set of basis vectors.
¢c is easy to approximate. The basis vectors can be sampled over a 5 x 5 grid, with Do =
oc(X1), ..., (X4 ) and de = 25, because Cy is only two-dimensional.

¢r however cannot be sampled on a dense and uniform grid, because F'4 is in high-dimensional



space. To get the basis vectors for ¢ the patch-level features of the training images are used
in combination with K-means. The resulting centers then are the new basis vectors Dp =
op(Y1), ..., or(Yap)-

So the first layer of the pyramid can be computed efficiently. Now the rest of the pyramid has to be
computed.

The dimensionality of the second layer has the size of the total number of the joint basis vectors
of the first layer. For an accurate approximation, the number of the basis vectors of ¢ should be
relatively high. If for example the number of basis vectors would be 5000 the size of the KD would
be 25 x 5000 = 125000, too big for practical use.

So again, KPCA has to be applied:

[Dr ® Dcf]T[Dr @ Do f) _ BTKr® Kcp

(18)
BB BB
with the optimal 3 equal to the eigenvector with the largest eigenvalue:
Kr® KeB=MB (19)

Due to the high dimensionality of the resulting matrix, K r ® K¢, Liefeng Bo et al[4] have proposed
a faster algorithm to find the needed eigenvectors. After that, the second layer kernel descriptors

have the form:
dp dc

F'(P) =385 Wakp(Fa,Yi)ke(Ca, X;) (20)
i=1 j=1 AcP
But again, HKD performs best with a combination of all three match kernels.
In the next section we will look at the difficulty from an other point of view. Instead of kernel
methods an approach using sparse coding will be presented.

2 Hierarchical Matching Pursuit

Hierarchical Matching Pursuit(HMP)[3] is a sparse coding algorithm which learns the features and
therefore the filters/kernels from scratch. HMP is scalable, so it can also handle full-size images.

HMP first learns a dictionary from a large set of image patches from the training images. After the
dictionary is learned, it applies the matching pursuit encorder layer by layer, to extract the sparse
codes and so obtain a feature hierarchy. To obtain the resulting patch-level features, spatial pyramid
max pooling is used.

In the paper[3] they preferred using a two-layer HMP. When used with a single layer the perfor-
mance was a good deal worse and when using a three-layer HMP, the increase in performance was
negligible.

Thereafter a linear SVM can be used, which, according to Liefeng Bo et al[3], matches the perfor-
mace of non-linear SVMs.

For learning the dictionary K-SVD[1] is used. The before mentioned matching pursuit encoder,
which is recursively run, consists of 3 modules: (1) Batch (tree) orthogonal matching pursuit, (2)
spatial pyramid max pooling and (3) contrast normalization.

According to the paper each of these steps increases the results significantly. All three will be
covered in the following subsections.

2.1 Dictionary Learning with K-SVD

K-SVD is used to obtain a dictionary D = [dy, ..., d,,] € R"*™ from a large training-set of image
patches, Y = [y1,...y,] € R"*™, obtained from the training images. It generalizes the idea of
K-Means. With K = 1, K-SVD exactly reproduces the K-Means algorithm.

To obtain D, the following reconstruction error has to be minimized:

min ||V — DX||% st.¥i, [lzillo < K 1)

where X = |21, ..., 2,] € R™*™ is the sparse code matrix.
This is solved in an alternating manner. First D is fixed and the sparse code X is modified:

H;m [ly: — Dxi|\2 st ||zillo < K (22)



This subproblem has to be solved for all z € X. It is combinational and highly non-convex, so
for practical use it is only approximated. The orthogonal matching pursuit is used to obtain the
approximation, which is described in the next subsection.

In the second stage, each filter and its associated sparse codes are updated simultaneously by SVD:

Y = DX|[z = |IY = > djz] — dyaf|[3 = || Bk — dyf |[7 (23)
J#k
where z; are the columns of X and E}, is the residual matrix for the k-th filter.
Now SVD is applied to the residual matrix Ej to obtain the optimal sparse codes and dictionary
entries for the k-th filter. This process only uses observations whose sparse code entries have a

non-zero value at the k-th entry, to ensure that no new non-zero values are added to the sparse code
matrix X.

2.2 Batch (Tree) Orthorgonal Matching Pursuit

Batch tree orthogonal matching pursuit(BTOMP) approximates the solution of eq. (22). It is used
for obtaining the dictionary and later to get the sparse codes for the application, e.g. for image
classification. It finds the K filters for the sparse codes in a greedy style. At each step it selects the
ﬁ(l)ter with the highest correlations to the latest residual r. At the start 7 is equal to the observation,
r =y.

When used to obtain the sparse codes for the application the same dictionary is used for all patches.
For that reason, some quantities can be pre-computed to speed up the whole process.

The clue is that x and r aren’t explicitly needed for the filter selection:

a=D"r=D"(y—Di(D] D;)"'D}y) =a® - G;G;}a} (24)

with a® = DTr%, where G is DT D. Gy is a sub-matrix, which contains the rows and columns
indexed by L.

So a? and G can be pre-computed to reduce the costs. But because the computation of G becomes
infeasible for a large dictionary, the algorithm puts the dictionary into a tree-structure using K-
Means.

K-Means is run over the dictionary to group the filters into o sub-dictionaries {Dy,, ..., Dy, } with
its centers C' = [cy, ..., Co].

Line 2: the center filter is selected, that best

Algorithm 1 BTOMP matches the current residual

Require: D, C,y, K Line 3: within the sub-dictionary associated to
Require: B=C'D,2=0,I=10 the selected center, the best matched filter is se-
Ensure: z, s.t. y~ Dx lected
I fork = 1: K do Line 4: the filter is added to the set of already
% g;:j=argmaz,|ox| selected filters o
2 k T Line 5: the sparse codes are updated with incre-
3 k= argmaTyeg, |y ] mental Cholesky decomposition
4 I=I1Uk Line 6: the correlation between each center and
5. wxy=(D;D;)"'DJy the current residual ist computed
6: a=a° — By Line 7: computes the new residual
7. r=y—Drx;s Line 1: this whole process is repeated K times,
8: end for until all K filters for the sparse code x are se-
lected

With BTOMP the feature extraction at runtime is significantly decreased[3]

2.3 Spatial Pyramid Max Pooling

Spatial pyramid max pooling is a highly non-linear operator, that extracts the patch-level features of
an image, by aggregating the sparse codes, which are spatially close.
Therefore, for every level of the pyramid, it computes the maximum value of each sparse code in



the image cell and concatenates them [eq. (25)].
The first level of the pyramid consists of all sparse codes of the patch, for the second level the patch
is subdivided into four quadrants and so on.

ﬁ(P) = [rjnea}g(|xj1|, ...,r]nea}gc ;v]-m@ (25)
F(P) = [F(PY),.. F(PL), ., F(PY)] (26)

where P is an image cell, U is the number of pyramid levels and V; is the number of cells in the i-th
pyramid level.

The resulting patch-level feature is a concatenation of the different spatial cells of the pyramid [eq.
(26)].

2.4 Contrast Normalization

Because of local changes in illumination and other effects like that, contrast normalization seems
like a good choice to improve the results.
— F(P
F(P)= —( )2
VIIE(P)]? + e

27)

with € a small positive number.

In the paper Liefeng Bo et al have run tests with and without contrast normalization. They showed
that the results with contrast normalization applied were about 3% better than the results without.
They tested further if the L;- or the Ly-norm would be better for the normalization and found out
that the Lo-norm was consistently better.

3 Conclusion

GS-MKLI[24] LSR[23] RPP[17] BM-SVM[7] SSCI[19]

84.3 81.9 81.9 81.3 80.02 £0.36
NBNNJ6] FC[12] HMP KD EMK
79.23 77.8 £0.4 768 £04  76.4 £0.4 70.3 £0.8

Table 1: Caltech 101 results

All of the reviewed algorithms (EMK, KD, HKD and HMP) deliver good performances when run
over test-sets(Caltech 101, CIFAR-10, etc). HMP performs best, followed by HKD and KD. EMK
trails a bit behind(table 1 and 2).

When looking at the top of the class algorithms from the test-sets of CIFAR-10 and Caltech 101, our
reviewed algorithms lack of performance. But when we put a finer point on it, it is made aware that
most of the other algorithms have a considerable runtime deficiency, e.g. the MCDNN-algorithm
relies on deep convolutional neural networks (DNN).

MCDNN[8] RFEL[16] SREDN[I0] HPNN[9] HKD KDES-A
83.79 83.11 32 80.49 80 76

Table 2: CIFAR-10 results

The main difference between the reviewed algorithms also becomes apparent, when we check their
runtimes against each other. After the dictionary is computed, HMP takes 0.8 seconds for the entire
computation on a typical 300x300 image. Because, as already mentioned in the KD-section, KD
and HKD perform best when run with a combination of all three match kernels, the evaluation of
just these three kernels takes longer than 5.5 seconds. Also in contrast to HMP they need non-linear



SVMs to achieve their best results.

But as already mentioned in the abstract, there are fields, where HMPs performance decreases sig-
nificantly. We consider a class that cannot be characterized with just a few significant features, but
only with a pattern of a bigger amount of features. Then HMP, as a sparse code, cannot pictures the
class characteristics accurate and therefore wouldn’t be applicable to this problem.

But when applicable, HMP should be used over the other reviewed algorithms because of its perfor-
mance considered with its runtime.
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