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1 Introduction

Robots are mechanical structures with sensors, effectors and control system. Coupling of sensory
inputs to effector outputs requires a robotic control law. Unfortunately, the construction of such con-
trol laws is a complicated task. Automatisation of this process requires the incorporation of machine
learning techniques. Robots capable of learning are not necessarily synonymous with intelligent or
autonomous robots, since artificial intelligence can be achieved without learning. However, robot
learning is seen as the key ingredient for the development of future autonomous robots [7].

Atkins classifies robot learning along three dimensions: Direct versus indirect control, class of task
and learning method. In this paper, we follow the first dimension of Direct versus indirect control
by differentiating between model-free and model based control and present the learning methods
as they become relevant. But foremost, a historical overview provides a broad introduction into
how the idea learning robots was developed and what problems had to be tackled to create the first
learning robot in history.

2 History of Learning Robots

2.1 From ancient to modern times: literature and ideas

The intelligent creation and use of tools is what sets the human appart from most animals and is
theorized to have stimulated further evolution of the human brain. Tools became more complex and
evolved into machines, aiding the early human society in fulfilling its evolutionary purpose. Soon,
this gave rise to the idea of intelligent machines: machines that behave like humans themselfes. The
Chinese Book of Master Lie (500 BC) refers to an early humanoid: “The creation looked and moved
so much like a human that when it winked at the concubines, it was necessary to dismantle it to prove
that it was an artificial creation” [9]. However, no reference is made to the aspect of learning. One
example from ancient western literature is Homer’s The Iliad (850 BC) which mentions intelligent
servants made of gold, capable of learning: ”They look like living servant girls, possessing minds,
hearts with intelligence, vocal chords, and strength. They learned to work from the immortal gods”
[4]. Early attempts at the design of learning robots was focused at humanoids, where the human
was seen as the archetypical example. With the age of enlightenment and the advance of knowledge
through scientific methods, in 1748, french philosopher La Mettrie was one of the first to regard
the human itself as nothing but a complex robot or “a collection of springs”. According to him, the
human brain is nothing but the mainspring of the whole machine and “the soul is but a principle
of motion”. He recognized that, while being most dependent of all the mammalst, the outstanding
ability to learn from our environment through exploration and imitation is what sets us appart from
lesser animals. He describes the process of learning as aquiring a cost for our actions through trial
and error: “Light a wax candle for the first time under a child’s eyes, and he will mechanically put
his fingers in the flame as if to find out what is the new thing that he sees. It is at his own cost that
he will learn of the danger, but he will not be caught again. Thus nature made us to be lower than
animals or at least to exhibit all the more, because of that native inferiority, the wonderful efficacy
of education which alone raises us from the level of the animals and lifts us above them” [2].
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Figure 2.1: Letter from Touring to Ashby concerning his Homeostat.

Figure 2.2: Grey Walter with one of his tortoises. The existence of a tortoise equipped with the
learning system CORA is controversial.

With the advances in mechanical and electrical engineering exploration of electricity from the late
19th century on, theories of robots and learning became applicable to real world machines. Nicola
Tesla was one of the first to physically separate the control of a machine from its mechanics. In
1898, Nicola Tesla demonstrated a radio-controlled boat, which he described as incorporating “a
borrowed mind.”

With the introduction of computing devices during the second world war, a borrowed human mind
was no longer a necessity for learning robots. Using RAF bomb control units, Ross Ashby designed
and built the Homeostat, a machine that is capable of adapting itself to its environment. Ashby
demonstrated that his machine could exhibit basic reinforcement learning: by a process of trial and
error, the machine is able to maintain its essential variables within specified limits [3].

In 1946, Alan Touring was made aware of Ashby’s plan to build such a machine by Charles Darwin.
He contacted Ashby and proposed to use his Automatic Computing Engine for his experiments
instead of building a concrete machine, thus proposing for the first time the computer simulation of
a learning robot.

In 1950, Grey Walter, a pionier of artificial life and known for his robotic tortoises, developed
an electronic learning circuit named CORA. If CORA was repeatedly presented with two stimuli
in quick succession, only the second of which ’naturally’ caused a particular response, it would
eventually produce that response even when the first stimulus occurred alone. The ultimate goal
of Walter was to explain control principles in both animals and machines using mathematics, and
to express natural behavior in form of feedback control systems. He envisaged to equip one of
his mobile robot tortoises with CORA. In doing so, he designed the first mobile robot capable of
learning.

3 Learning Robots from a modern standpoint

Often, the problem of learning robot control is adressed within the framework of optimal control.
Optimal control is an optimization method for deriving control laws. It boils down to finding a time
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dependend optimal control u in order to cause the system (model equation)

ẋ = f (x,u, t)

to follow a trajectory which minimizes a cost function. We seek the optimal control law or policy to
be a function

u = ⇡ (x, t, ✓)

depending on the current state, time and problem-specific parameter vector ✓. Dynamic program-
ming, intdoduced in the 1940s by Richard Bellman, can be used to solve this optimization problem
by breaking it down into overlapping smaller subproblems. Unfortunately, optimal control relies
on an exact model and can be solved exactly for only two cases, linear control or control within a
discrete state space. However, as the state space for a learning system becomes high dimensional,
its combinational state space exponentially explodes. Thus, finding an optimal control policy is not
always feasible, but global optimality is not always required. Learning algorithms can be employed
to derive a reasonably good policy.

3.1 Learning a model for control

The environment a robot operates in, the objects a robot interacts with as well as the robot itself,
i.e. its mechanical system, the kinematics and dynamics can be modelled. It has initially been
thought that learning control e.g. by reinforcement learning reduces the need for an accurate model
of the mechanical system to be controlled. However, it became apparent that the existence of ac-
curate models directly impacts intitial performance and learning efficiency. Better models lead to
faster command error correction while reducing the amount of practice needed to attain a given level
of performance [1].

Often however, analytical models are not sufficient or accurate enough or too costly to derive. Rigid
body dynamics, albeit well understood, are not expressive enough for most real world applica-
tions. Therefore, the model is often learned. Learned models also remove the necessity for building
robotswith the focus on being straightforward to model. They can be chosen to fulfill the tasks re-
quirements in terms of compliance with the environment, energy efficiency, and other factors [6].
Online learning can be employed to generalize learned models to gradually adapt for mechanical
wear and tear and larger state space.

Models can be categorized in four types [5]: Forward, inverse, mixed and multistep models. The
Smith predictor (1957) is an example for the early application of forward model. A further dif-
ferentiation is made between parametric and non-parametric models. While parameter learning for
parametric models can lead to physically inconsistent parameters or persistent excitation issues, non-
parametric models learned with nonparametric machine learning techniques such as nonparametric
regression might be overly expressive [8].

3.2 Model-based learning

Once we have infered the behavior of the system either analytically or by learning from observations,
we must determine how to optimally manipulate the system. While the first part is a pure modelling
problem, the second question is related to the learning control architectures which can be used
together with the model. Given a perfect model, it is possible to solve the optimal control problem
exactly for two limited cases using recursive algorithms such as value iteration (1957) or policy
iteration (1960). The limitations are severe: the model may only depend linearly on the state and
action with quadratic rewards or the model must be discrete in states and actions. While the later
limitation seems less severe, such models are often impractical due to the curse of dimensionality in
robotics (e.g. supercomputer could handle ten-dimensional problems in 2010 [7]).

3.3 Model-free learning

In order to solve more practically relevant optimal control problems, value function methods that
find an approximative solution for the optimal control problem can be employed. Value function
methods approximate the value function by observing the reward for different states and actions
using approximations of the Monte-Carlo Method. These methods where widely popular in the
1990s, among them Q-Learning and temporal difference learning. The biggest drawback lies within
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the need for sufficient training or sample data in order to generalize the value function to a sufficient
state space. Though we no longer need to sample the full scale space, deriving a sufficiently good
policy requires samples from a wide range of possible states, again causing a cominatorial state
space explosion.

To circumvent the curse of dimensionality, other approaces where proposed. A powerful alterna-
tive to value functions is policy search, e.g. directly optimizing for a policy by gradient descend.
These policy gradient methods might terminate within a locally optimal solution, however many
approaches exists to adress this problem such as natural policy gradients. Albeit powerful, mod-
ern alternatives to policy gradients have been developed that are probabilistic. Many probablistic
inference algorithms can be used in continuous spaces such as mixture of gaussians or gaussian
processes.
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