

Improving Human-Robot Interaction in Shared Workplaces

Alap Kshirsagar

Increasing shift toward a human-robot joint workforce

How to improve human-robot interaction in shared workplaces?

Collaborators

Cornell University, USA

Dr. Guy Hoffman, Dr. Hadas Kress-Gazit, Rahul Kumar Ravi, Shemar Christian, Song Ye, Julie Katz

Ben-Gurion University of the Negev, Israel

Dr. Yael Edan, Tair Faibish

Hebrew University of Jerusalem, Israel

Dr. Ori Heffetz, Bnaya Dreyfuss, Guy Ishai

Technische Universitaet Darmstadt, Germany

Dr. Jan Peters, Dr.-Ing. Dorothea Koert, Li Liu

How to improve human-robot interaction in shared workplaces?

Task 1: Human-Robot Object Handovers

Which gaze behavior should the robot use when it receives an object from a human?

Gaze Behaviors in Human-to-Human Handovers

Which gaze behavior should the robot use when it receives an object from a human?

Which gaze behaviors do humans use in human-human handovers?

Gaze Behaviors in Human-to-Human Handovers

Dataset: Carfi, Alessandro, et al. "A multi-sensor dataset of human-human handover." Data in brief 22 (2019): 109-117

288 handovers, 14214 frames
Annotations: Gaze Location, Handover Phase

Gaze Behaviors in Human-to-Human Handovers

Inter-coder Agreement: 80.9% on 22.2% of the data

Robot Gaze Behaviors in Human-to-Robot Handovers

T Sela*, A Kshirsagar*, Y Edan and G Hoffman, "Human Preferences for Robot Eye Gaze in Human-to-Robot Handovers", International Journal of Social Robotics, 2022

Which Robot Gaze Behavior is preferred in Human-to-Robot Handovers?

Study 1: Participants watched video recordings (Video Study), 72 participants

Study 2: Participants performed handovers (In-person Study), 72 participants

4 Objects, 2 Giver Postures

Results: Human Preferences for Robot Receiver's Gaze Behavior

Human-Robot Video Study (likability) (p < 0.001)

Face-Hand-Face > Hand-Face > Hand

Human-Robot In-person Study (likability) (p < 0.001)

Face-Hand-Face > Hand-Face > Hand

Same preference for 4 object types and 2 postures

Task 2: Human-Robot Collaborative Assembly

Learning-from-Demonstrations

Collision Avoidance

Collision Avoidance

Which gaze behaviour should the robot use to communicate collision avoidance intent?

Experiment Setup

Condition A: The robot always looks forward

Condition B: The robot looks at the human during collision risk

Condition C: The robot looks at the human and shakes its head during collision risk

Condition D: The robot nods or shakes its head depending on collision risk severity

Pilot Study Results (10 Participants)

Intent Communication of the Robot

Head locations: p = .158 Gaze behaviors: p = .434

Perceived Competence of the Robot

Head locations: p = .472Gaze behaviors: p = .004

Future Work

Other communication modalities: eye gazes, facial expressions, light-based signals

Human motion prediction

How to improve human-robot interaction in shared workplaces?

How to improve human-robot interaction in shared workplaces?

Drawback of Existing Robot Controllers: Non-intuitive Parameters

Proportional Velocity Controller

"Timing" as a controller parameter? Feedback?

Failure Feedback : "I can't reach your hand within 2 seconds"

Research Question: Does this controller improve user experience and task performance?

User Study

Timing Controller

Proportional Velocity Controller

User Study: Results

Round	User Experience	Failures	Task Duration
Find Feasible Parameters	TC > PV*	TC < PV*	TC > PV**
000			
Optimize Parameters	TC > PV	TCTC: Timing Controller	TC > PV**

PV: Proportional Velocity Controller (Baseline)

^{*} p-Value < 0.05, ** p-Value < 0.005

How to improve human-robot interaction in shared workplaces?

Timing-specified controllers with feedback can improve user experience, reduce failures, but may reduce productivity*

*Limitations: Study scenario, population sample

Future Work: Other instruction modalities, Corrective feedback

How to improve human-robot interaction in shared workplaces?

How do earning structures and robot performance affect human performance and attitudes?

Competitive Earning Scheme

Collaborative Earning Scheme

Competitive vs Collaborative earning schemes in shared human-robot work environments

Competitive Earning Scheme	Collaborative Earning Scheme
☐ No Effect of Competitor's Effort on Own Effort	☐ No Effect of Collaborator's Effort on Own Effort

Predictions based on traditional economic models "Rational Agents"

Competitive vs Collaborative earning schemes in shared human-robot work environments

Competitive Earning Scheme

Negative Effect of Competitor's Effort (Discouragement Effect)

Collaborative Earning Scheme

■ Positive Effect of Collaborator's Effort (Encouragement Effect)

Predictions based on:

B. Kőszegi and M. Rabin, "A model of reference-dependent preferences", Quarterly J. of Eonomics, 2006

D. Gill and V. Prowse, "A structural analysis of disappointment aversion in a real effort competition," American Economic Review, 2012

Experiment Setup

Results

Competitive Earning Scheme

/

Negative Effect of Competitor's Effort (Discouragement Effect)

Collaborative Earning Scheme

Positive Effect of Collaborator's Effort (Encouragement Effect)

Results

Competitive Earning Scheme

Negative Effect of Competitor's Effort (Discouragement Effect)

Robot Performance **Negatively** Affects Robot Likability Robot Performance **Negatively** Affects Human's Self-Competence

Collaborative Earning Scheme

Positive Effect of Collaborator's Effort (Encouragement Effect)

Robot Performance **Positively** Affects Robot Likability Robot Performance **Negatively** Affects Human's Self-Competence

How to improve human-robot interaction in shared workplaces?

Robot performance and earning structures affect worker performance and attitudes

Collaborative earning scheme may improve worker performance and attitudes towards robots*

*Limitations: Study scenario, population sample

Future Work: Other earning structures, Robot behaviors, Real industrial settings

Summary

Thank you

Collaborators

Cornell University, USA

Dr. Guy Hoffman, Dr. Hadas Kress-Gazit, Rahul Kumar Ravi, Shemar Christian, Song Ye, Julie Katz

> Ben-Gurion University, Israel Dr. Yael Edan, Tair Faibish

Hebrew University of Jerusalem, Israel Dr. Ori Heffetz, Bnaya Dreyfuss, Guy Ishai

Technische Universitaet Darmstadt, Germany Dr. Jan Peters, Dr.-Ing. Dorothea Koert, Li Liu