
Robot Arms in Action:
Interaction, Perception, and Manipulation

Alap Kshirsagar

Postdoctoral Researcher, Intelligent Autonomous Systems Group, TU Darmstadt

Interaction

Perception Manipulation



2



Overview

Interaction

Perception Manipulation

Learning Human-Robot Interaction from Human Demonstrations

Perceiving Object Properties with Vision-Based Tactile Sensors Learning Dynamic Manipulations with Reinforcement Learning



Part 1 : Interaction

Interaction

Learning Human-Robot Interaction from Human Demonstrations



Object Handovers
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Handovers – Essential Skill for Collaborative Robots

Source: https://www.engineering.com/PLMERP/ArticleID/10519/Can-a-Robot-Help-with-the-
Dishes.aspx

Source: https://www.zdnet.com/pictures/photo-robot-in-
scrubs/

Source : 
https://kriofskemix.wordpress.com/tag/robot-and-

frank/

https://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/Collaborative-
Robotics-Puts-People-First/content_id/7021

Source: https://sites.google.com/nvidia.com/handovers-of-arbitrary-objects/reactive-human-to-
robot-handovers-of-arbitrary-objects
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Bimanual Handovers

https://kriofskemix.wordpress.com/tag/robot-and-frank/
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Multi-Sensor Datasets of Bimanual Human-Human Handovers

Dataset 1: 24 participants, 10 objects, 360 handovers Dataset 2: 24 participants, 30 objects, 1440 handovers 
(shelving / un-shelving tasks) 

Kshirsagar et al. "Dataset of bimanual human-to-human object handovers." Data in Brief (2023)
Kshirsagar et al. "Multi-sensor Dataset of Multiple Sequential Human-to-Human Object Handovers in 

Shelving and Un-shelving Tasks.“ Data Descriptions (2025)
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Human
Demonstration

s Compute Robot’s Position with 
HSMM conditioning

Optimize Robot’s Position 
with Grip-width Constraint

Train Hidden 
Semi-Markov 

Model (HSMM)

Observe Human’s Trajectory 
upto Current Time

Online

Trained 
HSMM

Offline

Learning Bimanual Robot-to-Human Handovers

Goeksu et al. “Kinematically Constrained Human-like Bimanual Robot-to-Human Handovers“  HRI-LBR (2024)



Learning Bimanual Robot-to-Human Handovers

Preliminary Study (4 participants, 3 objects)

Metric 
Scale 1-5

Baseline
Median

Proposed
Median

Humanlike 1 2

Sensible 2 3
p-value < 0.05

Goeksu et al. “Kinematically Constrained Human-like Bimanual Robot-to-Human Handovers“  HRI-LBR (2024)
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Typical Interactions
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Mixture of Variational Experts for Interaction

Variational Auto-Encoder

Mixture Density Network
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Prasad et al. “MoVEInt: Mixture of Variational Experts for Learning Human-Robot Interactions from Demonstrations”, RA-L (2024) 
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Mixture of Variational Experts for Interaction
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Prasad et al. “MoVEInt: Mixture of Variational Experts for Learning Human-Robot Interactions from Demonstrations”, RA-L (2024) 
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Demonstration : Reactiveness

Prasad et al. “MoVEInt: Mixture of Variational Experts for Learning Human-Robot Interactions from Demonstrations”, RA-L (2024) 
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Demonstration : Reactiveness

Prasad et al. “MoVEInt: Mixture of Variational Experts for Learning Human-Robot Interactions from Demonstrations”, RA-L (2024) 
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Demonstration : Rocket Fist-bump

Prasad et al. “MoVEInt: Mixture of Variational Experts for Learning Human-Robot Interactions from Demonstrations”, RA-L (2024) 
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Demonstration : Bimanual Handovers

Prasad et al. “MoVEInt: Mixture of Variational Experts for Learning Human-Robot Interactions from Demonstrations”, RA-L (2024) 
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Mean-squared Errors in Reconstructed Trajectories

Bütepage et al. 2020

Prasad et al. 2023

Kshirsagar et al. 2023

Datasets

[Prasad et al. 2023] – VAE + HMM latent space
[Bütepage et al. 2020] – Unimodal recurrent VAE 

Prasad et al. “MoVEInt: Mixture of Variational Experts for Learning Human-Robot Interactions from Demonstrations”, RA-L (2024) 
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Part 1 : Interaction

Interaction

Learning Human-Robot Interaction from Human Demonstrations

HSMM + Constrained Optimization

Mixture Density Network + VAE



Part 2 : Perception

Perception

Perceiving Object Properties with Vision-Based Tactile Sensors



Vision-Based Tactile Sensors

Digit (Meta AI Research)

Source: https://digit.ml/

Gelsight Mini

Source: https://www.gelsight.com
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Texture Recognition With Vision-Based Tactile Sensors

Task: Find reference fabric among comparison fabrics in as few touches as possible

Boehm et al. “What Matters for Active Texture Recognition with Vision-Based Tactile Sensors”, ICRA (2024)

Reference
Fabric

Comparison
Fabrics
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Tactile Active Recognition of Textures (TART)

Perform multiple rounds of exploration and continual model fine-tuning

Re-sampling Strategies: Touch the next fabric based on the model uncertainty
1. Variance Strategy
2. Entropy Strategy
3. Random Strategy

4. You Only Touch Once (YOTO) Strategy
24

Initial 
Samples

Classifier 
Training Re-sampleEstimate 

Uncertainty
Compute 

Test Output

DropoutData 
Augmentation

Data 
Augmentation

Boehm et al. “What Matters for Active Texture Recognition with Vision-Based Tactile Sensors”, ICRA (2024)



Tactile Active Recognition of Textures (TART)

Perform multiple rounds of exploration and continual model fine-tuning

Re-sampling Strategies: Touch the next fabric based on the model uncertainty
1. Variance Strategy
2. Entropy Strategy
3. Random Strategy

4. You Only Touch Once (YOTO) Strategy
25

Boehm et al. “What Matters for Active Texture Recognition with Vision-Based Tactile Sensors”, ICRA (2024)



Texture Dataset

200 texture images each for 25 denim and cotton fabrics 
(hard to distinguish by touch)

Boehm et al. “What Matters for Active Texture Recognition with Vision-Based Tactile Sensors”, ICRA (2024)
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Human Study – Texture Recognition

Blindfolded participants (n=10) did the texture recognition task

Boehm et al. “What Matters for Active Texture Recognition with Vision-Based Tactile Sensors”, ICRA (2024)
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Texture Recognition Accuracy

Ablation: Dropout rate and data augmentation matter more than active sampling strategy

Boehm et al. “What Matters for Active Texture Recognition with Vision-Based Tactile Sensors”, ICRA (2024)
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Hardness Recognition With Vision-Based Tactile Sensors

Task: Find the comparison object with the same hardness as the test object in as few touches as possible

Chen et al. “Investigating Active Sampling for Hardness Classification with Vision-Based Tactile Sensors”, arXiv (2025)

Comparison objects Test Object
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Active Sampling for Hardness Recognition With Vision-Based Tactile Sensors

Re-sampling Strategies: Touch the next object based on the model uncertainty
1. Variance Strategy
2. Entropy Strategy
3. Random Strategy

4. No-resampling Strategy

Perform multiple rounds of exploration and continual model fine-tuning

Chen et al. “Investigating Active Sampling for Hardness Classification with Vision-Based Tactile Sensors”, arXiv (2025)
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Human Study – Hardness Recognition

Blindfolded participants (n=10) did the hardness recognition task

32
Chen et al. “Investigating Active Sampling for Hardness Classification with Vision-Based Tactile Sensors”, arXiv (2025)



Hardness Recognition Accuracy

Ablation : Dropout rate and classifier architecture matter more than active sampling strategy 

34
Chen et al. “Investigating Active Sampling for Hardness Classification with Vision-Based Tactile Sensors”, arXiv (2025)



Visuo-tactile In-hand Pose Estimation

https://www.ieee-ras.org/robotic-hands-grasping-and-manipulation

Applications
• Pick and place

• Assembly

• Human-robot collaboration

https://www.motoman.com/en-us/flexible,-high-speed-robotic-parcel-induction

https://www.gelsight.com/gelsightmini/

https://www.intelrealsense.com/depth-camera-d405/

Nonnengießer et al. “Visuotactile In-Hand Pose Estimation”, arXiv (2025)
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Visuo-tactile In-hand Pose Estimation

36
Nonnengießer et al. “Visuotactile In-Hand Pose Estimation”, arXiv (2025)



Visuo-tactile In-hand Pose Estimation

Effect of Tactile Modality on Pose Estimation Error
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Nonnengießer et al. “Visuotactile In-Hand Pose Estimation”, arXiv (2025)



Visuo-tactile In-hand Pose Estimation

Angle Vision Vision 
+ Touch

Occlu-
sion

0 80%

-5 82%

-10 85%

-15 ⭘ 86%

-20 ⭘ ⭘ 86%

-25 ⭘ 88%

-30 ⭘ ⭘ ⭘ 89%

-35 ⭘ ⛌ ⭘ 93%

-40 ⛌ ⛌ ⛌ 98%

-45 ⭘ ⛌ 98%

-50 ⛌ ⛌ 98%

Angle Vision Vision 
+ Touch

Occlu-
sion

0 96%

-5 95%

-10 ⛌ 94%

-15 ⛌ ⛌ ⛌ 94%

-20 ⛌ ⛌ 94%

-25 ⛌ ⛌ 94%

-30 ⛌ ⛌ 94%

-35 ⛌ ⛌ 94%

-40 ⛌ ⛌ 94%

-45 ⛌ ⛌ 94%

-50 ⛌ ⛌ ⭘ 94%

Perfect insertion

(tool does not touch hole) ⭘
Successful insertion

(tool touches inner sides of hole)
⛌

Failed insertion

(tool misses hole)

Camera z-Rotation: 0° Camera z-Rotation: 45°

Insertion Task

39
Nonnengießer et al. “Visuotactile In-Hand Pose Estimation”, arXiv (2025)



Ongoing Work: Simulation of Vision-based Tactile Sensors

Deformable Body Simulation (IPC) + Optical Simulation (Taxim) + Robot Simulation (Isaac Sim)

Nguyen et al. “TacEx: GelSight Tactile Simulation in Isaac Sim – Combining Soft-Body and Visuotactile Simulators”, GRC (2025)

(2x)

40



Ongoing Work: Simulation of Vision-based Tactile Sensors
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Part 2 : Perception

Perception

Perceiving Object Properties with Vision-Based Tactile Sensors



Part 3 : Manipulation

Manipulation

Learning Dynamic Manipulations with Reinforcement Learning



Toss-Juggling

Robotic Toss Juggling
Push the limits of dynamic robotic manipulation

Investigate human adaptation in dyadic human-robot juggling
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Previous Work: Kinematic Planning for Robotic Toss-Juggling

Kai Ploeger and Jan Peters, “Controlling the Cascade: Kinematic Planning for N-ball Toss Juggling”, IROS (2022)

Kinematic Planning based on take-off and touch-down constraints

1x

46

5-ball Cascade Hand-cycle



Previous Work: Kinematic Planning for Robotic Toss-Juggling

Problem: Inaccurate Tracking Controllers + Contact Dynamics

0.25x
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Ongoing Work: Learning Robotic Toss-Juggling with Residual Reinforcement Learning

Planner Controller
𝑞𝑑 , ሶ𝑞𝑑 , ሷ𝑞𝑑

𝜏𝑐

Nominal 
Constraints

Residual Constraint 
Parameters

𝑟 = ‖𝑏𝑑 − 𝑏𝑟‖
Iteration 1

1x
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5 Ball Cascade - Iteration 1 1x
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1x5 Ball Cascade - Iteration 15
50



1x7 Ball Cascade - Iteration 25
51



OptiTrack

Ball Launchers
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Part 3 : Manipulation

Manipulation

Learning Dynamic Manipulations with Reinforcement Learning



Hand Movements in Juggling

Chowdhury et al. “The role of trajectory prediction in juggling”, NCM, 2025

Height Condition

Ground Condition

- Jugglers executed goal-directed 
movements while catching

- Onset of goal directed movement 
delayed in dyadic juggling 

Solo Juggling Dyadic Juggling 



Hand Movements in Juggling Finger Movements in Tactile Exploration 

Chowdhury et al. “The role of trajectory prediction in juggling”, NCM, 2025 Lin et al. “Task-Adapted Single-Finger Explorations of Complex Objects”, Eurohaptics, 2024

- Jugglers executed goal-directed 
movements while catching

- Onset of goal directed movement 
delayed in dyadic juggling 

Solo Juggling Dyadic Juggling 

- Nine exploratory procedures (EPs) 
observed during shape and 
deformability judgments

- EPs varied as a function of 
material/object properties 
unrelated to the primary task



Hand Movements in Juggling Finger Movements in Tactile Exploration Postural Responses to Virtual Heights

Chowdhury et al. “The role of trajectory prediction in juggling”, NCM, 2025 Lin et al. “Task-Adapted Single-Finger Explorations of Complex Objects”, Eurohaptics, 2024

Height Condition

Ground Condition

Koosha et al. “Staring Down the Elevator Shaft”, CogSci, 2025

- Jugglers executed goal-directed 
movements while catching

- Onset of goal directed movement 
delayed in dyadic juggling 

Solo Juggling Dyadic Juggling 

- Nine exploratory procedures (EPs) 
observed during shape and 
deformability judgments

- EPs varied as a function of 
material/object properties 
unrelated to the primary task

- Height exposure increases 
postural sway frequency and 
reduces amplitude

- Arm joints show strongest 
reduction in sway range
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Perception Manipulation
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