
Learning Object Stress and
Deformation With Graph
Neural Networks
Lernen von Spannungs- und Verformungsfeldern von elastischen Objekten mit
Graph-Neuronalen Netzwerken
Bachelor thesis in the field of study “Computational Engineering” by Frederik Heller
Date of submission: August 26, 2024

1. Review: Alap Kshirsagar, Ph.D.
2. Review: Tim Schneider, M.Sc.
3. Review: Guillaume Duret, M.Sc.
4. Review: Prof. Jan Peters, Ph.D.
Darmstadt

Erklärung zur Abschlussarbeit gemäß §22 Abs. 7 APB TU Darmstadt

Hiermit erkläre ich, Frederik Heller, dass ich die vorliegende Arbeit gemäß § 22 Abs. 7 APB
der TU Darmstadt selbstständig, ohne Hilfe Dritter und nur mit den angegebenen Quellen
und Hilfsmitteln angefertigt habe. Ich habe mit Ausnahme der zitierten Literatur und an-
derer in der Arbeit genannter Quellen keine fremden Hilfsmittel benutzt. Die von mir bei
der Anfertigung dieser wissenschaftlichen Arbeit wörtlich oder inhaltlich benutzte Lite-
ratur und alle anderen Quellen habe ich im Text deutlich gekennzeichnet und gesondert
aufgeführt. Dies gilt auch für Quellen oder Hilfsmittel aus dem Internet.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgele-
gen.

Mir ist bekannt, dass im Falle eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Darmstadt, August 26, 2024
j-Helles

F. Heller

I

Abstract

Deformable objects are ubiquitous in our daily lives, and we humans handle and manipu-
late them instinctively. Robots lack this intuitive judgement, and their capabilities today
are far behind human skill. Traditional approaches to robotic grasping predominantly fo-
cus on rigid objects or used questionable simplifications of object deformation dynamics.
Recently, robotic simulators predict object deformation based on the realistic finite ele-
ment method, and learning-based approaches can predict deformation and stress more
accurately.

In this work, we re-implement the DefGraspNets model: It is a graph neural network
capable of predicting object deformation and stress fields resulting in robotic grasp ex-
periments. Our implementation allows training directly on ground truth data files output
by a FEM-based simulator, which was not possible in the released baseline. Additionally,
we propose two key modifications: The first allows inference on datapoints without need-
ing to launch a simulation. The second extends the graph neural network architecture,
informing about tetrahedral elements in the mesh. Stress values are then predicted at
tetrahedra, which is a physically more sensible way. We provide a detailed evaluation of
a multitude training runs conducted. Our training results suggest the capability of our
implementation, but also limitations of the model. We release our codebase and gen-
erated dataset, and are confident that it will accelerate future research in this exciting
field.

II

Acknowledgments

I would like to thank my supervisors Alap Kshirsagar, Tim Schneider and Guillaume Duret
for their guidance and support during the creation of this thesis. I am especially thankful
to Alap for welcoming me at the IAS groud, his mentorship and the close collaboration
in our second project together, and for his helpful comments on the draft of this thesis. I
thank Tim for help in shaping the high-level goal of this thesis, and his help in debugging
the implemented network in a critical phase of the project. I am grateful to Guillaume
for setting up the Docker containers and the help in understanding and reconstructing
the pre-processing methods.

We express our gratitude to Dr. Isabella Huang for providing her dataset of tetrahedral
meshes to be used as input for the DefGraspSim simulator.

III

Contents

1. Introduction 1

2. Related Work 3
2.1. Robotic Grasping in Simulation . 3
2.2. Learning for Deformable Object Dynamics 5

3. Preliminaries 7
3.1. Finite Element Method . 7

4. Methodology 13
4.1. Simulating Grasp Experiments Using DefGraspSim 13
4.2. Graph Neural Network Implementation . 16
4.3. Modifications to the Baseline Model . 24

5. Results 27
5.1. Baseline Model . 27
5.2. Learning on Undeformed Input State . 31
5.3. Learning Tetrahedral Stress . 33

6. Discussion 35

7. Conclusion 39
7.1. Future Work . 40

A. Appendix 47
A.1. Generated Dataset and DefGraspSim Output Format 47
A.2. DefGraspNets Pre-processed Input Data . 50
A.3. Training Process and Results . 50

IV

Algorithms, Figures and Tables

List of Figures

4.1. Structure of the forward pass in the implemented GNN model. 16

4.2. Part of the input state of a pre-processed datapoint. Object and gripper
nodes have been transformed into a common coordinate system. The grip-
per has been translated to its grasp pose and closed. The nodes belonging
to the object surface were identified. Nodes are displayed in a scatterplot
and colored according to whether they belong to the gripper, the object
surface, or the interior. Mesh edges connecting the object and gripper
nodes were obtained from the input geometry files and drawn. 17

4.3. Structure of the Encode-Process-Decode GNN block. Node and edge fea-
tures of an input multigraph are encoded in latent space. For 15 rounds,
a message passing scheme followed by an update function propagates in-
formation through the graph. The latent node features are decoded back
into interpretable node features. Encoder, update function and decoder
are multi-layer perceptrons (MLPs) with learnable parameters. 20

5.1. Mean training loss and mean test loss on the test object strawberry01
over training epochs for the baseline model trained on a large dataset. . . 28

5.2. Predicted and ground truth deformation and stress for frame 49 of one
trajectory of each test object for the baseline model trained on a large
dataset. 30

5.3. Predicted and ground truth deformation and stress for frame 49 of test
trajectory 7 for the model trained on undeformed inputs on lemon01. . . 33

V

5.4. Predicted and ground truth deformation and stress for frame 49 of test
trajectory 26 for the model learning tetrahedral stress trained on lemon01. 34

A.1. Mean loss values for training and test set over training epochs for baseline
models trained on a single object each. 52

A.2. Predicted and ground truth deformation and stress of selected test trajec-
tories for the baseline model trained on 8polygon06. 53

A.3. Predicted and ground truth deformation and stress of selected test trajec-
tories for the baseline model trained on cylinder07. 54

A.4. Predicted and ground truth deformation and stress of selected test trajec-
tories for the baseline model trained on lemon01. 55

A.5. Predicted and ground truth deformation and stress of selected test trajec-
tories for the baseline model trained on potato2. 56

A.6. Predicted and ground truth deformation and stress of selected test trajec-
tories for the baseline model trained on sphere03. 57

A.7. Predicted and ground truth deformation and stress of selected test trajec-
tories for the baseline model trained on strawberry01. 58

A.8. Mean loss values for training and test set over training epochs for models
with undeformed input trained on a single object each. 59

A.9. Mean loss values for training and test set over training epochs for models
learning tetrahedral stress trained on a single object each. 59

List of Tables

4.1. Command line arguments for the DefGraspSim simulator. 14

5.1. Performance of the baseline model trained on a large dataset on unseen
objects. 28

VI

5.2. Performance of baseline models trained on single objects. Each line gives
the metrics for the model’s checkpoint with lowest test loss. mean abso-
lute error (MAE) of deformation and stress are given as interpretable error
measures for test data. 29

5.3. Performance of models with undeformed input trained on single objects. . 32

5.4. Performance of models learning tetrahedral stress trained on single objects. 34

A.1. Tetrahedral mesh objects available to DefGraspSim as provided by Huang
et al. 47

A.2. Objects used in training for validation of baseline and modified models. . . 48

A.3. Data generated in one simulated squeeze_no_gravity experiment in
DefGraspSim. 49

A.4. Fields present in a DefGraspNets pre-processed data point. 50

A.5. Objects in the training dataset for the large training run of the baseline
model. 51

VII

Abbreviations and Symbols

Abbreviations

CNN Convolutional Neural Network
FEM Finite Element Method
GNN Graph Neural Network
MAE Mean Absolute Error
MLP Multi-Layer Perceptron
MSE Mean Squared Error

ODE Ordinary Differential Equation
PDE Partial Differential Equation
PINN Physics-informed Neural Network
RL Reinforcement Learning
w.r.t. With Respect To

Symbols

Symbol Description Pages

E Young’s modulus as stiffness measure of material. 6, 8,
14,
40, 45

u Deformation vector field of a continuous 3D object. 8–10
εC Strain tensor describing relative deformation of material in

a point.
8, 9

D Elasticity tensor relating strain to stress tensors in linear ma-
terial.

8, 9

ν Poisson’s ratio of a material, relating lateral to axial strain. 8, 40
σ Stress tensor describing internal elastic forces of material in

a point.
9,
11, 15

C Elasticity matrix relating strain to stress vectors using Voigt’s
notation.

9, 11

VIII

Symbol Description Pages

ü Acceleration vector field of a continuous 3D object. 9, 11
ρ Density of a material. 9,

11, 40
b Vector field of external forces acting on the continuous ob-

ject.
9, 11

ui Ground truth deformation of a node i. 10, 11
Ni Shape function of a single point i, used to interpolate point

values on a tetrahedron.
11

uint Deformation field u interpolated on a tetrahedron. 11
NT Matrix assembled of shape functions of a tetrahedron. 11
uT Vector of deformation values at the points of a tetrahedron. 11
üint Acceleration field ü interpolated on a tetrahedron. 11
bint External forces b interpolated on a tetrahedron. 11
üT Vector of acceleration values at the points of a tetrahedron. 11, 12
bT Vector of external force values at the points of a tetrahedron. 11
w Arbitrary test function in the weak form of a PDE. 11
wint Arbitrary test function interpolated on a tetrahedron. 11
wT Vector of test function values at the points of a tetrahedron. 11
MT Mass matrix for a single tetrahedral element. 11
KT Stiffness matrix for a single tetrahedral element. 11
MG Global mass matrix for the tetrahedral mesh. 12
KG Global stiffness matrix for the tetrahedral mesh. 12
uG Values of the deformation field u sampled at all points in the

tetrahedral mesh.
12

üG Values of the acceleration field ü sampled at all points in the
tetrahedral mesh.

12

bG External forces on each point in the tetrahedral mesh. 12
σv,i Scalar von Mises stress value at a tetrahedron i. 15,

18,
25, 36

FG Gripper force at a given datapoint. 16,
18,
20, 25

dmax Maximal distance between a gripper and a surface node to
be considered a world edge.

18

IX

Symbol Description Pages

σ̄v,i Stress measure for a node i, computed as average of the von
Mises stresses of tetrahedra it is part of.

18,
25,
36, 37

u̇i Virtual velocity of a node i, which is the gripper surface nor-
mal for gripper nodes, and zero for object nodes.

19

ci Categorical type of a node i as one-hot vector. 19
vi Feature vector of a node. 19, 21
p1
i Deformed position of node i at the first frame of a simulated

trajectory.
19, 20

p2
i Deformed position of node i at the second frame of a simu-

lated trajectory.
19, 20

eijM Feature vector of a mesh edge between nodes i and j. 19,
21,
24, 25

|eW | Number of world edges between gripper and object surface
nodes.

19,
20, 25

eijW Feature vector of a world edge between nodes i and j. 20,
21,
24, 25

ṽi Feature vector of a node in latent space. 21
ẽijM Feature vector of a mesh edge in latent space. 21
ẽijW Feature vector of a world edge in latent space. 21
(ẽijM)′ Latent mesh edge feature vector, updated after a round of

message passing.
21

(ẽijW)′ Latent world edge feature vector, updated after a round of
message passing.

21

(ṽi)′ Latent node feature vector, updated after a round of message
passing.

21, 22

v̂i Decoded node output feature vector. 22
ûi Predicted deformation of a node i. 22
σ̂v,i Predicted stress measure for a node i. 22
pundeformed
i Original undeformed position of a node i. 25

pdeformed
i Deformed position of node i at given frame of a simulated

trajectory.
25

ti Feature vector of a tetrahedron i. 26

X

Symbol Description Pages

t̃i Feature vector of a tetrahedron in latent space. 26
(̃ti)′ Latent tetrahedron feature vector, updated after a round of

message passing.
26

t̂i Decoded tetrahedron output vector. 26
σ̂v,i Stress prediction for a tetrahedron i. 26

XI

1. Introduction

Deformable objects are omnipresent to us humans, and we instinctively know how to
grasp and handle them, whether we pick a ripe fruit from a tree, squeeze ketchup out of
a bottle, or shape clay in our hands. Robots lack this intuitive judgement, and approaches
to robotic grasping for a long time were restricted to rigid objects or made invalid assump-
tions about deformation dynamics [1]. As robots move more and more in our everyday
lives, whether in caregiving [2] or fruit picking [3], it is apparent that their conception of
the consequences of robotic interaction through grasping with deformable objects must
improve.

Recent developments in robotic simulators [4, 5] have enabled accurate simulation of
the dynamics of deformable objects through the finite element method (FEM). The sim-
ulator DefGraspSim [5] is especially designed to predict deformation and stress values in
soft objects grasped with a robotic gripper. However, this simulation runs much slower
than real time, preventing it from being used in e.g. control schemes or reinforcement
learning (RL) approaches to robotic grasping. Given the success of machine learning for
prediction of physical dynamics in many domains [6], several learning-based approaches
to robotic grasping are proposed [1]. Many of these approaches, however, do not con-
sider deformation and stress values densely or at all within the grasped object. Huang
et al. [7] implemented DefGraspNets, a graph neural network (GNN) model trained on
grasp outcomes simulated by DefGraspSim. The model can accurately predict resulting
deformation and stress at a number of nodes within the object. Huang et al. report that
their trained model generalizes to unseen objects in different hardnesses and shapes.

At first, the aim of this work was to evaluate the DefGraspNets model, whose code was
published, on a self-generated DefGraspSim dataset of grasp experiments. We planned
to later use DefGraspNets as model in a model-based RL approach to robotic grasping of
deformable objects.
Unfortunately, we realized multiple issues with its implementation: While Huang et al.

1

released a pre-processed dataset with their published codebase, the pre-processing mod-
ule they used to convert simulation output data to network input data is missing. Training
the model on the provided dataset, we found its performance to be unsatisfactory with
default parameters. Improving the implementation would be challenging. Since it was
forked from the work [8], a large part of the code is unused, and only identifying the
relevant parts takes some time. Interestingly, we find that in the published form, the
network takes the deformed object state at the first and second step of a simulated grasp
as inputs when predicting the deformation at a later step. This means that inference is
only possible for grasp poses which have been simulated.

Given these challenges, we decide on a complete re-implementation of the DefGraspNets
model using the PyTorch deep learning library. The main goals of this are to

1. Enable training on a self-generated dataset from DefGraspSim, meaning the pre-
processing module would have to be reconstructed;

2. Allow inference for arbitrary grasp poses without simulation, meaning the input
state would have have to be changed to only include the undeformed state; and

3. Provide a quickly understandable and extendable codebase for future research,
through clear code and documentation.

We first implement a baseline model replicating DefGraspNets as close as possible, while
fulfilling goals 1 and 3. Afterwards, we implement an alternative input feature con-
struction to achieve goal 2 as modification to the baseline. Additionally, we propose and
implement a modification that lets the model learn stress values at tetrahedra in the ob-
ject instead of at nodes, which is more in line with the ground truth data obtained and
the physical reality.

This thesis is structured as following: After this introduction, we cover relevant related
work in the areas of robotic simulation and learning object deformation in Chapter 2.
Afterwards, in Chapter 3, we investigate the modus operandi of the finite element method
to improve understanding of how ground truth deformation and stress data of grasp
experiments is obtained in simulation. In Chapter 4, we give a detailed description of
our methodology used within the scope of this thesis. We show how we use DefGraspSim
to generate the ground truth dataset and present the implementation of our GNN model
along the DefGraspNets baseline, their modifications and our training process. Chapter 5
gives detailed results of a multitude of conducted training runs. In chapter 6, we critically
discuss and interpret these results. Chapter 7 concludes our work and gives an outlook
to future work possible based on our findings.

2

2. Related Work

In this chapter, we discuss related work in two areas key to our approaches. For the
area of robotic grasping in simulation, we give an overview of robotic simulators and
their suitability for grasp experiments on deformable objects, and motivate the choice
of DefGraspSim for the generation of our dataset. In the area learning for deformable
objects, we look at how recent machine learning approaches succeeded in modeling and
predicting the dynamics of physical processes, especially object deformation, and relate
DefGraspNets to these approaches.

2.1. Robotic Grasping in Simulation

In robotics research, simulation environments play a crucial role. They enable exper-
iments for researchers without access to expensive robots, and are leveraged in early
stages of research where simulation offers risk-free testing and development of control
strategies. Significant speedups can be achieved since set-ups (and tear-downs) of a scene
become a matter of seconds, and simulation environments can be run in parallel and
faster than real time. In their survey [9], Collins et al. define criteria that robotics simu-
lators fulfill: Models for popular robot joints, actuators and sensors are available. A robot
and its environment are represented as a scene, and the user may import objects given as
3D meshes to the scene. A programming interface lets the user set up scenes and control
the robot. A physics engine is used to model physical phenomena, especially collision
and friction between the robot and its environment. Currently, the robotics simulators
MuJoCo [10], PyBullet [11], Gazebo [12] and CoppeliaSim [13] enjoy high popularity
[9].

As grasping is one of the most important modes of interaction of a robot with its envi-
ronment, a realistic simulation of grasps is of high importance. In order to grasp and

3

manipulate an object, a robot is equipped with a gripper. Grippers may be detailed im-
itations of the human hand [14]. A simpler case is a parallel jaw gripper, which only
consists of two fingers that can be squeezed around an object. Early robotic simulators
already specialized on grasping. GraspIt [15] and OpenGrasp [16] modeled several avail-
able robot gripper types, and provided a framework for grasp evaluation on rigid objects.
Nowadays, the mentioned simulators [10–13] model robotic grippers and allow simula-
tion of grasps, and are popular tools for research around grasping. For instance, [17]
used MuJoCo for a RL approach to grasp planning.

However, we are interested in grasping deformable objects. This application of robotics
is also called soft robotics (parts of the robot or environment may be soft, deformable)
in [9]. For soft robotics, the landscape of simulators changes. In the survey [9], Collins
et al. note that research for soft robotics often employs full-fledged industry multiphysics
suites, which allow simulation of several physical aspects from heat transfer to fluid dy-
namics. Deformable object dynamics are modeled by realistic FEM simulation. However,
these suites are not tailored towards robotics and do not qualify as robotic simulators
due to the lack of predefined robot models. Requiring additional setup, they come at the
cost of less ease of use compared to robotic simulators [9]. Moreover, industry standard
suites such as ANSYS are closed-source and expensive. Of the popular robotic simulators,
Gazebo and CoppeliaSim are limited to rigid bodies. MuJoCo uses a mass-spring system to
model deformation, a simplification from the physical reality which can approximate soft
objects, but does not solve for realistic deformations and can not model stresses in objects
[18]. Furthermore, it suffers from numerical instability. Especially when attempting to
bridge the Sim-to-real gap, the limitations of spring-mass models come to light [19]. Py-
Bullet uses a FEM model for object deformation, however, stress values are not accessible
to the user.
Developed with the objective of accelerating research of RL approaches in physical sys-
tems, the robotic simulator IsaacGym [4] encapsulates the powerful multiphysics engine
FLEX, offering FEM simulation of rigid robotic grippers in contact with deformable objects
[20]. Resulting deformation and stress tensors are computed on the GPU and accessible
via programming interfaces. Deep RL approaches can learn without CPU bottleneck, and
parallel simulation of several scenes is possible for generating large datasets [21, 22].

Building on IsaacGym, the work DefGraspSim [5] is purpose-built for the simulation of
grasp experiments and their outcomes. DefGraspSim focuses on a Franka Panda parallel
jaw gripper, in a pose as specified by the user. The rest of the robot arm is not active
part of the simulation. A deformable object is also specified with its physical properties.
The gripper closes with increasing force, and interaction between gripper and object is
simulated by FLEX ’s FEM solver. Deformation and stress values are saved to disk. In their

4

study, Huang et al. additionally derive grasp performance metrics for deformable objects,
which DefGraspSim computes. As DefGraspSim plays a role in our work, we describe its
usage and data formats in Section 4.1.

2.2. Learning for Deformable Object Dynamics

Though accurate FEM simulation of the physics of deformable objects in a multiphysics
suite or suitable robotic simulator is the “gold standard” [7], it comes at the cost of a high
computational load. Given the recent successes of machine learning and deep learning
in multiple applications, research interest has been become high in the topic of learning
physical processes, i.e. fitting a function between inputs and desired outputs, and opti-
mizing this function by minimizing a loss term on a number of examples. Using learned
models can cut the computational effort in fractions compared to simulation in e.g. a
multiphysics suite, at the cost of requiring a large training dataset. Furthermore, ma-
chine learning approaches can be employed on processes where the exact physical model
underlying is unknown [23]. In the field of fluid dynamics, successful approaches [24,
25] employed convolutional neural networks (CNNs). CNNs require the division of the
computational domain into a regular grid. Other approaches model rigid bodies [26] or
particle-based fluids [27] as graph structure, and predict dynamics through GNNs.
Wang et al. [28] were able to accurately model the springback of bent metal tubes, a pro-
cess hard to model via FEM, using GNNs. In their paper [8], Pfaff et al. proposed learn-
ing on mesh-based representations. Many physical simulations, e.g. the finite element
method for object deformation, approximates the solution on discretized mesh geome-
tries. They constructed graph features from mesh representations of different simulated
processes, deforming metal plate, a waving cloth, airflow over an airfoil and turbulent
water flow around a cylinder. Key in graph construction was to define two different edge
sets, where one comes from themesh geometry, and the other one is constantly remeshed,
connecting nodes which are close to each other in the world space. Using the same GNN
block for the different processes, they showed that accurate predictions of the next time
step could be learnt, given a mesh input state.

When it comes to robotic grasping, several studies [29, 30] focused on learning object
parameters such as Youngs modulus E from exploration, and then model the deformable
object in a classic way. In [29], FEM is used, while [30] uses a mass-spring model. These
studies were conducted on real robots, with the object geometry being assessed by depth
cameras. Also using depth camera input, the work [31] used a GNN to learn object

5

deformation on a particle-based model. The learnt model was accurate enough to be
used in a model-based RL approach to deform objects into target shapes.
In the study [7], Huang et al. build on the architecture of [8], and train their model
DefGraspNets on the mesh-based FEM simulation of robotic grasps, obtained using the
grasp simulator DefGraspSim. The model predicts object deformation and stress measures
at the nodes of the object mesh. Unlike in [8], this model does not perform predictions
of the next time step, but instead predicts the resulting state when squeezing with a
given force. Inspired by [31], Huang et al. used the model as a differentiable surrogate
simulator. This allowed them to perform gradient-based optimization of input parameters
like gripper rotation. Grasp plannng on deformable objects is a topic of high interest in
recent research, and approaches such as [32, 33] do not model the object as detailed as
DefGraspNets. For a detailed overview, we refer to the survey [1].

6

3. Preliminaries

Before diving into the efforts of implemented methodology of this work, this section mo-
tivates and introduces two key techniques used—the linear finite element method, used
in similar form in the backbone of the DefGraspSim simulator generating ground truth
data, and graph neural networks as the network architecture enabling us to learn physics
of deformable objects on simulation data.

3.1. Finite Element Method

Many of the physical phenomena which we see and experience every day can be modeled
by partial differential equations (PDEs). The flow of heat in a room, the elastic budging of
a chair when we sit on it, or the flow of air around an airplane are described by complex
equations relating measures such as air velocity and temperature, stress and strain in an
object, or air velocity and pressure with their derivatives. These differential equations,
which contain derivatives of functions with respect to (w.r.t.) multiple dimensions, e.g.
time and space, are called PDEs. When we restrain degrees of freedom by giving values
for a function or one of its derivatives at some position, the PDE and these boundary con-
ditions describe a boundary value problem. Given that it is well posed, a unique solution
of functions that satisfy the PDE as well as the boundary conditions exists. Unfortunately,
closed-form solutions are feasible only for specific types of PDEs on simplest geometries
with specific boundary conditions. For many problems, such as viscuous fluid dynamics
described by the Navier-Stokes equations, not even the existence of a solution could
be proven to date. In practice, boundary value problems can be solved using numerical
methods, which discretize the function space to a finite amount of points on which func-
tion values are sampled, and solve for these finite degrees of freedom. These methods
can give accurate results, and in the past decades, have proven as an invaluable tool in
engineering and research.

7

Following this motivation, we derive the PDE governing the physics of object deformation
following [34, 35]. We describe how the object geometry is discretized in a tetrahedral
mesh, and sketch the principle of how a FEM solver approximates a solution of the PDE
along [36].

3.1.1. Continuum Mechanics and Physics of Deformable Bodies

Contrary to the physical reality of molecules and atoms, the study of continuum me-
chanics models a solid body as material continuously filling out a 3D field. The state
and properties of the body may then be described through continuous functions. This
is an assumption close to reality for applications on a sufficiently large domain, and the
continuous formulation allows mathematically consistent use of differentiation and inte-
gration of functions over the object. A central function in continuum mechanics is the
displacement field u, a 3D vector field which gives the 3D deformation of each point in
the continuous body. It is the primary unknown quantity we would like to solve for in
FEM.

From the displacement vector field, we derive the strain tensor εC as measure for relative
deformation of the material at a point. A strain component ij gives the relative elongation
in direction i in response to a deformation along direction j. Diagonal entries of the strain
tensor are normal strains ε, and off-diagonal entries are shear strains γ, which measure
angular distortion. Assuming small deformations of the object, the linearized, symmetric
Cauchy strain tensor is derived from the displacement field as

εC =

εxx γxy γxz
γyx εyy γyz
γzx γzy εzz

 =
1

2

(
∇u+ (∇u)T

)
. (3.1)

Strains present in material result in internal elastic forces acting against the deformation.
In the continuum, we consider infinitesimal volumes, and convert to the notation of stress,
which has the same dimension as pressure (force per area). The relationship between
strain and stress is governed by properties of the material. In Hookean material, its
properties are captured in the fourth-rank elasticity tensorD. The elasticity tensor mainly
depends on thematerial parametersE and ν. YoungsmodulusE is a measure of material
stiffness, while Poissons ratio ν relates material deformation in lateral and axial direction
resulting from axial stress. These properties may be functions over the continuum. In
isotropic material, E and ν are constant within the body. Having derived the elasticity

8

tensor, the relationship between strain and stress is linear with

σ =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 = D εC . (3.2)

In the resulting stress tensor σ, similar to the strain tensor, diagonal entries σii give
normal stresses, and off-diagonal entries τij give shear stresses. Normal stresses inform
whether the material is compressed or expanded. Shear stresses are non-zero if the
material is experiencing distortion or shearing.
Like the strain tensor, the stress tensor is symmetric. The six degrees of freedom can be
encoded in Voigts notation as six-dimensional vector each. In this notation, the elasticity
tensor D reduces to a 6× 6 elasticity matrix C:[

σxx, σyy, σzz, τxy, τxz, τyz
]T

= C
[
εxx, εyy, εzz, γxy, γxz, γyz

]T
The introduced concepts let us now calculate the equilibrium of forces for an infinitesimal
volume element. The sum of elastic forces over an element is the divergence of the stress
tensor

∇ · σ =

∂xσxx + ∂yτxy + ∂zτxz
∂xτyx + ∂yσyy + ∂zτyz
∂xτzx + ∂yτzy + ∂zσzz

 .

Newtons law of motion postulates that the acceleration ü of the infinitesimal element
mutliplied with its density ρ is equal to the sum of forces present over it. Additionally to
the elastic forces, arbitrary external forces bmay be applied to the object. The equilibrium
valid for each infinitesimal volume (and thus point) in the continuum follows as

∇ · σ + b = ρ ü. (3.3)

The derived PDE (3.3) governs the dynamics of object deformation. We note that it con-
tains a second derivative of the displacement field u w.r.t. the temporal dimension on
the right side, and first derivatives of the stress tensor w.r.t. the three spatial dimensions
in the divergence operator on the left side. Since we derived the stress tensor in Equa-
tion (3.2) from the Cauchy strain tensor (Equation (3.1), the left side of the equation
contains spatial derivatives of second order of u.

9

3.1.2. Finite Element Discretization

Given the complexity of Equation (3.3) and the arbitrary complexity of the analyzed
object and its boundary conditions, a solution for the vector field u is possible only nu-
merically. For this, we step away from considering the displacement field as continuous
function. Instead, we sample its values ui for a finite number of points i in the object.
These points are the product of discretization of the spatial domain of the object into a set
of volume primitives, for each of which a closed-form approximated solution of the PDE
becomes possible. As volume primitives, tetrahedra are chosen, each spanning the vol-
ume between four points. By convention, a tetrahedron is interpreted to have a positive
volume if the fourth point is in the direction of the surface normal implied by the three
other points. Tetrahedra do not intersect or leave gaps between each other.

The object geometry is approximated by the union of these tetrahedra, and this approxi-
mation is called tetrahedral mesh. Depending on the number and resolution of elements
used, the geometry approximation may become arbitrarily accurate and complex. Es-
pecially inside the object, the manner where the volume gets divided into elements is
ambiguous. Shewchuk [37] examined the influence of several mesh properties to the
accuracy of FEM results. Best simulation results can be achieved with elements that have
similar edge lengths and thus large interior angles. It was found that a single badly con-
ditioned element in a mesh, or elements with physically nonsensical negative volume,
introduce numerical instability and can significantly degrade the simulation accuracy.

Given the high importance of mesh quality to FEM, meshing as the process of converting
object geometry to a tetrahedral mesh is an active research field [38, 39]. Adaptive
meshing is a strategy where element resolution is finer in sections of the object with small
details, and coarser in homogeneous areas [40]. While traditional meshing algorithms
only accept surfacemeshes as input, and struggle with imperfections in the surface, newer
approaches [41] can construct high-quality tetrahedral mesh even from sets of triangles
not structured as surface mesh, allowing fast meshing from e.g. 3D scans.

3.1.3. Weak Formualation and Solution

Given the discretized object geometry as tetrahedral mesh, we now sketch the solution
of PDE (3.3) with the linear FEM. First, we introduce the role of shape functions: They
allow to come back to a continuous displacement function within a tetrahedron given
the displacement values ui at its points i. The shape function Ni of a point i is given as

10

piecewise polynomial. Its coefficients depend on the geometry of the tetrahedron. With
ui given at the points, a continuous interpolation uint can be constructed as

uint(x) =
∑
i

Ni(x)ui.

Assembling the shape functions of a tetrahedron T in a matrix NT, and stacking the point
deformations ui as degrees of freedom for the interpolation in a vector uT allows the
interpolation to be computed as the product uint(x) = NT(x)uT.

Similarly, we obtain interpolations of the acceleration field üint and the external forces bint
from their discrete values üT bT. Given these interpolations, spatial derivatives within the
tetrahedron can now be computed in closed form. However, using linear shape functions
(polynomials of first degree) raises the issue that the second derivatives in Equation (3.3)
disappear. To aid this, we convert PDE (3.3) to its weak formulation bymultiplicationwith
an arbitrary test function w, leading to

wT (∇ · σ + b− ρ ü) = 0.

We also obtain an interpolation wint of the test function from its discrete values at the
tetrahedrons points wT as wint(x) = NTwT. Inserting Equation (3.2) and Equation (3.1)
and the interpolations in the weak form yields

wint
T

(
∇ · 1

2
C
(
∇uint + (∇uint)

T
)
+ bint − ρ üint

)
= 0.

By introducing the test function into the parentheses and integrating each term over the
tetrahedron, it is shown in [36] that the equation is equivalent to

wT
T (MT üT + KT uT − bT) = 0,

where the mass matrix MT depends on the density and the shape functions, and the
stiffness matrix KT contains spatial derivatives of the shape functions and depends on the
elasticity matrix C of the material. Since the test function was defined as arbitrary, its
degrees of freedom also are, and we find that

MT üT + KT uT − bT = 0.

This equation relates the discrete deformations and accelerations in the tetrahedron with
its geometry, material properties and external forces. The spatial derivatives have been
computed on the geometric primitive, and it only contains the second temporal derivative
üT.

11

The mass and stiffness matrices can be constructed for each tetrahedron in the object
mesh. Through reindexing of local to global points and superposition of the local matrices,
global mass and stiffness matrices MG, KG are constructed that relate the global discrete
deformations uG and accelerations üG to the global geometry, material and external forces
bG:

MG üG + KG uG − bG = 0. (3.4)

Through discretization of the spatial domain in volume primitives, we transformed the
PDE (3.3) on the continuum into a system of ordinary differential equations (ODEs) on
its discretized function values. If we are only interested in the static case, we can con-
strain the acceleration üG in Equation (3.4) to zero. We then obtain a system of linear
equations, which we can solve for the static deformations in equilibriumwith the external
forces. In the dynamic case, Equation (3.4) represents a system of ODEs. The spatially
discretized displacement field is then a function of time uG(t), and its solution is ap-
proximated by classical numerical methods for ODEs by discretization of the temporal
domain into timesteps. For each timestep, a system of linear equations must be solved,
which has three degrees of freedom per node in the tetrahedral mesh. Though the system
matrix typically is sparse, the computational effort is high, since a stable and accurate
simulation requires sufficiently small timesteps. The given boundary conditions to PDE
are encoded in the mass matrix for movement constraints of nodes, and in the external
forces for applied force.

12

4. Methodology

In this section, we give a detailed description of the approaches used in this thesis. The
first key component was to obtain ground truth deformation and stress for a variety of
grasp experiments through simulation with DefGraspSim. We describe the setup and
execution of the simulations and the obtained dataset. Second, we used this data as the
basis for implementing and training a GNN designed to predict deformation and stress
outcomes based on input grasp parameters. We provide a detailed description of the
necessary data pre-processing, feature construction and GNN architecture, as well as the
training process. Finally, we motivate and present our two proposed modifications to the
baseline model.

4.1. Simulating Grasp Experiments Using DefGraspSim

To compute the resulting deformation and stress for a grasped object, for a variety of
different gripper positions and objects, the robotic simulator DefGraspSim [5] was used.
As discussed in Section 2.1, DefGraspSim is based on the IsaacGym simulator and uses
the FLEX GPU-based multiphysics engine. Using this engine, DefGraspSim simulates a
deformable object in contact with rigid robotic grippers using FEM. Following, we will
first define the experiments provided by DefGraspSim and its usage. Then, we describe
the generation and scope of our ground truth dataset.

4.1.1. Grasp Experiment

DefGraspSim provides multiple experimental settings. All simulate the Franka Emika
Panda robot arm equipped with a parallel jaw gripper. The deformable object to be
grasped is provided by the user as tetrahedral mesh. Also, a list of 7D grasp poses for
the gripper hand must be specified. Each grasp pose gives the 3D position of the hand as

13

Flag name Interpretation

--object Selection of one of the deformable objects provided by user
--grasp_ind Selection of the grasp pose to be used
--density Density ρ of the deformable object
--youngs Youngs modulus E of the deformable object
--poissons Poisson’s ratio ν of the deformable object
--friction Kinematic friction µ between gripper and deformable object
--ori_start Start index of vector directions to run experiments in parallel for
--ori_end End index of vector directions to run experiments in parallel for
--mode Experiment setting to simulate

Table 4.1.: Command line arguments for the DefGraspSim simulator.

well as the rotation of the gripper as 4D quaternion. The object mesh and grasp poses are
input as files. Physical properties of the object such as stiffness and density are given as
command line arguments when launching the simulation. Table 4.1 lists the command
line arguments available to the user and their interpretation.

The setting pickup starts with the deformable object laying on a support plane. The grip-
per is transformed to the given grasp pose and closes its fingers around the object with
increasing force. Then, the support plane is slowly lowered. The experiment ends as soon
as the object loses contact with the support plane (indicating a successful pickup), or the
gripper loses contact with the object (unsuccessful pickup). During the experiment, the
simulator records measures such as contact points between gripper and object or strain
energy within the object. pickup can be used to determine whether a given grasp pose
is sufficient to establish a firm grasp around the object to pick it up, and compute qual-
ity measures for the grasp pose [5]. Three other settings extend the pickup scenario:
The reorient experiment moves the gripper such that the object turns 180 degrees
around a specified vector direction, as soon as the support plane loses contact. shake
accelerates the gripper along the specified direction with constant jerk. twist performs
angular acceleration around the vector direction with constant jerk. 16 direction vectors
are provided by DefGraspSim and selected via command line arguments.

We used an undocumented mode, squeeze-no-gravity, to obtain the data used in
the scope of this work. squeeze-no-gravity is the only mode that saves object de-
formation and stress within the entire object. In this setting, the gripper hand is in a
static position, and the effect of gravity is not simulated. With the gripper in its grasp
pose, the fingers are closed with constant velocity, until contact with the sample object
is established. Then, the fingers slowly increase their force on the object, until a force

14

of 15N is reached. The soft body physics are simulated at a frequency of 1500Hz. Since
the computation is slower, the experiment does not run in real time. Results of the FEM
solver are saved to disk: For a number of 50 frames between initial contact and maximal
force, the deformed positions for all mesh nodes are saved. For each mesh tetrahedron i,
from its stress tensor σ obtained from its deformation, the Von Mises stress

σv,i =

√
1

2
[(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2] + 3(τ2xy + τ2xz + τ2yz)

is computed and saved. The von Mises stress gives a scalar value for the extent of the
stress within the object [42]. It is an important measure since comparing it to the yield
strength of the material gives an estimate if it would yield, i.e. permanently deform, at
this position [43]. Huang et al. demonstrated the accuracy of these simulated values in a
sim-to-real experiment on tofu blocks of various firmness, which yielded approximately at
the positions where DefGraspSim predicted the largest von Mises stress value within the
mesh [5]. The simulator does not model permanent (plastic) deformation, as objects are
assumed to be ideally elastic. All output data is saved in a .h5 dictionary-style file. An
overview of all data output in a DefGraspSim experiment is given in Table A.3. The par-
allel computing capability of the IsaacGym framework is not exploited in this experiment
setting, as in a launched scene only one grasp pose can be evaluated.

4.1.2. Simulator Input Dataset

The performance of our later trained GNN models depends on the variety of training
data. We are grateful that we have been provided the dgn_dataset by Huang et al.,
which they used for their work [7]. For this dataset, Huang et al. created both synthetic
simple object geometries such as cylinders and spheres, as well as fruit and vegetable
pieces from 3D scans [7]. The obtained surface meshes were converted to tetrahedral
meshes using fTetWild [41]. For each of the objects, using an antipodal grasp sampler
[44], 100 grasp poses were generated. A list describing the various object meshes is
given in Table A.1. We chose to simulate the grasp experiments with a Youngs modulus
of 5 × 105 Pa for all objects, which is approximately the hardness of a ripe tomato [5].
This value is consistent with the hardness of the fruit objects in reality, and gave visible
deformations within simulated trajectories.

On a local machine with i9-11990k CPU and RTX 3090 GPU, simulating one grasp in
DefGraspSim took around 7 to 10 minutes. We have utilized the institute’s internal high-
performance computing cluster to simulate all grasp experiments for each object. The

15

simulator was set up in a Docker image. For each of the 71 objects in the dgn_dataset,
a SLURM script, passed to the cluster’s workload manager, launched a container for the
simulator. The input dataset as well as an output folder was mounted. Inside the con-
tainer, all grasp experiments were simulated sequentially for the object. Utilizing the
several machines available to the cluster, data generation was conducted spread over the
project’s duration. Since each grasp saved measures for 50 frames, the dataset contains
71 · 100 · 50 = 355 000 individual frames as data points available for training and testing
of the models.

4.2. Graph Neural Network Implementation

Simulated
Grasps

Preprocessing Feature Construction Feature
GraphDatapoint Integration PredictionsEncode-Process-Decode

Output
Feature
Graph

Figure 4.1.: Structure of the forward pass in the implemented GNN model.

After understanding the use of the DefGraspSim simulator, as well as its input and output
data formats, and generating a large dataset, we implemented the graph neural network
model as the main effort of this thesis. Given an input state including positions of gripper
and object nodes and a closing force FG, resulting 3D deformation and stress should be
predicted for each object node. The implementation can be, as sketched in Figure 4.1,
divided in four main steps: First, a pre-processing module combines all relevant infor-
mation of a given frame from DefGraspSim output data in a datapoint. A pre-processed
datapoint, which includes the input state as well as ground truth deformation and stress
values, serves as input to the network implementation. Second, the network constructs
a multigraph representation of the data point, where relevant features are encoded in
node and edge feature vectors. Third, an Encode-Process-Decode GNN block, which in-
cludes all learnable parameters, encodes the feature graph in a latent representation,
performs message passing rounds, and decodes an output feature graph. Fourth, the de-
coded features are interpreted as deformation and stress at each graph node, and the
deformation is integrated on the input positions to obtain predicted position and stress.
On this prediction, a loss value is computed, allowing gradient descent optimization of
the GNN parameters.

In the following subsections, we describe the implementation in detail.

16

0.04 0.03 0.02 0.01 0.00 0.01 0.02
x 0.99

1.00
1.01

1.02
1.03

1.04
1.05

y

0.01

0.00

0.01

0.02

0.03

0.04

0.05

z

Figure 4.2.: Part of the input state of a pre-processed datapoint. Object and gripper
nodes have been transformed into a common coordinate system. The grip-
per has been translated to its grasp pose and closed. The nodes belonging
to the object surface were identified. Nodes are displayed in a scatterplot
and colored according to whether they belong to the gripper, the object sur-
face, or the interior. Mesh edges connecting the object and gripper nodes
were obtained from the input geometry files and drawn.

4.2.1. Pre-processing Training Data

Huang et al. have used DefGraspSim data to train a graph neural network predicting
object deformation and stress [7]. Table A.4 summarizes the data available in their pre-
processed dataset for each data point. Understanding the interpretation and usage of
these fields has been challenging due to a lack of documentation in their implementation.
Comparing the pre-processed data to the outputs from a DefGraspSim simulation, given
in Table A.3, it became clear that additional steps were required to obtain pre-processed
data from simulation output data. For example, the simulator output did not contain
information about the undeformed geometry of the object or its tetrahedrons, nor about
the gripper geometry, both of which are present in pre-processed data. Huang et al. did
not publish their pre-processing method along with their GNN implementation. In the
following paragraphs, we describe how we filled the gap with our pre-processing routine.

Each simulation frame part of a dataset is pre-processed as following:

17

First, the geometry of the gripper fingers is loaded. We utilize a simplified geometry of the
fingers from [7], which are given as .stl surface meshes for each finger. These meshes
are parsed into a tensor of gripper nodes and edges. The node positions are given in a
coordinate system relative to the robot end effector, where the left finger is in its open
position 4 cm from the origin, and the right finger 4 cm in the other direction. These are
the original positions of the open gripper fingers. From the .tet file, we load the nodes,
edges and tetrahedra of the undeformed object.

The gripper fingers are transformed to the specified grasp pose. Due to the variety of
conventions existing for 3D transformations and the lack of documentation, significant
effort went into reconstructing the correct order and application of the translation and
rotation. Additionally, DefGraspSim uses a different world coordinate system than the
given object and gripper meshes. We translate the gripper and undeformed object into
this coordinate frame. By projection of the object nodes on the gripper surface, we deter-
mine the distance that the gripper fingers close until first contact with the object. Closed
gripper nodes and undeformed object nodes are concatenated and saved as tensor in
undeformed_pos. We also add deformed positions at the first and second frame of the
trajectory as first_pos and second_pos to the datapoint. For these, the deformed
object node positions and the closing distance of the gripper are obtained from the sim-
ulation output. Similarly, gt_pos gives closed gripper and deformed gripper positions
for the selected frame. mesh_edges save all edges present in both the gripper and ob-
ject meshes. To be able to create a 3D visualization of datapoints, faces belonging to
the gripper are added as mesh_faces, and object tetrahedra as mesh_tets. The field
node_type informs whether each node belongs to gripper or object. Additionally, from
the tetrahedral mesh, it is computed which nodes belong to the object surface. These
surface nodes make a third category in node_type.

We save world_edges as all edges that are between gripper and surface nodes, and
cover a scalar distance smaller than a hyperparameter dmax. The restriction to surface
nodes reduces the computational load, since less candidate node pairs must be consid-
ered. We naively compute distances between all gripper and surface nodes and threshold
them. Using PyTorch, this is faster than using e.g. a KD-tree. From the simulator output,
we add the force at the given frame FG to the scalar tensor force. We also add the
target von Mises stress σv,i at each tetrahedron i as gt_tet_stress. Additionally, as
a target measure of stress at each node i, we calculate the average stress of the tetrahe-
dra that the node is part of as σ̄v,i. These nodal stress representations are added to the
datapoint as gt_stress. Finally, the pre-processing method returns all defined input
and target fields in a dictionary-style object.

18

4.2.2. Feature Construction

We encode the input state from pre-processed features into a multigraph representation.
This enables us to utilize powerful GNN layers to predict deformation and stress at nodes.
The multigraph is given as a set of feature vector representations vi for nodes, as well as a
number of edge sets, which give connections between nodes and enable message passing
between them. Each edge belonging to an edge set k, connecting nodes i and j has a
feature vector ekij .

The nodes of the geometric mesh of gripper fingers and deformable object serve as nodes
in our multigraph, since we wish to predict deformation and stress at the object nodes,
and gripper nodes are an important part of the input state. Following the work of Huang
et al. [7], we decide on a simple feature representation for nodes: Given a virtual velocity
u̇i of a node, and its node type in one-hot encoding ci, we obtain the node feature vector
vi as

vi = [u̇i
T , ciT]T .

The virtual velocity is a 3D unit vector informing in which direction the gripper closes
(the gripper normal), if the node belongs to a finger. For object nodes, it is the zero
vector. Since the possible node types are gripper, object surface and object interior, ci
is three-dimensional, and with the three-dimensional virtual velocity, we obtain the six-
dimensional node feature vi.

We use the mesh edges (edges in gripper and object geometry) as the first edge set. This
allows information to be distributed within object and gripper. For the feature repre-
sentation, we decide that the most prominent property of an edge is the 3D distance it
covers, as well as the scalar distance. We consider these distances at both the first frame
of the simulation (node positions p1

i), as well as at the second frame (positions p2
i). With

two 3D distances as well as two scalar distances, we arrive at the eight-dimensional mesh
edge feature vectors

eijM =
[
(p1

i − p(1)
j)T ,

∣∣∣p1
i − p(1)

j

∣∣∣ , (p2
i − p(2)

j)T ,
∣∣∣p2

i − p(2)
j

∣∣∣]T .

For the second edge set, we use the computed world edges to allow important informa-
tion to flow between gripper and object nodes. For the feature vector of these edges,
we encode 3D and scalar distance (for simplicity, only from the second frame), and the
normalized force f . The normalized force is computed as the squeezing force f between
gripper and object, divided by the number of world edges |eW |. We motivate this physi-
cally as a measure related to pressure: For a constant force, a large contact area between

19

object and gripper leads to less pressure on the object surface. A large contact area also
means there are less world edges, leading to smaller normalized force. The feature vector
for each edge is

eijW =
[
(p1

i − p(2)
j)T ,

∣∣∣p2
i − p(2)

j

∣∣∣ , (FG/|eW |
)]

.

With these node feature and edge feature representations for mesh and world edges, we
construct the multigraph structure to act as input to the GNN. We will now turn to the
implementation of the GNN block which contains all learnable parameters of the network.

4.2.3. Encode-Process-Decode Block

In their work [8], Pfaff et al. proposed the architecture of the Encode-Process-Decode GNN
block, which is employed in our implementation. We sketch its structure in Figure 4.3,
and in the next paragraphs, describe each of the steps in detail.

Encode
Input

Feature
Graph

Latent
Feature
Graph

UpdateMessage
Passing Decode

Output
Feature
Graph

15x

Process

Latent
Feature
Graph

Figure 4.3.: Structure of the Encode-Process-Decode GNN block. Node and edge fea-
tures of an input multigraph are encoded in latent space. For 15 rounds, a
message passing scheme followed by an update function propagates in-
formation through the graph. The latent node features are decoded back
into interpretable node features. Encoder, update function and decoder are
MLPs with learnable parameters.

Encoder: From the input multigraph, node and edge features are encoded into a 128-
dimensional latent space. This dimensionality was chosen as a trade-off between model
complexity and performance. The increase in dimensionality is hoped to allow the pro-
cessor to capture complex and possibly nonlinear relationships in the physical process
that the model should learn. We define the MLPs fv

enc for node encodings, and fM
enc and

fW
enc for mesh edge respectively world edge encodings. The input width of these MLPs

is the dimensionality of the constructed features, which we discussed in Section 4.2.2.

20

The output width is the latent feature dimensionality of 128. The latent node features ṽi,
latent mesh edge features ẽijM and ẽijW are then computed as

ṽi = fv
enc(vi), ẽijM = fM

enc(e
ij
M), ẽijW = fW

enc(e
ij
W).

Processor: The processor block consists of 15 rounds of message passing followed by an
MLP update. One such step consists of feature aggregation, and an MLP update. For
mesh edges and world edges, the message vector consists of the original latent feature of
the edge, concatenated with the latent features of its start and end node. This concate-
nated feature is three times the latent size. We define update MLPs fM

upd respectively fW
upd

that process and combine this feature containing message information back to a single
latent mesh or world edge feature. To fight vanishing gradients and improve training
performance, we add a residual connection. Altogether, the updated mesh edge features
(ẽijM)′ and world edge features (ẽijW)′ are obtained as

(ẽijM)′ = fM
upd(ẽ

ij
M , ṽi, ṽj) + ẽijM , (ẽijW)′ = fW

upd(ẽ
ij
W , ṽi, ṽj) + ẽijW .

For nodes, the message vector is its own latent feature ṽi, concatenated with the sum of
latent features of incoming mesh edges and the sum of incoming world edge latent fea-
tures. The node update MLP fv

upd processes the message vector back to a single, updated
node feature (ṽi)′, and we add a residual connection:

(ṽi)′ = fv
upd(ṽi,

∑
j ẽ

ij
M ,

∑
j ẽ

ij
W) + ṽi

We observe that the update rule for edges allows for information encoded in nodes to
be represented in the edges’ features. The update rule for nodes aggregates edge in-
formation in the nodes. As such, when performing several rounds of message passing,
information can pass to neighboring nodes and their neighbors, and implicit encodings
of deformation and stress can be propagated through the object. It is to be noted that
the number of message passing rounds has influence on both network performance (it
must be high enough such that useful information arrives everywhere in the network),
and computational load (the MLP gradients must be computed for each round). In [7],
Huang et al. found 15 rounds to give a good trade-off.

Decoder: With optimally trained encoder and update MLPs, the processor will have trans-
formed the input features into meaningful latent features. After the message passing
rounds, these are expected to encode implicit information of deformation and stress in
the object. The decoder processes each updated latent node feature into a 4D output

21

feature. We interpret this output feature v̂i for each node as its predicted 3D deformation
ûi stacked on the averaged (see Section 4.2.1) von Mises stress σ̂v,i. The decoding

[ûi
T , σ̂v,i]

T = v̂i = fdec((ṽi)′)

again is performed by an MLP fdec with learnable parameters.

All described MLPs are, with reference to [7] and [8], constructed similarly. Their first
layer maps from the input dimensionality to the latent size 128 with ReLU activation. A
hidden layer maps from 128 to 128, again with ReLU activation. The final linear layer
maps from 128 to the output dimensionality.

4.2.4. Feature Normalization, Integration and Loss Function

To improve training performance, we normalize the constructed node, mesh edge, and
world edge features over all nodes and edges in a training dataset. We compute the mean
and standard deviation of each component in the feature vectors. Then, before calling the
Encode-Process-Decode block in the forward pass of the network, we normalize each fea-
ture by subtracting the mean of each components, and dividing by the standard deviation
of each component. We also compute the mean and standard deviation of ground truth
outputs of the network. After obtaining graph output features as normalized predictions,
we obtain unnormalized predictions by multiplying with standard devoation and adding
the mean.

Since the pre-processing gives us the ground truth deformed node positions, we add
the decoded, unnormalized node deformations to the input positions to get a predicted
positions instead of only the deformation. We note a similarity to numerical methods for
ODEs: If we interpret the predicted deformation as a deformation velocity, and assume
a timestep of 1, then this is equal to the explicit Euler method, which has the update
rule y(t + ∆t) = y(t) + t · ∂ty(t) for an arbitrary ODE of y. The stress outputs are not
integrated, since the network is trained to directly output the stress value, instead of an
increment.

We compute the training loss on the normalized graph outputs. This is necessary because
the magnitudes of deformation and stress outputs differ significantly, with deformation
(often less than 1mm) being much smaller than stress (often larger than 100 kPa. Using
normalized loss allows learning deformation and stress in the same network, with a rea-
sonable learning rate. We obtain the normalized graph output features, and normalize
the difference between gt_pos and second_pos and the ground truth stress with the

22

target normalizer to get a normalized target. We compute a mean squared error (MSE)
loss on both the normalized deformation and normalized stress predictions and targets,
and return the loss as sum of these. For the loss function, only the values for object nodes
are considered. To be able to judge the training performance with physically sensible
error values, we also compute the MAE between unnormalized target and ground truth
deformation and stress.

4.2.5. Training Data Split and Training

We recall that data points were generated and pre-processed in files encompassing 100
different trajectories per object, and each trajectory contains 50 frames as datapoints.
For training and evaluation, a dataset must be split into a training and a test data set.
Training data is used to compute the gradient of the loss function with respect to the
models parameters, and update per gradient descent. A set of test data is used to evaluate
the performance of themodel and judge its capability to generalize on unseen data points.
We find three possible strategies to split into training and test data:

1. Split across trajectories—some frames of one trajectory are part of training data,
some are part of test data;

2. Split trajectories across an object—some full trajectories are training data, some
full trajectories are test data;

3. Split across objects—all trajectories of some objects are part of training data, all
trajectories of other objects are part of test data.

The first strategy serves primarily as a proof of concept for the network, as both the
training and test data points come from the same trajectories. We use it to tune hyper-
parameters and debug the network during the implementation. The second strategy is
more interesting: The 100 trajectories available for one object offer a high variety of grasp
poses, e.g. in a split of 80 training and 20 test trajectories. Though it is to be expected
that the network overfits on the objects geometry, it should generalize to arbitrary grasp
poses, and would allow e.g. grasp sampling or refinement on the object. Training and
evaluating with the third data split strategy reveals the capability of generalization to
different object geometries. A such trained model is hoped to allow accurate inference
on unseen geometries, provided that they are meshed in similar fashion as the objects
trained on.

23

We provide a script that implements the training and evaluation loop. Through flags,
the user is able to decide on the data split strategy, hyperparameters of the network,
learning rate and training epochs, enable or disable the later described modifications,
and set a random seed. The network is trained using the Adam optimizer [45] using a
decaying learning rate. We save the model with the best performance on the test data set,
and report training and physical loss values over training epochs using TensorBoard. We
provide an evaluation script to test a model on other objects. The evaluation also creates
files includingmodel predictions and ground truth on test data, which can be visualized in
ParaView, allowing a more intuitive judgement of performance than through the abstract
loss values.

4.3. Modifications to the Baseline Model

The previously described implementation replicates the baseline given by [7], and closes
the pre-processing gap, allowing training on our own generated dataset. In this section,
we motivate and propose our two modifications that extend the baseline. The first mod-
ification lets the network train on undeformed inputs, allowing inference on grasp poses
that were not simulated. The second modification extends the GNN architecture to learn
stress values as tetrahedral features.

4.3.1. Inference Without Need to Simulate

In Section 4.2.2, we notice that the input state given to the network includes information
that was output by the simulator, since mesh edge features eijM encode node positions
at the first respectively second frame of the simulated trajectory, where the object has
deformed and the gripper closed. World edge features eijW also encode second frame
node positions. This gives raise to three issues: First, we must launch the simulator
and simulate a trajectory just to obtain the input state of the data points. This is not a
problem for training and evaluation, where we use the outputs at later frames to compute
loss values, however this prevents the network from productive use, e.g. in grasp pose
refinement or to infer on an unseen object. Second, with the features encoded as such,
it is possible that the network learns to extrapolate the small deformation between the
frames, instead of learning the actual physical dynamics. Third, obtaining the distances
the gripper closed at the input state from DefGraspSim makes us lose differentiability of

24

the model with respect to the gripper pose, since the simulator is not differentiable [7].
This property, however, is important for grasp pose refinement.

We propose to only encode information present in the undeformed positions of the object
and closed gripper nodes instead. These node positions pundeformed

i were already con-
structed in the pre-processing (Section 4.2.1). Using the undeformed position instead of
the first and second frame positions means mesh edge features eijM only encode one 3D
and scalar displacement, and its dimensionality is reduced to four:

eijM =
[
(pundeformed

i − pundeformed
j)T ,

∣∣∣pundeformed
i − pundeformed

j

∣∣∣]T
World edges are meshed based on the undeformed gripper and object surface nodes.
World edge features eijW are also constructed from undeformed positions

eijW =
[
(pundeformed

i − pundeformed
j)T ,

∣∣∣pundeformed
i − pundeformed

j

∣∣∣ , (FG/|eW |
)]

.

With these feature representations, the input state of a datapoint passed to the network
is now independent of the outputs of the simulator. Ground truth deformation and stress
targets are constructed from simulator data, and the network can be trained using the
modified inputs. We further implement a script that constructs an input state without
ground truth targets only from a provided object geometry and 7D gripper pose, allowing
gradient-based grasp pose refinement to find a grasp minimizing e.g. maximal stress.

4.3.2. Learning Stress as Tetrahedral Value

In FEM simulation, displacements are computed at each node, and stress tensors at each
tetrahedron in the mesh of the deformable object. From DefGraspSim, we obtained the
deformed positions pdeformed

i at nodes, as well as the scalar von Mises stress values σv,i at
tetrahedra for each frame in a simulated trajectory. The Encode-Process-Decode module,
as employed by [7], [8] and our baseline implementation, however, can only decode
node features and has no knowledge of tetrahedra in the mesh. To enable predictions of
stress values, pre-processing converted the stress to a nodal feature: A stress value σ̄v,i at
each node was computed by averaging the stress values of neighboring tetrahedra. Given
limited mesh resolution especially in small parts of an object, e.g. the handle of a cup, it
is questionable whether this simplification is reasonable.

We propose instead learning the original stress values at tetrahedra, and extend the
Encode-Process-Decode framework. For this, we add a tetratedron set to the multigraph

25

structure. The tetrahedron set gives all tetrahedra Ti in the object mesh by the indices of
its four nodes. Unlike for the edge sets, no tetrahedra in the gripper or between gripper
and object exist. The tetrahedron set also holds a feature vector ti for each tetrahedron.
The feature vector may include information related to the tetrahedra, such as its volume
or interior angles. For simplicity, however, we construct scalar zero feature vectors

ti = 0.

Similar to node and edge feature representations (Section 4.2.3), latent tetrahedron fea-
tures are obtained using a tetrahedron encoder MLP f t

enc:

t̃i = f t
enc(ti)

Since the features input to the encoder are zero, the latent features can not yet contain
meaningful information. Nevertheless, we used this feature encoder instead of initial-
izing the latent features with all-zero vectors to allow future work to experiment with
different feature construction. We expect relevant information to enter the tetrahedron
features during the message passing rounds. We define the update as following: The
latent features of all nodes that make a tetrahedron are concatenated with the latent fea-
ture vector t̃i of the tetrahedron. An update MLP f t

upd processes these features back into
a single latent vector. Finally, a residual connection is added:

(̃ti)′ = f t
upd(̃ti, {ṽj}j∈Ti

) + t̃i

Per this update rule, the latent tetrahedron feature representations will encode informa-
tion both from latent node features and latent edge features, which are part of the update
for node features. As with node and edge updates, tetrahedron features are updated for
several rounds, allowing relevant information to be propagated through the entire object.

Finally, the decoder structure is altered: We use a decoder MLP f t
dec to decode an output

feature vector t̂i for each tetrahedron. This decoded feature is one-dimensional and we
interpret it as the prediction of the scalar von Mises stress σ̂v,i at the tetrahedron,

[σ̂v,i] = t̂i = f t
dec((̃ti)

′).

We alter the training script, loss function, and normalization accordingly to account for
the tetrahedral stress outputs. We note that our modification is implemented flexible in
the input space, where meaningful tetrahedral features could be constructed, as well as
in the output space, where additional values at tetrahedra could be learnt.

26

5. Results

Given the large generated dataset of outcomes of grasp experiments in 100 grasp poses on
71 objects, we evaluated the performance of the implemented GNNmodel both in its base-
line form and with our proposed modifications. Multiple training runs were conducted
with different combinations of model implementation and training dataset selection.

The baseline model was trained on a large dataset of 34 different objects, allowing us to
roll it out on novel objects. Additionally, we trained a number of baseline models on a
single object each to observe how the model capability depends on the choice of training
objects. Finally, for both of our proposed modifications (Section 4.3), we train a number
of models on these single objects. In the following chapter, we present the results of
these runs. We provide evaluation metrics for each training run along with visualizations
of model predictions, allowing for an intuitive judgement of the performance.

5.1. Baseline Model

5.1.1. Training on a Large Dataset

To evaluate the ability of the baseline model to generalize to unseen objects, we trained
it on approximately half of the objects in our generated dataset. The 34 training objects
for this training run are listed in Table A.5. The training dataset included 170 000 single
frames as datapoints. The training was run for 20 epochs with a learning rate of 8×10−5.
Following each training epoch, the model was evaluated on the 5000 datapoints of the
strawberry01 object.

Figure 5.1 shows the mean training loss and the mean test loss on the strawberry01
object at each training epoch. Except for a peak in epoch 12, the training loss steadily
decreases throughout the training. Its final value is 0.3579. The test loss starts at a

27

1 5 10 15 20
Training Epoch

0.0

0.5

1.0

1.5

2.0

2.5
M

SE
 L

os
s

Training Loss
Test Loss on strawberry01

Figure 5.1.: Mean training loss and mean test loss on the test object strawberry01
over training epochs for the baseline model trained on a large dataset.

Test Object MSE Loss Deformation MAE [mm] Stress MAE [kPa]

cuboid02 0.032 0.177 0.602
cup02 1.100 0.633 5.501
cucumber1 1.291 0.746 4.153
strawberry01 2.176 1.001 5.832

Table 5.1.: Performance of the baseline model trained on a large dataset on unseen ob-
jects.

significantly higher value than the test loss and shows more noise during training. It
marginally declines, with its lowest value being 2.176.

The model parameters were saved as checkpoint after epoch 18, where the lowest test
loss on strawberry01 was observed. We then evaluated this model on the objects
cuboid02, cup02 (primitive geometries), cucumber1, and strawberry01 (3D scans).
Table 5.1 gives the mean loss value and mean deformation and stress errors on these ob-
jects. The table shows that the loss is smallest on cuboid02. On cup02 and cucumber1,
the loss values are significantly higher, while strawberry01 shows the highest test
loss among these test objects. The mean deformation and stress errors are smallest for
cuboid02, and of similar scale for the other objects.

Since the loss and error values are abstract and do not allow intuitive judgement of the
accuracy of predictions, we provide a visualization of model outputs in Figure 5.2. For the
last frame of a selected trajectory of the four test objects, deformation and stress values
predicted by the model are shown next to the ground truth values. The 3D deformed

28

objects are rendered, and a colormap informs about the stress values. The loss values
on these trajectories have been annotated. We observe that the predicted stress values
are very close to the ground truth. The largest stress error is visible on strawberry01:
High stress is predicted only relatively close to the grippers, while the ground truth stress
actually is higher in an area between the grippers. The predicted deformed positions
are mostly accurate, however, for each object except cuboid02, we see a rough, “noisy”
surface which is not present in ground truth data.

5.1.2. Training on Single Objects

To investigate how well the baseline model can fit to single objects, we trained a model
for each of the objects 8polygon06, cylinder07, lemon01, potato2, sphere03
and strawberry01. These runs used our second data split strategy, where the frames
of 80 trajectories make the training dataset of 4000 frames, and 20 trajectories make a
test dataset of 1000 frames. The models were trained with a learning rate of 8× 10−5 for
20 epochs.

Training and Test Object MSE Loss Deformation MAE [mm] Stress MAE [kPa]
Training Test

8polygon06 0.517 0.719 0.169 0.255
cylinder07 1.278 1.179 0.108 0.146
lemon01 0.376 0.518 0.822 5.650
potato2 0.253 0.421 0.409 0.975
sphere03 0.123 0.147 0.266 0.712
strawberry01 0.248 0.324 0.539 2.921

Table 5.2.: Performance of baseline models trained on single objects. Each line gives
the metrics for the model’s checkpoint with lowest test loss. MAE of defor-
mation and stress are given as interpretable error measures for test data.

Figure A.1 shows how for all of the runs, the training and test loss lowers significantly
after only four epochs. The test loss converges after around ten epochs, though it is
noisy. The training loss slowly keeps declining until the end of the training. Table 5.2
gives metrics for the model checkpoints with lowest test loss each. We observe that even
though the losses of the models on different objects converge in a similar shape, the loss
values between different objects are dissimilar. Training and test losses of single objects
are of similar scale.

29

Figure 5.2.: Predicted and ground truth deformation and stress for frame 49 of one tra-
jectory of each test object for the baseline model trained on a large dataset.

30

For each of the models, we visualized predictions and ground truth values of four tra-
jectories from the test set. These visualizations can be found in the appendix. On
strawberry01 (Figure A.7), we observe high similarity between predicted and ground
truth values. Especially stress values show nearly no visible difference as per the color
coding. The predicted deformation is very accurate in trajectories 4 and 5. Loss values
are accordingly small with approximately 0.05. In trajectories 18 and 33, which portray a
stronger deformation of the object, the overall deformed shape is accurate. However, the
object surface partially shows a rougher, “noisier” texture which is not present in ground
truth. The loss values of these two trajectories are 0.265 respectively 0.568.
The models trained on 8polygon06 and cylinder07 show very high accuracy in the
visualizations in Figure A.2 and Figure A.3. The computed loss values, however, are high.
The model trained on lemon01 (Figure A.4) does not performwell on trajectory 0, where
the gripper is only in contact with the lemon in a very small edge region. The model per-
forms much better, both visually and as measured by the loss values, for the other three
visualized trajectories. However, all trajectories show a rough, “noisy” object surface.
The predictions on potato2 (Figure A.5) are very accurate, and their loss values are rea-
sonably small. Interestingly, the ground truth stress for trajectory 31 shows high stress on
the right side of the visualization, where no gripper is in contact. This may be an error in
simulation data, since we intuitively do not expect high stress values in that region. The
prediction for trajectory 31 does not show significant stress values there.
Finally, the visualization of predictions on sphere03 shows no visible error, and the loss
values accordingly are minuscule.

5.2. Learning on Undeformed Input State

As defined in Section 4.2.2, the baseline model constructs the input state of a datapoint
from node positions at the first two simulated frames. In Section 4.3.1, we proposed to
modify the feature construction to only encode undeformed node positions, which can
be obtained without accessing simulator outputs in our pre-processing.

For this modified model, we trained six runs in the second data split strategy. The training
object for each run is the same as in the runs for the baseline model. Again, 80 trajectories
are chosen as training and 20 trajectories as test data, however, due to different seeds for
each run, the random split of trajectories is different to the runs on the baseline model.
Each training run completed 35 epochs with a learning rate of 8× 10−5.

31

Training and Test Object MSE Loss Deformation MAE [mm] Stress MAE [kPa]
Training Test

8polygon06 0.821 0.687 0.177 0.238
cylinder07 1.551 1.229 0.113 0.151
lemon01 0.329 0.239 0.665 3.746
potato2 0.426 0.454 0.432 1.010
sphere03 0.282 0.320 0.392 1.112
strawberry01 0.162 0.329 0.638 1.949

Table 5.3.: Performance of models with undeformed input trained on single objects.

Figure A.8 shows different convergence of training and test losses during training com-
pared to the baseline model (Figure A.1). For the runs on all objects, the training losses
start at much higher values. During the first ten epochs, training losses decline quickest.
The test losses also decline quickest during the first ten epochs and converge around the
20th epoch. The model training and testing on sphere03 has the highest training and
test loss during the first epochs, through the training loss drops rapidly. For cylinder07,
the test loss increases again towards the last epochs.

Metrics for each model checkpoint with lowest test loss are given in Table 5.3. It can
be seen that training and test loss values are of similar scale for each run on an object,
but again between the different object runs, loss values vary highly. Compared to the
baseline results in Table 5.2, the loss and error metrics for the models with undeformed
input are slightly higher. For the model trained on lemon01, the last frame of a trajectory
is visualized in Figure 5.3. Though the loss value is quite high with 0.7842, the predicted
deformations and stresses are accurate. The object surface is noisy again, as we already
observed on the baseline models.

The implemented pre-processing returns the input state as function of the grasp pose,
among others. Since the pre-processing is implemented in PyTorch, we can obtain the
gradient of an arbitrary measure, e.g. the maximal stress value observed in the object
w.r.t. the grasp pose, and refine the grasp pose accordingly to grasp with minimum re-
sulting stress. We did not yet implement a method that refines grasp poses based on a
trained model.

32

Figure 5.3.: Predicted and ground truth deformation and stress for frame 49 of test tra-
jectory 7 for the model trained on undeformed inputs on lemon01.

5.3. Learning Tetrahedral Stress

Finally, we trained models to evaluate our proposed modification on the structure of the
stress predictions and targets. As introduced in Section 4.3.2, for these models, the GNN
block is informed about tetrahedra present in the mesh. The construction of tetrahedral
features, and according encoder, update and decoder functions allows prediction of stress
values for each tetrahedron, instead of for nodes. As for the baseline model and model
with undeformed inputs, we trained six runs, each on an object with 80 training and 20
test trajectories randomly selected.

In Figure A.9, we see training and test loss of the trained models over completed training
epochs. The training loss quickly declines for most runs within the first five epochs, and
keeps declining slower until the end of the training. The training loss declines quickest
until the fifth epoch for all runs and appears to have converged after approximately the
tenth epoch. The scale of the loss values differs per object, as we already observed for
the baseline models and the models with undeformed input. Table 5.4 shows the best
training and test losses as well as average deformation and stress errors for each run.
The losses and errors are slightly lower compared to the metrics for the baseline models
trained on single objects. Figure 5.4 visualizes the last frame of a test trajectory for the
lemon01 model. The loss is low with 0.222. The predicted deformations and stresses
look accurate. Compared to the models predicting stress values at each node, the stress
field has more distinct borders in its rendering, and the largest, deep red values are only
present in a few tetrahedrons. In the predicted trajectories, we observe less noise on the
object surface as compared to predictions of the models which predict nodal stress.

33

Training and Test Object MSE Loss Deformation MAE [mm] Stress MAE [kPa]
Training Test

8polygon06 0.465 0.491 0.156 0.274
cylinder07 1.193 1.126 0.106 0.162
lemon01 0.310 0.301 0.756 4.393
potato2 0.174 0.327 0.368 0.995
sphere03 0.124 0.117 0.236 0.877
strawberry01 0.197 0.342 0.569 2.504

Table 5.4.: Performance of models learning tetrahedral stress trained on single objects.

Figure 5.4.: Predicted and ground truth deformation and stress for frame 49 of test tra-
jectory 26 for the model learning tetrahedral stress trained on lemon01.

34

6. Discussion

In the previous chapter, we presented key metrics of our conducted training runs, and
visualized their predictions compared to ground truth. We summarize the results of these
runs, interpret them and briefly discuss their implications.

Baseline trained on a large dataset: In Figure 5.1, we observed the convergence of the
training loss, indicating that the baseline model is learning and fitting well to the training
data. The GNN is able to learn feature representations that allow decoding into accurate
deformation and stress, generalizing to many different mesh geometries and grasp poses.
However, the relatively high test loss only marginally declined during training.
We attribute the scale of the test loss to a poor choice of the test object, strawberry01.
Its shape, characterized by a flat side and a thin tip, as seen in Figure 5.2 and Figure A.7,
is unique among the the dataset. This interpretation is supported by the lower loss values
we observed during the rollout on cuboid02, cup02 and cucumber1. The relatively
good performance on cuboid02 and cup02 can be explained by the fact that the training
set includes these geometric shapes, though in other sizes and differently meshed. The
geometry of cucumber1 (Figure 5.2) is more regular compared to strawberry01, lack-
ing sharp edges and having an approximately equal thickness in every direction, which
explains the good performance.
Regarding the slow decline of the test loss over the training epochs, we speculate that
it is rooted in the large size of the training dataset. Since the model already completed
170 000 training steps before computing the loss values in the first epoch, it is conceivable
that the model already learnt parameters in the first epoch which give a test performance
close to its best capability. Subsequent epochs then would only further fit on the training
set, without giving much improvement on the test set. Given the unfortunate choice of
the single test object during the training process, it would be interesting to assess the per-
formance per epoch on more test objects. Unfortunately, due to the long duration of the
training on such a large dataset, we could not run additional experiments to investigate
this.

35

Baseline trained on single objects: For the baseline models trained on single objects, we
have seen pleasing convergence of the training and test losses in Figure A.1. Table 5.2
shows that for each of these models, the training and test loss is similar. This leads us to
conclude that the baseline model does not tend to overfit. The difference in the scale of
training and test loss values may be explained by them being computed on normalized
targets. Since the normalization statistics can be expected to vary highly between the
single objects, the normalized loss of an equally well performing model may also vary.
The claim that normalized loss values do not consistently measure model performances
on different datasets is supported by the observations on cylinder07: While its nor-
malized loss values are the highest among the six objects, its performance judged by the
visualizations in Figure A.3 is practically perfect. Mean deformation and stress errors are
computed on the unnormalized targets, however, the different geometric dimensions of
objects and different stress ranges during their trajectories (Figures A.2–A.7) result in
the variance of these errors in Table 5.1.

Model with undeformed inputs: With undeformedmesh and closed gripper positions avail-
able from our pre-processing, we proposed changing the input state to encode these un-
deformed positions, instead of the first and second frames from the simulated trajectory
(Section 4.3.1). The training results show slower convergence (Figure A.8) and higher
training and test loss values (Table 5.3) compared to the baseline models trained on sin-
gle objects. We interpret this difference is rooted in that encoding the first two simulation
frames hints themodel to some extent about the resulting deformation, and lets themodel
extrapolate the deformation between the first frames to infer the deformation at force.
The convergence of the models trained on undeformed inputs shows that the architecture
is suitable for learning the physical dynamics. Inspecting the visualization of the predic-
tion compared to ground truth of the lemon01 model trained on undeformed inputs
(Figure 5.3) shows that even predictions with higher loss values are accurate in predict-
ing stresses, and accurate in predicting the rough deformation of the object, though the
coarse texture on the surface remains. The models trained with undeformed inputs are
fully differentiable w.r.t. its inputs, e.g. the grasp pose.

Model learning tetrahedral stress: Our second proposed modification to the model in-
volved the output side: We introduced tetrahedral features to the message passing, which
are decoded into tetrahedral stress predictions (Section 4.3.2). This allows learning the
tetrahedral von Mises stresses σv,i as output by DefGraspSim, instead of learning aver-
aged stress measures σ̄v,i at nodes.
The results obtained with models learning tetrahedral stress on single objects were satis-
factory. Compared to the baseline models, the training and test losses converged similarly
fast (Figure A.9). The training and test loss values, captured at the best checkpoints, as

36

shown in Table 5.4 are consistently lower than the ones of the baseline models trained
on the same objects (Table 5.2). This good performance was not wholly expected. The
meshes of the objects trained on have approximately four times as many tetrahedra as
they have nodes, as shown in Table A.2. Thus, the number of tetrahedral stress values the
modified model has to predict is also around four times higher than the number of pre-
dicted node stress values of the baseline model. We did not construct meaningful features
for tetrahedra, yet only from the modified message passing phase, where tetrahedral fea-
tures accumulated information from its nodes, the tetrahedral stress could be learnt with
high accuracy. We hypothesize that the reason might be rooted in the higher similarity of
the modified message passing with FEM, where the stress tensor of a tetrahedral element
is computed based on the deformations of its nodes. The implemented message passing
rule for tetrahedrons may implicitly learn this process in its update MLP. Finally, we note
that additionally to the improved training performance, learning tetrahedral stresses is
physically more accurate than learning the average node stresses. This can be underlaid
by a comparison of visualized ground truth node stress (e.g. in Figure 5.3) to ground
truth tetrahedral stress (Figure 5.4). The node stress field looks more blurry compared
to the tetrahedral stress field, whose values can differ significantly even in neighboring
tetrahedral elements. Especially for objects meshed in low resolution or with fine details,
the assumption that the averaged node stress measures σ̄v,i would be physically accurate
is violated. Models training on such inaccurate ground truth can not be expected to fully
learn sensible physical dynamics.

Finally, we attempt to explain the noise observed on predicted deformations on several
trained models. This apparent noise, which in visualizations looks like a rough surface
of the predicted deformed object, compared to the rather smooth surface of the ground
truth deformed object, was observed in the rollout of the large model on strawberry01
and cucumber01, as seen in Figure 5.2. For the models trained on undeformed inputs,
it was observed in outputs of the models trained on strawberry01 (Figure A.7) and
lemon01. The model trained with undeformed inputs on lemon01 (Figure 5.3) also
showed this noise. The model learning tetrahedral stress on lemon01 showed less of
such noise (Figure 5.4).
Examining several animated trajectories of these models, we observed that the noise is
largest in trajectories where the object does not only deform in areas close to the gripper,
but where parts of the object show a rigid body motion as response to the deformation
close to the gripper. Rigid body motion means that points of tetrahedra translate or ro-
tate in similar manner, without deforming relative to each other. For instance, this is the
case in the top-most trajectory in Figure A.4, where only a small part of the lemon gets
squeezed, making the lemon oscillate during the trajectory. On the geometric primitives

37

and e.g. potato2 (Figure A.5), such behavior is not observed, and the predicted de-
formed object surface lacks this noise. We conclude that the implemented models have
difficulty in learning the dynamics of these rigid body motions. The stress fields predicted
by our models do not suffer from this problem, since the stress field is invariant to rigid
body motion.
Interestingly, the models learning stress at tetrahedra performed slightly better, show-
ing less noise on the surface, e.g. in Figure 5.4. It is conceivable that the construction
of features for each tetrahedron, which accumulate information from its nodes features,
helped the model to better relate low present stress to low local deformation.

38

7. Conclusion

In the scope of this work, we generated a large, diverse training dataset of resulting de-
formation and stress values in grasp experiments utilizing the DefGraspSim simulator.
We implemented a complex GNN model along the DefGraspNets baseline by Huang et
al. in PyTorch. We reconstructed the pre-processing routine, allowing training directly
on self-generated simulation output files, which was not possible with the DefGraspNets
model. Additionally, we proposed and implemented two modifications which face key
issues present in Huang et al.s implementation: First, changing the input feature con-
struction to encode the undeformed object geometry instead of the first two frames of
a simulated trajectory allows trained models to infer on datapoints for which no simu-
lation results are available. These models are fully differentiable w.r.t. its inputs, and a
gradient-based grasp pose refinement could be implemented. Second, we extended the
Encode-Process-Decode architecture to learn features for mesh tetrahedra, which lets the
model learn tetrahedral stress values as output by FEM simulation, instead questionably
averaging stresses at nodes.

We trained numerous models in baseline form and with our modifications on several dif-
ferent training objects, and a baseline model on 34 objects. We presented detailed perfor-
mance metrics and visualized predictions and ground truth for a multitude of datapoints.
We performed a comprehensive interpretation of these training results, investigating the
capabilities of the baseline and modified models, and the influence of the choice of the
training object to the performance. All trained models showed overall good performance
on test objects and trajectories similar to the training objects, and show the capability of
the GNN model. Our discussion revealed that rigid body motion of parts of objects is a
weak point both in baseline and modified form.
The modified models training on undeformed input showed both that the baseline model
depends on the simulation output, and that learning the physical dynamics is possible
with this input state. Its full differentiability w.r.t. the input grasp pose could be used for
gradient-based grasp pose optimization.
Our implementation learning tetrahedral stress showed both better performance than the

39

baseline as measured by the loss values, as well as handling rigid body motions slightly
better. We attribute this to the modification in architecture, which by being informed
about mesh tetrahedra becomes more similar to the FEM model of object deformation
physics.

7.1. Future Work

We are confident that our re-implementation TorchGraspNet is easier to understand, use
and extend than the original DefGraspNetsmodel through clear documentation, renamed
fields, methods and files and the removal of unused code, and included tools for the
visualization of predictions. We hope for future research to leverage our implementation
and are confident that it can significantly accelerate it. Based on our experiments and
findings, we believe research in the following directions would be most promising.

First, additional training runs could be conducted. Our largest training run used only
around half of the objects available in our dataset. Since already this took multiple days
of compute, we only completed this run training on multiple objects and rolling out on
unseen objects. Other than training on the entire dataset, interesting experiments would
be to train on all primitive geometries and test on all fruit and vegetable 3D scans and vice
versa. Of course, the dataset could also be extended with additional everyday objects.
Additionally, our dataset includes only isotropic objects with equal properties E, ν and
ρ. The model in its implemented form is not informed about these material properties.
Generating a dataset with variance in this domain, and extending the model to encode
material properties would be viable.

Second, we found that the normalized MSE loss is suitable to learn the network, but lacks
interpretability and due to different normalization statistics, the performance of models
trained on different datasets can not be compared easily. The MAE values of unnormal-
ized deformation and stress also are influenced by different scale and meshing strategy
between objects. Deriving an easily interpretable, intuitive loss term for deformation and
stress would be helpful.

Third, we identified rigid body motion of parts of objects to be a weakness of the im-
plemented model in its current form. Addressing this in further research would be very
interesting. Extending the GNN architecture with tetrahedral features already showed
slight improvement in this domain. Starting points might be to explicitly inform nodes

40

about their neighbors movement in the message passing phase, and adjust their move-
ment depending on the predicted stress. In areas with high stress, deformation of tetra-
hedra would be allowed, while in areas with no stress the tetrahedron should at most
show rigid body movement. This relation may be possible using physics-based loss func-
tions. For instance, the difference between predicted stress and the stress consistent with
the deformation of its points could be placed as additional loss term on each tetrahedral
element. The consistency of solutions predicted by neural networks with the physical
model of the underlying process is an active research field named physics-informed neu-
ral network (PINN) [46, 47], and the models presented in this thesis could be refined
with methods used in PINNs.

Fourth, it would be interesting whether the model can be altered to predict not the final
deformed state of an object grasped with force, but to let it predict the deformed state at
a next timestep. This could enable the model to be used in a model-based RL approach,
where an agent could learn careful handling of deformable objects, with negative reward
for excessive object deformations or stresses. This question was the initial aim of this the-
sis. Finally, of course, a validation of predicted deformations with experiments involving
a real robot (sim-to-real) would be interesting.

41

Bibliography

[1] Kilian Kleeberger et al. “A survey on learning-based robotic grasping.” In: Current
Robotics Reports 1 (2020), pp. 239–249.

[2] Liman Wang and Jihong Zhu. “Deformable object manipulation in caregiving sce-
narios: A review.” In: Machines 11.11 (2023), p. 1013.

[3] Rinto Yagawa et al. “Learning Food Picking without Food: Fracture Anticipation
by Breaking Reusable Fragile Objects.” In: 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2023, pp. 917–923.

[4] Viktor Makoviychuk et al. Isaac Gym: High Performance GPU-Based Physics Simula-
tion For Robot Learning. 2021. arXiv: 2108.10470 [cs.RO].

[5] Isabella Huang et al. “DefGraspSim: Physics-Based Simulation of Grasp Outcomes
for 3D Deformable Objects.” In: IEEE Robotics and Automation Letters 7.3 (2022),
pp. 6274–6281. doi: 10.1109/LRA.2022.3158725.

[6] Giuseppe Carleo et al. “Machine learning and the physical sciences.” In: Reviews of
Modern Physics 91.4 (2019), p. 045002.

[7] Isabella Huang et al. DefGraspNets: Grasp Planning on 3D Fields with Graph Neural
Nets. 2023. arXiv: 2303.16138 [cs.RO].

[8] Tobias Pfaff et al. Learning Mesh-Based Simulation with Graph Networks. 2021.
arXiv: 2010.03409 [cs.LG].

[9] Jack Collins et al. “A review of physics simulators for robotic applications.” In: IEEE
Access 9 (2021), pp. 51416–51431.

[10] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics engine for
model-based control.” In: 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2012, pp. 5026–5033. doi: 10.1109/IROS.2012.6386109.

[11] Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics simulation
for games, robotics and machine learning. http://pybullet.org. 2016.

42

https://arxiv.org/abs/2108.10470
https://doi.org/10.1109/LRA.2022.3158725
https://arxiv.org/abs/2303.16138
https://arxiv.org/abs/2010.03409
https://doi.org/10.1109/IROS.2012.6386109
http://pybullet.org

[12] Nathan Koenig and Andrew Howard. “Design and use paradigms for gazebo, an
open-source multi-robot simulator.” In: 2004 IEEE/RSJ international conference on
intelligent robots and systems (IROS)(IEEE Cat. No. 04CH37566). Vol. 3. Ieee. 2004,
pp. 2149–2154.

[13] E. Rohmer, S. P. N. Singh, and M. Freese. “CoppeliaSim (formerly V-REP): a Ver-
satile and Scalable Robot Simulation Framework.” In: Proc. of The International
Conference on Intelligent Robots and Systems (IROS). 2013.

[14] A. Bicchi and V. Kumar. “Robotic grasping and contact: a review.” In: Proceedings
2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No.00CH37065). Vol. 1. 2000, 348–353
vol.1. doi: 10.1109/ROBOT.2000.844081.

[15] Andrew TMiller and Peter K Allen. “Graspit! a versatile simulator for robotic grasp-
ing.” In: IEEE Robotics & Automation Magazine 11.4 (2004), pp. 110–122.

[16] Beatriz León et al. “Opengrasp: a toolkit for robot grasping simulation.” In: Sim-
ulation, Modeling, and Programming for Autonomous Robots: Second International
Conference, SIMPAR 2010, Darmstadt, Germany, November 15-18, 2010. Proceed-
ings 2. Springer. 2010, pp. 109–120.

[17] Asad Ali Shahid et al. “Learning continuous control actions for robotic grasping
with reinforcement learning.” In: 2020 IEEE International Conference on Systems,
Man, and Cybernetics (SMC). IEEE. 2020, pp. 4066–4072.

[18] Barbara Frank et al. “Learning object deformation models for robot motion plan-
ning.” In: Robotics and Autonomous Systems 62.8 (2014), pp. 1153–1174. issn:
0921-8890. doi: https://doi.org/10.1016/j.robot.2014.04.005.
url: https : / / www . sciencedirect . com / science / article / pii /
S0921889014000797.

[19] Sam Kriegman et al. Scalable sim-to-real transfer of soft robot designs. 2019. arXiv:
1911.10290 [cs.RO]. url: https://arxiv.org/abs/1911.10290.

[20] Jacky Liang et al. “Gpu-accelerated robotic simulation for distributed reinforce-
ment learning.” In: Conference on Robot Learning. PMLR. 2018, pp. 270–282.

[21] Youngsung Son, Hyonyong Han, and Joonmyun Cho. “Usefulness of using Nvidia
IsaacSim and IsaacGym for AI robot manipulation training.” In: 2023 14th In-
ternational Conference on Information and Communication Technology Convergence
(ICTC). 2023, pp. 1725–1728. doi: 10.1109/ICTC58733.2023.10393380.

[22] Shangding Gu et al. “A review of safe reinforcement learning: Methods, theory
and applications.” In: arXiv preprint arXiv:2205.10330 (2022).

43

https://doi.org/10.1109/ROBOT.2000.844081
https://doi.org/https://doi.org/10.1016/j.robot.2014.04.005
https://www.sciencedirect.com/science/article/pii/S0921889014000797
https://www.sciencedirect.com/science/article/pii/S0921889014000797
https://arxiv.org/abs/1911.10290
https://arxiv.org/abs/1911.10290
https://doi.org/10.1109/ICTC58733.2023.10393380

[23] Emmanuel De Bézenac, Arthur Pajot, and Patrick Gallinari. “Deep learning for
physical processes: Incorporating prior scientific knowledge.” In: Journal of Statis-
tical Mechanics: Theory and Experiment 2019.12 (2019), p. 124009.

[24] Xiaoxiao Guo, Wei Li, and Francesco Iorio. “Convolutional neural networks for
steady flow approximation.” In: Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining. 2016, pp. 481–490.

[25] Saakaar Bhatnagar et al. “Prediction of aerodynamic flow fields using convolu-
tional neural networks.” In: Computational Mechanics 64 (2019), pp. 525–545.

[26] Alvaro Sanchez-Gonzalez et al. “Graph Networks as Learnable Physics Engines
for Inference and Control.” In: Proceedings of the 35th International Conference on
Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings
of Machine Learning Research. PMLR, Oct. 2018, pp. 4470–4479. url: https:
//proceedings.mlr.press/v80/sanchez-gonzalez18a.html.

[27] Benjamin Ummenhofer et al. “Lagrangian fluid simulation with continuous convo-
lutions.” In: International Conference on Learning Representations. 2019.

[28] Zili Wang et al. “Towards high-accuracy axial springback: Mesh-based simulation
of metal tube bending via geometry/process-integrated graph neural networks.”
In: Expert Systems with Applications 255 (2024), p. 124577.

[29] Barbara Frank et al. “Learning object deformation models for robot motion plan-
ning.” In: Robotics and Autonomous Systems 62.8 (2014), pp. 1153–1174.

[30] Veronica E Arriola-Rios and Jeremy L Wyatt. “A multimodal model of object de-
formation under robotic pushing.” In: IEEE Transactions on Cognitive and Develop-
mental Systems 9.2 (2017), pp. 153–169.

[31] Haochen Shi et al. “RoboCraft: Learning to see, simulate, and shape elasto-plastic
objects in 3D with graph networks.” In: The International Journal of Robotics Re-
search 43.4 (2024), pp. 533–549.

[32] Tran Nguyen Le et al. “Deformation-aware data-driven grasp synthesis.” In: IEEE
Robotics and Automation Letters 7.2 (2022), pp. 3038–3045.

[33] Seungyeon Kim et al. “DSQNet: a deformable model-based supervised learning
algorithm for grasping unknown occluded objects.” In: IEEE Transactions on Au-
tomation Science and Engineering 20.3 (2022), pp. 1721–1734.

[34] MatthiasMüller et al. “Real Time Physics Class Notes.” In: SIGGRAPH ’08: ACM SIG-
GRAPH 2008 classes. Aug. 2008, pp. 1–90. doi: 10.1145/1401132.1401245.

44

https://proceedings.mlr.press/v80/sanchez-gonzalez18a.html
https://proceedings.mlr.press/v80/sanchez-gonzalez18a.html
https://doi.org/10.1145/1401132.1401245

[35] DanielWeber, Stephanie Ferreira, and JohannesMueller-Roemer. Physikalisch-basierte
Simulation und Animation, Lecture 06 – Physik deformierbarer Körper. June 2023.

[36] DanielWeber, Stephanie Ferreira, and JohannesMueller-Roemer. Physikalisch-basierte
Simulation und Animation, Lecture 09 – Finite Elemente Methode für deformierbare
Körper. June 2023.

[37] Jonathan Shewchuk. “What is a good linear finite element? interpolation, condi-
tioning, anisotropy, and quality measures (preprint).” In: University of California
at Berkeley 2002 (2002).

[38] Timothy J Baker. “Mesh generation: Art or science?” In: Progress in aerospace sci-
ences 41.1 (2005), pp. 29–63.

[39] Jonathan Richard Shewchuk. “Unstructured mesh generation.” In: Combinatorial
Scientific Computing 12.257 (2012), p. 2.

[40] SH Lo. “Finite element mesh generation and adaptive meshing.” In: Progress in
Structural Engineering and Materials 4.4 (2002), pp. 381–399.

[41] Yixin Hu et al. “Fast Tetrahedral Meshing in the Wild.” In: ACM Trans. Graph.
39.4 (July 2020). issn: 0730-0301. doi: 10.1145/3386569.3392385. url:
https://doi.org/10.1145/3386569.3392385.

[42] W. H. Yang. “A Generalized von Mises Criterion for Yield and Fracture.” In: Journal
of Applied Mechanics 47.2 (June 1980), pp. 297–300. issn: 0021-8936. doi: 10.
1115/1.3153658. eprint: https://asmedigitalcollection.asme.
org/appliedmechanics/article-pdf/47/2/297/5878449/297_1.
pdf. url: https://doi.org/10.1115/1.3153658.

[43] Stephen P Timoshenko and James Norman Goodier. Theory of elasticity. Vol. 3.
McGraw-hill New York, 1982.

[44] Clemens Eppner, Arsalan Mousavian, and Dieter Fox. “A billion ways to grasp: An
evaluation of grasp sampling schemes on a dense, physics-based grasp data set.”
In: The International Symposium of Robotics Research. Springer. 2019, pp. 890–905.

[45] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980 [cs.LG]. url: https://arxiv.org/abs/1412.
6980.

[46] Salvatore Cuomo et al. “Scientific machine learning through physics–informed
neural networks: Where we are and what’s next.” In: Journal of Scientific Com-
puting 92.3 (2022), p. 88.

45

https://doi.org/10.1145/3386569.3392385
https://doi.org/10.1145/3386569.3392385
https://doi.org/10.1115/1.3153658
https://doi.org/10.1115/1.3153658
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/47/2/297/5878449/297_1.pdf
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/47/2/297/5878449/297_1.pdf
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/47/2/297/5878449/297_1.pdf
https://doi.org/10.1115/1.3153658
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

[47] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations.” In: Journal of Computational
physics 378 (2019), pp. 686–707.

46

A. Appendix

The appendix to this thesis contains detailed tables and figures for further reference.

A.1. Generated Dataset and DefGraspSim Output Format

Object Class Type Number of Objects

06polygon Geometric primitive 8
08polygon Geometric primitive 8
annulus Geometric primitive 8
apple 3D scan 3
cuboid Geometric primitive 6
cucumber 3D scan 1
cup Geometric Primitive 6
cylinder Geometric primitive 8
eggplant 3D scan 1
ellipsoid Geometric primitive 4
lemon 3D scan 4
potato 3D scan 3
sphere Geometric primitive 6
strawberry 3D scan 3
tomato 3D scan 2

Total 71

Table A.1.: Tetrahedral mesh objects available to DefGraspSim as provided by Huang et
al.

47

Object Number of Nodes Number of Tetrahedra

8polygon06 1389 6152
cylinder07 925 3658
lemon01 1309 5163
potato2 1429 6494
sphere03 1393 6096
strawberry01 1126 4851

Table A.2.: Objects used in training for validation of baseline and modified models.

48

Ke
y

In
te
rp
re
ta
tio

n

in
iti
al
_d

es
ire

d_
fo
rc
e

D
es
ire

d
fo
rc
e
to

gr
as
p
w
ith

pr
e_

co
nt
ac
t_
po

si
tio

ns
3
D
po

si
tio

n
of

no
de

s
in

un
de

fo
rm

ed
m
es
h

pr
e_

co
nt
ac
t_
se

St
ra
in

en
er
gy

ov
er

th
e
en

tir
e
un

de
fo
rm

ed
m
es
h

pr
e_

co
nt
ac
t_
st
re
ss
es

Vo
n
M
is
es

st
re
ss

of
ea

ch
te
tr
ah

ed
ro
n
in

un
de

fo
rm

ed
m
es
h

le
ft_

co
nt
ac
te
d_

no
de

s_
un

de
r_
gr
av

ity
_i
ni
tia

l
N
od

es
fir
st

in
co

nt
ac
tw

ith
le
ft
fin

ge
r

rig
ht
_c
on

ta
ct
ed

_n
od

es
_u

nd
er
_g

ra
vi
ty
_i
ni
tia

l
N
od

es
fir
st

in
co

nt
ac
tw

ith
rig

ht
fin

ge
r

sq
ue

ez
e_

no
_g

ra
vi
ty
_m

ax
_f
or
ce

M
ax

im
um

fo
rc
e
ac
hi
ev
ed

in
gr
as
p

st
ac
ke

d_
fo
rc
es

Sq
ue

ez
in
g
fo
rc
e
at

gi
ve
n
fr
am

e
st
ac
ke

d_
fo
rc
es
_o

n_
no

de
s

Fo
rc
e
on

ea
ch

no
de

at
gi
ve
n
fr
am

e
st
ac
ke

d_
gr
ip
pe

r_
po

si
tio

ns
Tr
an

sl
at
io
n
of

ea
ch

gr
ip
pe

ra
lo
ng

its
no

rm
al

at
gi
ve
n
fr
am

e
st
ac
ke

d_
po

si
tio

ns
3
D
po

si
tio

n
of

no
de

s
in

de
fo
rm

ed
m
es
h

st
ac
ke

d_
le
ft_

no
de

_c
on

ta
ct
s

M
es
h
ty
pe

ca
te
go

ry
ea

ch
gr
ip
pe

rn
od

e
is
in

co
nt
ac
tw

ith
st
ac
ke

d_
rig

ht
_n

od
e_

co
nt
ac
ts

M
es
h
ty
pe

ca
te
go

ry
ea

ch
gr
ip
pe

rn
od

e
is
in

co
nt
ac
tw

ith
st
ac
ke

d_
le
ft_

gr
ip
pe

r_
co

nt
ac
t_
po

in
ts

Po
si
tio

ns
of

no
de

s
in

co
nt
ac
tw

ith
le
ft
gr
ip
pe

rfi
ng

er
st
ac
ke

d_
rig

ht
_g

rip
pe

r_
co

nt
ac
t_
po

in
ts

Po
si
tio

ns
of

no
de

s
in

co
nt
ac
tw

ith
rig

ht
gr
ip
pe

rfi
ng

er
st
ac
ke

d_
st
re
ss
es

Vo
n
M
is
es

st
re
ss

of
ea

ch
te
tr
ah

ed
ro
n
in

de
fo
rm

ed
m
es
h

Ta
bl
e
A.

3.
:D

at
a
ge

ne
ra
te
d
in

on
e
si
m
ul
at
ed

sq
ue
ez
e_
no
_g
ra
vi
ty

ex
pe

rim
en

ti
n
De

fG
ra
sp

Si
m
.

49

A.2. DefGraspNets Pre-processed Input Data

Key Interpretation

name Name of 3D object grasped on
cutoffs Parameter for rejecting trajectories in which contact is lost?
cells List of tetrahedron cells in object and gripper mesh.
node_type Node type category
node_mod Youngs modulus E at each node
tfn 6D transformation of gripper from neutral position
mesh_pos 3D position of nodes of undeformed mesh
mesh_edges Edges in object and gripper meshes
world_edges Edges between close object and gripper nodes
force Force gripper closes with
gripper_pos Distance of gripper fingers along their closing direction
world_pos 3D position of nodes of deformed mesh
stress Von Mises stress given at node positions
pd_stress Alternative computation of nodal stress

Table A.4.: Fields present in a DefGraspNets pre-processed data point.

A.3. Training Process and Results

This appendix contains additional content describing the results of the trained models.

50

6polygon02
6polygon03
6polygon08
6polygon05
8polygon01
8polygon04
8polygon07
annulus03
annulus04
annulus06
apple1
apple2
cuboid01
cuboid04
cuboid03
cup04
cup01
cup06
cylinder02
cylinder05
cylinder07
ellipsoid02
ellipsoid03
lemon01
lemon02
potato1
potato3
sphere01
sphere03
sphere05
sphere06
strawberry02
strawberry03
tomato1

Table A.5.: Objects in the training dataset for the large training run of the baselinemodel.

51

1 5 10 15 20
0.0

0.5

1.0

1.5

Tr
ai

ni
ng

 M
SE

 L
os

s

8polygon06
cylinder07
lemon01
potato2
sphere03
strawberry01

1 5 10 15 20
Training Epoch

0.0

0.5

1.0

1.5

Te
st

 M
SE

 L
os

s

Figure A.1.: Mean loss values for training and test set over training epochs for baseline
models trained on a single object each.

52

Figure A.2.: Predicted and ground truth deformation and stress of selected test trajec-
tories for the baseline model trained on 8polygon06.

53

Figure A.3.: Predicted and ground truth deformation and stress of selected test trajec-
tories for the baseline model trained on cylinder07.

54

Figure A.4.: Predicted and ground truth deformation and stress of selected test trajec-
tories for the baseline model trained on lemon01.

55

Figure A.5.: Predicted and ground truth deformation and stress of selected test trajec-
tories for the baseline model trained on potato2.

56

Figure A.6.: Predicted and ground truth deformation and stress of selected test trajec-
tories for the baseline model trained on sphere03.

57

Figure A.7.: Predicted and ground truth deformation and stress of selected test trajec-
tories for the baseline model trained on strawberry01.

58

1 5 10 15 20 25 30 35
0

1

2

3

4

5

Tr
ai

ni
ng

 M
SE

 L
os

s

8polygon06
cylinder07
lemon01
potato2
sphere03
strawberry01

1 5 10 15 20 25 3025
Training Epoch

0

1

2

3

4

5

Te
st

 M
SE

 L
os

s

Figure A.8.: Mean loss values for training and test set over training epochs for models
with undeformed input trained on a single object each.

1 5 10 15 20
0.0

0.5

1.0

1.5

Tr
ai

ni
ng

 M
SE

 L
os

s

8polygon06
cylinder07
lemon01
potato2
sphere03
strawberry01

1 5 10 15 20
Training Epoch

0.0

0.5

1.0

1.5

Te
st

 M
SE

 L
os

s

Figure A.9.: Mean loss values for training and test set over training epochs for models
learning tetrahedral stress trained on a single object each.

59

	Introduction
	Related Work
	Robotic Grasping in Simulation
	Learning for Deformable Object Dynamics

	Preliminaries
	Finite Element Method

	Methodology
	Simulating Grasp Experiments Using DefGraspSim
	Graph Neural Network Implementation
	Modifications to the Baseline Model

	Results
	Baseline Model
	Learning on Undeformed Input State
	Learning Tetrahedral Stress

	Discussion
	Conclusion
	Future Work

	Appendix
	Generated Dataset and DefGraspSim Output Format
	DefGraspNets Pre-processed Input Data
	Training Process and Results

