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1 Introduction

1.1 Motivation

In industrial applications, conventional robots have achieved great success because it
offers the possibility to combine its high level of automation with human soft skills
without further interaction with humans [60]. Collaborative robots (or cobots [13]) have
revolutionized the development of robotics by enabling physical human-robot interaction
(pHRI) in shared workspaces compared to conventional robots [44]. Relevant studies have
shown that collaborative robots are widely used in medical applications, manufacturing,
wearable robots, etc. [56].

(a) (b)

Figure 1.1: Figure (a) shows a conventional industrial robot with a cage around it to ensure
a safe distance [49]. Figure (b) shows a cobot cooperating with a human user
to accomplish a specific task. In this case, there is a potential collision risk
[48].

In most conventional robot application scenarios, there is a safe distance between the
robot and the human user, as shown in Figure 1.1(a), to ensure collision avoidance [37].
Instead, due to the existence of pHRI, direct physical contact between the robot and the
human user is possible, see Figure 1.1(b). For example, learning from demonstrations in
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the context of reinforcement learning reduces the prior knowledge required by unskilled
users to teach robots new skills [55]. This needs to handle possible collisions. On the one
hand, the robot needs to adapt its trajectory to the human’s movement, and on the other
hand, the robot needs to provide the human with sufficient information about its own
movement.

One possible solution is to have the robots send signals about their intents that the
human user can easily understand and then prepare for their next move. Lemasurier et
al. [41] conducted several studies on three light-based intent signals (including gaze,
arm light, LED bracelet), three motion-based intent signals (including head pan, forearm
movement, gripper movement) and a no-signal (control) condition. The results supported
that the average rating of signal noticeability by human participants was significantly
higher in both the motion-based and light-based signaling conditions than in the control
condition. This means that these signals can help robots communicate their intents and
help human participants better perceive the robot’s behavior. There are many similar ways
to communicate robot intents. Even using projections to indicate the robot’s direction of
motion has been shown to be effective [57].

However, which signal to use also depends on the particular application scenario. For
example, many outdoor environments and production facilities are full of noise that can
significantly reduce the effectiveness and reliability of the verbal signal. We notice that
many robots use a tablet as their head, which is suitable for displaying gaze signals. With
a tablet, the size, shape, direction and other features of the gaze can be flexibly adjusted.
The benefits of robot gaze, including improved timing and fluency in handovers and human
perception of the robot’s navigational intents, have been described in previous studies [19,
18]. To explore how the robot’s gaze behaviors should corporate with the robot arm’s
movement to signal more informative intents, the mechanism of eye-arm coordination
should be investigated. Olson et al. [47] found that human users can accurately infer
the robot’s delivery intents using several well-designed eye-hand coordination patterns
inspired by human behaviors.

Obviously, the robot’s gaze behavior needs to be further explored and adapted to specific
application scenarios. In this thesis, the potential of robot gaze for communicating collision
avoidance intent in shared workspaces was investigated. We implemented the temporal
scaling method for obstacle avoidance presented by Koert et al. [35] in the context of
assembly tasks. This method was developed to improve the safety perception of the
human user and the fluency of human-robot interaction (HRI). Furthermore, various gaze
behaviors were developed to improve human users’ perception of robot intents. Finally,
we conducted a user study to find empirical evidence on our topic. Participants performed
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a collaborative task with the robot and evaluated their preference for the robot’s gaze
behaviors.

1.2 Structure of this Thesis

This thesis consists of the following chapters:

Chapter 2 provides basic information for understanding the technical aspects of the thesis.
In addition, the context of the research problem and a comparison of the current work
with previous work are given.

Chapter 3 describes the results of pilot studies and the design process for gaze behaviors.

Chapter 4 presents the design process of the study, including important aspects of empirical
research such as hypotheses and detailed experimental methods.

Chapter 5 describes the methods used to analyze the collected data and provides possible
interpretations of the results.

Chapter 6 summarizes the findings and discusses future work.
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2 Fundamentals and Related Work

This chapter will first introduce the basic terms and methods used in this thesis. Instead
of concrete examples, an introduction will be given. Understanding these basics will
help readers understand the relevant technical aspects of this thesis. In addition, we
will investigate the relevant literature and compare the existing results with an intuitive
comparison table.

2.1 Fundamentals

The fundamentals come mainly from the fields of machine learning, statistics, and robotics.
Most of them are classical terms or methods that are widely used. The theory of the
temporal scaling method and the related concept come from the work of Koert et al. [35].
We recommend readers who are not familiar with these areas to use this section to gain
sufficient knowledge to understand this thesis.

2.1.1 Radial Basis Function

A radial basis function (RBF) is a real-valued function φ usually used to approximate
functions. The value of a RBF depends only on the distance between the input and a
fixed center [64]. As a typical representative of RBF, a Gaussian basis function can be
represented as

φ(r) = e−(ϵr)2 (2.1)

where ϵ is used to control the shape of the RBF, r = ∥x − xi∥ denotes the Euclidean
distance between the input and the center point. As shown in Figure 2.1, a RBF is strictly
positive definite.
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Figure 2.1: Gaussian basis function for several choices of ϵ[64]. As we can see, ϵ controls
the shape of the RBF and a RBF is strictly positive definite.

2.1.2 Linear Regression

Linear regression aims to model the relationship between dependent and independent
variables. For example, given a data set {yi, xi1, xi2, ..., xip}ni=1, a linear regression model
assumes that the relationship between the dependent variable y and independent variables
x is linear. Moreover, a noise term ϵ needs to be added to the model. Thus, the linear
model can be represented as

yi = β0 + β1xi1 + ...+ βpxip + ϵi, i = 1, ..., n, (2.2)

or in matrix notation as

y = Xβ + ϵ, (2.3)

where β denotes the regression coefficients. Linear regression models are often fitted by
minimizing the least squares defined as RSS(β) = (y −Xβ)T (y −Xβ). Other models
minimize a penalized version of the least squares cost function. For instance, the ridge
regression (L2-norm penalty) defines the cost function as (y −Xβ)T (y −Xβ) + γβTβ.
This can help push the regression coefficients towards zero to improve the performance
of the model on new data. Differentiating the cost function by β gives the closed-form
solution of the linear regression models.
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2.1.3 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a widely used machine learning method that
estimates the parameters of an assumed probability distribution from observed data. MLE
constructs the likelihood function under the assumed statistical model and maximizes it so
that the observed data is most likely [61]. The parameter that maximizes the likelihood
function is called the maximum likelihood estimate [54].

To illustrate the concept of MLE, suppose there is a random sample data X1,X2, ..., Xn.
It is assumed that the probability distribution of this sample depends on the parameter θ
[45]. This means that the probability density function (PDF) or probability mass function
(PMF) of each Xi is f(xi|θ). We call the joint PDF or PMF of this sample data L(θ)

L(θ) = P (X1 = x1, X2 = x2, ..., Xn = xn)

= f(x1|θ)f(x2|θ)...f(xn|θ)

=
n∏︂

i=1

f(xi|θ)
(2.4)

The sample is random, i.e., the Xi are independent. Thus, the second equality holds. MLE
finds the parameter θ that maximizes the likelihood function L(θ).

2.1.4 Bayes’ Theorem

Bayes’ theorem is a theorem from probability and statistics. With Bayes’ theorem, we can
represent the probability of an event with prior knowledge of the conditions associated
with the event [62]. For example, for a classification task, Bayes’ theorem can be described
as follows. Given an instance x to be classified. There are K possible classes Ck to which
the instance should be assigned. Using Bayes’ theorem, the conditional probability can be
decomposed as

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
=

p(x|Ck)p(Ck)∑︁
j p(x|Cj)p(Cj)

(2.5)
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2.1.5 Gaussian Mixture Model (GMM)

AGaussianmixture model is a probabilistic model that fits the data with amixture of a finite
number of Gaussian distributions with unknown parameters. It’s general mathematical
expression is

p(x) =
K∑︂
k=1

πkN (x|µk) (2.6)

where πk are weights and
∑︁K

k=1 πk = 1, µk denotes the mean of the k-th Gaussian
distribution.

2.1.6 Quadratic Programming (QP)

As a type of nonlinear programming, Quadratic Programming (QP) is the procedure for
optimizing mathematical optimization problems with quadratic functions subject to linear
constraints on the variables [63]. The standard form of a QP can be formulated as

min
x

1

2
xTPx+ qTx

s.t. Gx ≤ h

Ax = b

(2.7)

where the objective function is convex if and only if P is positive-semidefinite. For convex
QP problems, there are several potential solution methods, such as the interior-point
method and the active-set method. In this thesis, we used the CVXOPT framework and
expected a problem of the standard form shown above, defined by the parameters {P , q,
G, h, A, b}.

2.1.7 Probabilistic Movement Primitives

Probabilistic movement primitives (ProMPs) are used to realize a probabilistic interpre-
tation of movement primitives (MPs). Specifically, a ProMP models a distribution over
trajectories. As a promising framework for representing and learning MPs, the concept of
ProMPs has several advantages, including support for simultaneous activation and the
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ability to adapt to altered target positions, etc. [50]. In this framework, the joint or
Cartesian position of the robot xt at time step t is given by a linear basis function model

xt = φ (t)T w + ϵ, (2.8)

where φ (t) is a n dimensional vector, each element of which is a time-dependent basis
equation, w is a weight vector and ϵ is Gaussian noise with zero mean. Ridge regression
is used to obtain the weight vector w.

Maximum likelihood estimation (MLE) is used to fit a Gaussian distribution over the
weight vectors p (w) = N (µw,Σw) to capture the variance of the demonstrations. To
adjust the execution speed of the movement, a phase variable z is defined as z = αt to
decouple the movement from the time signal, where t represents time. With the scaling
factor α, the phase z is designed as z = 0 when the movement starts and z = 1 when the
movement ends.

2.1.8 Online Temporal Scaling of ProMPs

It is necessary to adjust the trajectory of the robot to avoid collisions between the robot
and potential obstacles. Koert et al. proposed two methods to achieve this goal: online
spatial deformation and online temporal scaling [35]. Here, we present the theoretical
basis for the online temporal scaling method for adjusting the robot’s motion velocity. We
define a generalized logistic function as

σ(z̄) = δz0 +
δzN − δz0

1 + (1/εstart)exp(m(z̄c − z̄))
, (2.9)

where the scaled phase z̄ = 100z, δz0 is the initial phase velocity, δzN is the resulting end
velocity, m is the parameter controlling the velocity change. z̄c indicates the phase where
the phase velocity starts to change, and in this phase the resulting σ(z̄c) will have a slight
change due to εstart relative to σ(zc). Thereby, this generalized logistic function encodes
smooth velocity adjustment profiles controlled by the predefined parameters. As shown
in Figure 2.2, we can generate different acceleration or deceleration profiles by changing
the parameters in Equation (2.8).

Using the generalized logistic function, we can calculate the phase velocity δz using

δz = δzmaxσ(z̄), (2.10)
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Figure 2.2: (a) By choosing different parameters, we can obtain different acceleration
or deceleration profiles. (b) Given a desired stop phase zstop and a optimal
deceleration duration we can compute the parameters of the corresponding
deceleration profile[35].

where δzmax denotes the upper limit for the phase velocity. We define the time at which
the phase velocity falls below a predefined small value as z̄stop, indicating the stop of the
robot motion. If potential collisions with obstacles are detected along the robot trajectory,
we can compute z̄stop with an obstacle from a discretized phase vector and then adapt
the parameters of the generalized logistic function for a deceleration dependent on the
slowing down phase duration

γ = z̄stop − z̄c, (2.11)

Given z̄stop and the current phase z̄n, the phase duration γ can be determined by solving
the constrained optimization problem

argmax
γ

(γ − γopt)
2

s.t. z̄stop − γ > z̄n
(2.12)
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where γopt denotes a desired optimal deceleration duration that should be chosen in
advance. According to Equation 2.10, the phase at which the velocity begins to change
can be calculated as z̄∗c = z̄stop − γ∗, given the optimized γ∗. As described above, we have
already gathered knowledge about some of the parameters, including

σ(z̄stop) = ϵstop, δz0 = 1, δzN = 0 (2.13)

Thus the optimal slop of the velocity m∗ change is obtained by solving Equation (2.8) for
m

m∗ = log(
ϵstopϵstart
1− ϵstop

)/(−γ∗) (2.14)

the resulting values m∗ and z̄∗c are used to update the velocity profile with Equation 2.8.
When the potential collision risk disappears, the generalized logistic function will be
adapted with an acceleration profile to the original speed.

2.2 Related Work

Compared to conventional industrial robots, collaborative robots (cobots) can achieve
collaboration with human users. This eliminates the need for protective cages used
to ensure a safe distance, and cobots can be programmed more conveniently with less
advanced knowledge than traditional robots [52]. However, a prerequisite for successful
collaboration is that safety requirements are met. So far there is no systematic legislation
in the field of cobots [52]. Some technical standards refer to the field of cobots, but, they
do not include a specification for the design of a safe collaborative shared workspace
[26, 27, 25, 28]. There are also some more practical works, e.g., Lasota et al. [40]
summarized the commonly used methods for dealing with safety issues due to collisions in
the field of HRI, shown in Figure 2.3. In the next chapters, we will focus on safety issues
caused by undesired contact between robots and human users in shared workspaces. This
thesis relates to three of the four aspects shown in Figure 2.3: control, prediction and
psychological consideration.
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Figure 2.3: The common methods of dealing with safety issues caused by collisions in
HRI [40]. This thesis involves three aspects: control, prediction and psycho-
logical consideration.

2.2.1 Collision Avoidance for Collaborative Robotics

Collision avoidance and motion planning are two closely related research topics in robotics.
The problem to be solved in motion planning is to find a way to guide the robot from
the initial state to the target state under the given constraints while avoiding collision
between the robot and the environment [24]. Common solutions in this context are usually
based on the artificial potential fields (APF) method [16]. Although they are usually easy
to implement and have good performance, since they do not involve a generalizable
representation of motions, they cannot be generalized for different workspace settings
in the scenario of learning from demonstrations. Moreover, methods based on APF are
plagued by the global minimum point problem [65]. To obtain generalized motions from
human demonstrations, the movement primitives approach modulates the parameters of
the robot control policy decomposed from complex motions [50]. Based on movement
primitives (MPs), the concept of probabilistic movement primitives (ProMPs) can capture
the variance in human demonstrations by working with distributions [50]. Although some
literature has extended the ProMPs to apply to interactive environments[34, 12, 43], they
are either too computationally intensive or can only deal with static obstacles. Koert et al.
[35] developed a goal-based intention prediction model from demonstrations and used
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the learned model to adapt ProMP trajectories using two approaches: spatial deformation
and temporal scaling. Results showed that using intention-aware adaptation, human users
can perceive a higher level of safety.

2.2.2 Robot Gaze for Communication

Many ideas in HRI research come from observations of human behavior. A number of
studies have revealed that humans infer the intents of their collaborators by observing
various behavioral cues [5, 2, 11, 53]. This gives rise to the important concept called joint
attention which describes behavior in which attention is shared between people through
behavior cues. It is worth mentioning that among the various behavioral cues, the gaze
behaviors can intuitively express the intents in the human interaction process in a simple
way, which inspires the HRI research.

It is supported by pertinent research that in order for robots to be used in a shared
workspace to help humans with their daily tasks, they must be able to engage in joint
attention in a manner that is comparable to humans [36]. Inspired by human-human
interaction, many research groups have studied the use of robots’ active signals in HRI.
The findings of Lemasurier et al. [41] confirmed that the noticeability of human user
for robot movement can be improved by both the light-based signals (such as gaze, arm
light, LED bracelet) and motion-based signals (such as head pan, forearm movement,
gripper movement). Furthermore, we also learned that the signal function is directly
impacted by the distance between the signal and the human user, and that this effect
can have opposing effects on various signal types. It is clear that there are a variety of
possible signals that could be used to communicate a robot’s intent, but which one is most
useful depends on the application scenario. In particular, it is challenging to use verbal
signals that humans typically use in noisy factory environments. In this case, light-based
or motion-based signals might be more suitable. Some researchers have also studied the
use of projections for communicating robot’s intent [20]. Although the results indicated
that light-based projections can help humans infer the robot’s movement direction, a clear
drawback of this signal is that it requires human users to move their eyes from the robot
to the ground in order to gather information, which could distract human users’ attention.

Notably, multiple works have found close connection between gaze and mental focus of
attention. One of the important results is the eye-mind hypothesis introduced by Just
and Carpenter [31], which provided empirical evidence of the relationship between eye
fixation and the information being processed in the mind. The benefits of robot gaze
have also been mentioned by many researchers, much like the way humans interact
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with one another. The use of gaze has been found to be one of the most central and
important factors of human interaction that helps to coordinate and confirm the presence
of one’s interlocutor [32]. Inspired by this, Hart et al. [19] indicated that robot gaze
can be used to enhance timing and fluency in handovers by investigating the influence
of human-inspired, non-verbal communicative cues during turn-taking tasks. The work
of Kshirsagar et al. [38] also provided evidence that well-designed robot gaze can make
handover more natural and communicative. According to the research of Boucher et
al. [6], human subjects are sensitive to gaze when performing cooperative tasks. More
than that, according to the research of Tomasello et al. [59], gaze also aids in indicating
the relative position of the robot and human user. The above evidence shows that the
robot gaze has the potential to help robots communicate with human users in a shared
workspace.

2.2.3 Design of Gaze Behavior to Assist Collision Avoidance

In the preceding subsection, related work has elucidated the importance of gaze behavior
as a means of communicating robot intent. However, an appropriate gaze behavior for
expressing intent to avoid collision remains an unresolved inquiry. The central aspect here
is that the gaze behavior should match the robot’s movement to better express the robot’s
intent, so as to better achieve collision avoidance and improve the subjective interaction
experience of the human user.

This problem is related to research into eye-hand coordination (also called reaching ability)
of robots. The related work on eye-hand coordination can be divided into two categories:
the mathematical approach and the learning approach [10]. The mathematical approach
utilizes the robot’s forward or inverse kinematics [66] and is well suited to dealing with
static environments [30]. On the contrary, the learning approach uses neural networks to
build a mapping system from visual perception to hand motor parameters [9].

The problem we are interested in is not the same as most work providing solutions for
robot eye-hand coordination. That is, in our context, the robot does not have to have
an active machine vision system, which means that the robot’s eyes do not perceive the
environment. The focus of our study is to use the robot’s gaze behavior to communicate
robot’s intent. There are fewer but similar studies on this topic. Olson et al. [47] de-
signed five gaze behaviors based on observational data obtained from human interactions.
Experiments have been conducted in which the robot performs a collaborative task and
the information communicated to the humans comes solely from the robots’ eye-hand
coordination. Depending on the tasks that need to be performed, the robots were assigned
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specific modes of operation. The authors concluded that human subjects were able to
infer the target delivery location with high accuracy. In a study by Neggers et al. [46],
different gaze strategies were investigated on human comfort and robot predictability.
Although this work is limited to a frontal passing scenario, the results showed that having
the robot look at its navigation target is a better strategy than having it face the opposite
direction to communicate motion intents to the human user. In addition, results showed
that looking in the intended direction is also a suitable strategy for conveying intents.

Even if the results mentioned above are not directly related to collision avoidance, they
bring us experiences and insights into the design of the gaze behavior, which we will carry
out later.

As a summary of this chapter, Table 2.1 gives an overview of related work, where CA
stands for collision avoidance, EA for eye-arm coordination and SW for shared workspace.
A checkmark under a topic indicates that the corresponding article mentioned, used, or
suggested a theory or method on the topic. On the contrary, a crossmark under a topic
indicates that the article does not cover the topic. To the best of the author’s knowledge,
there is no literature that covers all of these five topics. In fact, our work on designing
robot gaze behavior with robotic arm movements to improve the safety of HRI in shared
workspaces will bring new insights to the HRI community.
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tions of Humans and Robots

✓ ✓ ✓

Continued on next page
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Continued from previous page
Nr. Authors & Publica-

tion year
Title Gaze/Intention/

CA/EA/SW
17 Boschetti et al.

2022.
The influence of collision avoidance
strategies on human-robot collaborative
systems

✓ ✓ ✓

18 Gasparetto et al.
2015.

Path planning and trajectory planning
algorithms: A general overview

✓ ✓

19 Hwang et al. 1992. Gross motion planning—a survey ✓ ✓
20 Zhang et al. 2010. Dynamic artificial potential field based

multi-robot formation control
✓ ✓

21 Hata et al. 2012. Target object announcement combining
robot gaze and augmented hand

✓ ✓ ✓ ✓

22 Kshirsagar et al.
2020.

Robot gaze behaviors in human-to-robot
handovers

✓ ✓ ✓

23 Neggers et al. 2022. Effect of Robot Gazing Behavior on Hu-
man Comfort and Robot Predictability
in Navigation

✓ ✓

24 Moon et al. 2014. Meet Me where I’m Gazing: How Shared
Attention Gaze Affects Human-Robot
Handover Timing

✓ ✓ ✓

25 Chao et al. 2012. A developmental constraint driven ap-
proach to developmental robotic hand-
eye coordination

✓

26 Zhou et al. 2016. Learning Visuomotor Transformations
and End Effector Appearance by Local
Visual Consistency

✓

Table 2.1: Overview of related work. CA denotes collision avoidance, EA denotes Eye-arm coordi-
nation and SW denotes shared workspace. A checkmark under a topic indicates that
the corresponding article mentioned the topic or used/proposed a theory or method
related to the topic. On the contrary, a crossmark under a topic indicates that the article
does not cover the topic. To the best of the author’ knowledge, there is no literature
that covers all of these five topics.
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3 Gaze Behaviors for Communicating
Collision Avoidance Intent

The gaze behaviors investigated in this study were mainly based on the observation of
human-human interactions and related literature. However, there are many possible
combinations of human-like behaviors that can be used as the robot gaze. In addition,
not all gaze behaviors are suitable for our application. Therefore, we conducted two pilot
studies and collected feedback from participants to select a set of behaviors that make
sense to human cognition as an iterative improvement method.

3.1 Problem Statement

In this thesis, we need to find a suitable robot gaze behavior to communicate robot intent
to avoid potential collision. The concrete scenario is that a robot and a human user
cooperate to complete a series of assembly tasks. The robot is fixed on the base, so
our concern is the collision between the robot arm and human hand. According to the
observation of human-human interaction, the robot’s gaze behavior plays an important
role in this context. We need to design several potentially representative gaze behaviors
at first, then compare these behaviors, analyze the differences in their effects on the
execution of collaborative tasks and the behavior of human users.

The initial selection of gaze behaviors was mainly based on the feedback from participants
and responses to experimenter’s questions. The questions were: Did you notice the robot’s
gaze behavior? How many gaze behaviors did you notice? Do you think it necessary
to change the existing experimental setup to improve your overall experience when
interacting with the robot?
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3.2 Experimental Setup

Figure 3.1: The experimental facilities mainly included a Franka Emika Panda robot arm
with an end effector, an OptiTrack motion tracking system with 12 camera, a
pan-tilt unit (PTU) with a SAMSUNG S6 tablet, and three tables. This figure
only shows the forward trajectory of the robot arm, the backward trajectory is
similar in shape to the forward trajectory.

As shown in Figure 3.1, the experimental facilities consisted of a Franka Emika Panda
robot arm with an end effector, a pan-tilt unit (PTU) with a SAMSUNG S6 tablet, and
an OptiTrack motion tracking system with 12 cameras to track the positions of the end
effector, the human hand and the human head. Boucher et al. have shown us that using
the combined movement of the eyes and the head to express intent is a good way [6], so we
selected a static image of the eyes displayed by the tablet as the robot’s face and combined
it with the mechanical movement of the PTU. Participants used a glove and a hood to
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attach the marker of the OptiTrack system to their hand and head. The robot arm carried
objects from position 1 to position 3 on platform 1 along a Cartesian trajectory learned
from three demonstrations. The reciprocating movement of the robot arm consisted of
two parts: the forward movement to deliver objects from position 1 to position 3 and the
backward movement to return to position 1. The two parts were each learned from three
demonstrations. The human user assembled the objects collected from position 2 and
position 3 on platform 2 and then placed the assembled objects on platform 3. Position 1
is fixed in advance, the experimenter stood next to position 1 and position 2 to supplement
objects.

The trajectory can be learned from joint space or Cartesian space and conditioned by
via points using ProMP introduced in Subsection 2.1.7. In our experiments we used the
learned mean trajectory from Cartesian space. See Figure 3.2. In addition, if the trajectory
of the robot arm was occupied by an obstacle, the robot arm would use the temporal
scaling method described in Subsection 2.1.8 to adjust the velocity.

Figure 3.2: The trajectory was learned from Cartesian space using ProMP. The light blue
areas represent the learned trajectory distribution. The gray lines represent
the 3 demonstrations. As the trajectory of the robot arm, we used the mean
value represented by the blue lines.

23



3.3 Gaze behavior first version

In the first pilot design, the pan-tilt unit (PTU) and the tablet were mounted on top of the
robot as shown in the left half of Figure 3.4 because we thought it made the robot look
more anthropomorphic. The participant was asked to stand up when interacting with the
robot in order to avoid the robot arm interfering with their view. Based on observations of
human behavior and inspired by the study of Neggers et al. [46], we thought the robot’s
gaze toward the motion destination was suitable in safe condition. But when collision
risk was present, the robot should exhibit different gaze behavior to communicate with
human user. For this purpose, we chose three gaze behaviors: gazing toward the human
head, nodding in the direction of the human head and shaking head in the direction of
the human head. The state of the robot arm and a distance-based metric, shown in Figure
3.3, determined which behavior the robot will exhibit.

Figure 3.3: Distance-based metric used to determine whether it is possible for the human
user to grab the object without colliding with the robot arm after the robot
arm has already stopped. In our design, if the end effector of the robot arm is
within ten centimeters of the object’s pickup location, it’s difficult to grasp the
target without collision.

Based on the above considerations, we designed the following gaze behaviors:

Condition A: The robot gazes toward its motion destinations.

Condition B: The robot gazes toward its motion destinations. After the robot arm stops
because of an obstacle on the trajectory, the robot will gaze toward the human head.
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Figure 3.4: Our study included two positions of robot head. When the robot head was on
the top (head position 1), the robot looked more anthropomorphic, while the
gaze behavior seemed to be more noticeable when the robot head was on
the table (head position 2), according to the participant’s feedback.

Condition C: The robot gazes toward its motion destinations. After the robot arm stops
because of an obstacle on the trajectory, the robot will nod toward the human head.

Condition D: The robot gazes toward its motion destinations. After the robot arm stops
because of an obstacle on the trajectory, the robot will nod toward the human head if
fetching objects is still possible (shown in the right half of Figure 3.3), or shake the head
toward the human head if fetching objects is no more possible (shown in the left half of
Figure 3.3).
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3.4 Gaze behavior second version

The participant of the first pilot study pointed out a shortcoming in the first design. In
this design, the robot only started performing the gaze behavior after the robot arm had
stopped. In addition, because the participant was standing at the same height as the
robot, the robot must first look up at first before shaking its head or nodding. Added to
this is the reaction time of the mechanical components of the pan-tilt unit (PTU). When
the participant looked at the robot’s head, the robot often had not yet started the gaze
behavior. Due to the existence of the assembly task, the participant usually did not wait
for the robot to complete its behavior, let alone try to understand it, but continued with
the assembly task.

To work around this issue, we added a human hand detection function (pre-emptive
collision gaze) to the existing design by defining two risk region around two object’s
pick-up location, as shown in Figure 3.5. If the human hand was detected, the robot
would look up even if the robot arm was still moving. When the robot arm was stopped,
the robot head was ready to nod or shake. This made the robot react faster. In addition,
we thought it would be interesting to adjust the experimental conditions to compare the
difference between head shaking and head nodding.

Based on the discussion above, we adjusted the gaze behavior as follows and conducted a
second pilot study:

Condition A: The robot gazes toward its motion destinations.

Condition B: The robot gazes toward its motion destinations. When collision risk exists,
the robot will look up. After the robot arm stops because of obstacle on the trajectory, the
robot will gaze toward the human head if fetching objects still possible, or shake head
toward the human if fetching objects not possible.

Condition C: The robot gazes toward its motion destinations. When collision risk exists,
the robot will look up. After the robot arm stops because of obstacle on the trajectory, the
robot will nod toward the human head if fetching objects still possible, or gaze toward
the human if fetching objects not possible.

Condition D: The robot gazes toward its motion destinations. When collision risk exists,
the robot will look up. After the robot arm stops because of obstacle on the trajectory,
the robot will nod toward the human head if fetching objects still possible, or shake head
toward the human if fetching objects not possible.
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Figure 3.5: We defined two square risk regions with sides of 40 cm. If the human hand
enters one of these two regions and the robot arm is also moving towards
this region, we believe there is a risk of collision at this time.

3.5 Gaze behavior third version

The participant of the second pilot study provided valuable feedback on the new design.
First, since the participant performed the collaborative work while standing, he always
had to look down to grab objects. This made it difficult for the participant to pay attention
to the robot’s gaze behaviors. As a workaround, we asked the participant to sit down on
a swivel chair. Second, with this design, in most cases the robot would gaze toward the
two destinations on the left or right. When there was a risk of collision, it still took some
time to change direction from either side toward the human head (around the middle
of the robot head’s pan angle), which still caused the participant to feel some delay. To
solve this problem, we had the robot look forward when there was no risk of collision. In
addition, the participant commented that the head nodding behavior was less noticeable
than head shaking behavior. So we reduced the proportion of head nodding behavior in
the design and left it in condition D only.

27



The design of gaze behavior before the start of the experiment was as follows:

Condition A: The robot always looks forward.

Condition B: The robot looks at the human when collision risk exists, otherwise look
forward.

Condition C: The robot gazes forward. When collision risk exists, looks at the human.
After the robot arm stops because of an obstacle on the trajectory, shakes its head towards
the human.

Condition D: The robot nodes toward the human head. When collision risk exists, looks at
the human. After the robot arm stops because of an obstacle on the trajectory, the robot
nodes toward the human head if fetching objects is possible, or shakes its head toward
the human if fetching objects is not possible.
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4 Hypothesis-Driven Experiments

Unlike social science research and robotics research, HRI research involves at least two
interacting components: the human and the robot. While the participants in HRI appear
to be relatively well-defined, the research scope of HRI is broad and interdisciplinary.
Some of the work, referred to as robot-centric work, focuses on the technical aspects of the
robot with the goal of improving the functionality of the robot itself for interacting with
humans. While user-centered work studies the influence of humans on HRI outcomes,
the focus is on the way humans perceive and interact with robots in different contexts, as
well as empirical studies in traditional social sciences [3].

Empirical studies have become standard across the broad spectrum of HRI research.
Rigorous empirical studies are essential to obtain valid conclusions about the performance
of new methods [22] and often contain a number of important sessions. For example, the
researchers need to specify the context in which HRI takes place, as this helps clarify the
application scenarios and the importance of the research results. In addition, the context
in which human-robot interactions take place is also an indispensable topic that strongly
influences the results.

There are some research methods that are recommended as a guideline for rigorous
experimental design in the relevant literature. These methods have some sessions in
common. For example, the experimenter needs to find a research question that prevents
the author from getting lost in the many details of the experimental design at first.
Additionally, statistical tests are typically an essential session that can help researchers
verify the accuracy of test results. As shown in Figure 4.1, Gravetter and Forzano proposed
a closed-loop research method that uses the result to modify, refine, or extend the original
research idea [17]. Another method proposed by Hoffmann et al. [22] does not have this
feedback mechanism, but its overall concept is consistent with the previous one, as shown
in Figure 4.2. In fact, we went through a similar feedback process with the help of the
pilot studies. In this chapter we will describe the empirical study design that follows the
main ideas derived from the two methods.
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Figure 4.1: The method recommended by Gravetter and Forzano [17] uses a closed-loop
mechanism to modify and refine the original research idea.

4.1 Research Questions

In this thesis, we are particularly interested in the relationship between the design of robot
gaze behavior and human perception of the robot’s intent. Similar to humans performing
collaborative tasks, we can expect that if the robot can communicate the motion intent
well, the collaborative task will be performed more smoothly, and the collision between
human and robot will also be reduced. Therefore, we begin our empirical study with two
research questions:

1. To what extent, if any, will well-defined robot gaze behavior lead human users to
anticipate the robot’s intent?

2. Will human users get any benefit with a robot equipped with well-defined gaze
behavior?
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Figure 4.2: The method proposed by Hoffmann et al. [22] does not have a feedback
mechanism like the method recommended by Gravetter and Forzano [17].
However, the overall concepts of the two methods are the same.

4.2 Constructs and Hypotheses

Constructs are representations of the concepts of interest in a study. In empirical studies,
researchers are concerned with finding the relationships between constructs. In our
context, the constructs include: gaze behavior, human’s anticipation of danger, intent
communication of robot, human-perceived competence of the robot, human discomfort
and efficiency of the collaborative task. The gaze behavior contains the four conditions
proposed in Section 3.5.

Hypotheses are affirmative statements of relationships between constructs that we can
either support or refute. Based on the information obtained from the relevant literature
and the observation of human-human interaction, we propose the following hypotheses:

Hypothesis 1: Human users better anticipate danger working with the robot in condition
D than in other conditions.

Hypothesis 2: Robot’s gaze behavior in condition D better communicates the robot’s intent
to the human user than gaze behaviors in other conditions.

31



Hypothesis 3: Gaze behaviors in conditions B, C, and D improve the human-perceived
competence of the robot compared with gaze behavior in condition A (control group).

Hypothesis 4: Gaze behaviors in conditions B, C, and D reduce the discomfort of human
users compared with gaze behavior in condition A (control group).

Hypothesis 5: Gaze behavior in conditions D reduce task execution time.

4.3 Design of The Study

After the definition of research question and constructs, we have proposed five hypotheses.
Now we start designing the study.

4.3.1 Study Context

As shown in Figure 4.3, there are three ways to test the hypotheses: testing in a laboratory,
testing in the field, or testing on the Internet. Testing in a laboratory avoids the problem of
controlling for confounding variables when testing in the field. Although the characteristics
of field studies conducted in daily environments create conditions for research external
and ecological validity, in our research scenario, the interaction between the robot and
the human will take place in a specific indoor workspace, and the base of the robot will
be fixed, what makes fields studies difficult to implement. The third option, testing on the
Internet, has become more and more popular in recent years. A common practice in HRI
is to show participants videos of humans interacting with robots and questionnaire about
their subjective feelings. With this option we can collect data faster while the external
validity is lower and we lose control over online participants. In our study, we will mainly
use the option of testing in a laboratory.

4.3.2 Between- and Within-Participants Designs

In a between-participants study, each participant is randomly assigned to a group to
experience a variation in experimental conditions. We need to compare these different
groups of participants to find out the relationships between the constructs. In contrast,
in a within-participants design, each person experiences more than one experimental
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(a) (b) (c)

Figure 4.3: Figure (a) shows an example of testing in a laboratory [19], a human is collab-
orating with a robot to complete a puzzle. Figure (b) shows a hallway in which
a field study will take place [18]. As an example of testing on the internet,
Figure (c) shows a human conducting an online survey [8].

condition. What we need to compare are the different experiences of each participant. An
image explanation is shown in Figure 4.4.
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Figure 4.4: The difference between between-participants design and within-participants
design is that in between-participants design, participants will only experience
one experimental condition.

Although within-participants design suffers from the order effect and the novelty effect,
in our scenario we want to take advantage of its low requirement for the number of
experiment participants. As a workaround to mitigate the two negative effects, we can
use a method called counterbalancing to randomize the order of the conditions that the
participants experience.

4.3.3 Operationalizing Constructs into Variables and Measures

Operationalization means converting constructs into specific things that we can manip-
ulate and measure. However, this is not an automatic process as a construct can be
operationalized in many different ways. In our study, we can operationalize the efficiency
of collaborative task as task execution time, which means the total time spent by partici-
pants in completing the collaborative task. For other constructs there aren’t very intuitive
measures, for which we need to design questionnaires to measure the response of the par-
ticipants. Bartneck et al. proposed a standardized measurement tool called the Godspeed
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Scale which is widely used in HRI with five consistent questionnaires using five-point
Likert-type scales [4]. However, the five key concepts of anthropomorphism, animacy,
likeability, perceived intelligence, and perceived safety are not compatible with our study.
Based on the Godspeed Scale, Carpinella et al. developed the Robotic Social Attribute
Scale (RoSAS) [7], which contains exactly the concepts and items that interest us. We can
use these items to measure human’s judgments of the human-perceived competence of the
robot and discomfort. The remaining two constructs of anticipation of danger and intent
communication can be measured using two subjective item that we designed ourselves.
The four questionnaires used in our study are shown in Table 4.1.

Questionnaire 1: ANTICIPATION OF DANGER
“I was able to anticipate potential collisions with the robot”

Strongly disagree 1 2 3 4 5 6 7 8 9 Strongly agree

Questionnaire 2: INTENT COMMUNICATION
“The robot communicated its intent clearly”

Strongly disagree 1 2 3 4 5 6 7 8 9 Strongly agree

Questionnaire 3: PERCEIVED COMPETENCE
Using the scales provided,

how closely are the words associated with your impression of the robot?
Knowledgeable

Strongly disagree 1 2 3 4 5 6 7 8 9 Strongly agree
Interactive

Strongly disagree 1 2 3 4 5 6 7 8 9 Strongly agree
Responsive

Strongly disagree 1 2 3 4 5 6 7 8 9 Strongly agree
Capable

Strongly disagree 1 2 3 4 5 6 7 8 9 Strongly agree
Competent

Strongly disagree 1 2 3 4 5 6 7 8 9 Strongly agree
Reliable

Strongly disagree 1 2 3 4 5 6 7 8 9 Strongly agree

Questionnaire 4: DISCOMFORT
Using the scales provided,

how closely are the words associated with your impression of the robot?
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Aggressive
Strongly disagree 1 2 3 4 5 6 7 8 9 Strongly agree

Awful
Strongly disagree 1 2 3 4 5 6 7 8 9 Strongly agree

Scary
Strongly disagree 1 2 3 4 5 6 7 8 9 Strongly agree

Awkward
Strongly disagree 1 2 3 4 5 6 7 8 9 Strongly agree

Dangerous
Strongly disagree 1 2 3 4 5 6 7 8 9 Strongly agree

Strange
Strongly disagree 1 2 3 4 5 6 7 8 9 Strongly agree

Table 4.1: We used four questionnaires in our study to measure human’s feelings. Ques-
tionnaire 1 and questionnaire 2 were designed by us. Questionnaire 3 and
questionnaire 4 originate from the work of Carpinella et al. [7].

4.4 Study Procedure

After entering the experimental laboratory, the participants read the informed consent
form at first and then signed it if they agreed to it. They then answered general questions
about their gender, age range, and familiarity with collaborative robots. Participants then
generated an identification code to track their data using a predefined rule. This ensured
the anonymity of the participants and at the same time enabled the participants to request
the deletion of personal data in special cases. The randomization process was then carried
out. Participants were assigned an order of the four experiments to be performed using
an integer generated from a website [51]. Twelve participants drew twelve sequences
from a total of twenty-four experimental sequences without repetition.

The experimenter then verbally described the task and experiment procedure to the
participants. Afterwards, participants wore the glove and hood of the OptiTrack system
described in Section 3.2 and completed an approximately three-minute practice session
with the robot without robot gaze behavior to become familiar with the learned trajectory,
assembly task, and collision detection behavior of the robot. When real study began,
participants were asked to complete 30 assembly tasks in each experiment. After each
experimental condition, the participants first expressed three feelings about the robot’s
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behavior and then filled out the questionnaires described in Subsection 4.3.3. After
the final experiment, the participants also answered five final questions about the four
experimental conditions and provided additional feedback. The experimenter used a
computer program to record the position information of the end effector of the panda
arms, the human hand and the human head during the experiments. In addition, the
experiments were recorded by a camera.

Each experiment lasted about 8 minutes, depending on the pace of each participant.
The total time to complete the study was approximately 60 minutes. After completing
all experiments, the experimenter checked whether the questionnaire was filled out
completely and whether the data was saved correctly. Finally, the experimenter revealed
the true purpose of the study to the participants and asked the participants if they would
like to withdraw their consent. If so, the collected data will be deleted. If not, the
experimenter would escort the participant out of the lab. Figure 4.5 describes the study
procedure.

Figure 4.5: The study procedure. A participant may refuse to sign the consent form or
withdraw consent after knowing the true purpose of the study. In both cases,
no data will be collected for this experiment.
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5 Results and Discussion

In this chapter, we will analyse the collected data using ANOVA and correlation analysis
with the JASP software [29]. After four completed experiments, the participants reported
that human’s perception of robot gaze behavior could be improved if the robot head was
placed on the table. So we changed the position of the robot head as shown in the right
half of Figure 3.4. Given that there are two independent variables (position of the robot
head, gaze conditions), the two-way repeated measures ANOVA with a significance level
of .05 was used. With a total of 25 participants, we could detect an effect size of d=0.50
with a power of .80 at a significance level of .05 (calculated with the G*Power software
[14, 15].) However, due to time constraints and the purpose of the thesis as a pilot study,
12 participants finally took part in the experiment.

In our study, we performed Mauchly’s sphericity test as sphericity test and Levene’s test as
homogeneity test, with a significance level of .05. It should also be noted that the data
collected is unbalanced (4 samples for the robot head on top of the robot and 8 samples
for the robot head on table). Unequal sample sizes can cause problems, including unequal
variances between samples and loss of power. According to the description of Keppel and
Wickens [33], there is no good rule of thumb to determine exactly when these problems
occur.

Performing an ANOVA on unbalanced data involves the selection of the approach for
computing sums of squares (SS). Traditionally, there are three commonly used approaches
in this context called Type I-III using the designations from SAS (Statistical Analysis
System). According to the conclusions of a number of studies [58, 21], Type III analysis is
usually preferred and is the default method for calculating SS by major statistical software,
while Type I analysis is strongly influenced by the order of the factors and Type II analysis is
based on the assumption that the interactions between the factors are negligible. However,
Lewsey et al. [42] claimed that Type II analysis performs better on average than Type II,
based on the results of some simulation studies. Langsrud [39] had a further discussion
and found strong reasons to consider Type II analysis as a more appropriate default choice.
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Therefore, Type II SS is used for the following analysis. If a significant effect is found,
we perform pairwise t-tests as post-hoc analyses. Holm correction [23] is used to adjust
the result of pairwise t-tests because Holm corrections is uniformly better than another
widely used method: Bonferroni correction, according to the work of Aickin and Gensler
[1]. After the analysis of each item, we will discuss the results.

5.1 Anticipation of Danger

Figure 5.1: Mean scores and standard errors across gaze conditions on anticipation of
danger item.

Hypothesis 1 stated that human users would better anticipate danger working with the
robot in condition D than in other conditions. To investigate the statistical differences
between gaze conditions and robot head positions on anticipation of danger, participants
in the two groups responded to the subjective item “I was able to anticipate potential
collisions with the robot” between the gaze conditions where they used a nine-point
Likert-type scale to give their answers.

The means and standard errors for anticipation of danger are presented in Figure 5.1.
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We conducted Mauchly’s sphericity test and found that the sphericity is not violated
(X2(5) = 6.002, p = .309). As shown in Table 5.1, the Levene’s test is not significant with
a significance level of .05, so equal variances are assumed.

The results of the two-way ANOVA indicated no significant main effect for the robot head
position, F (1, 10) < 0.01, p = .983, partial η2 < .01; no significant main effect for gaze
condition, F (3, 30) = 0.45, p = .719, partial η2 = .04; and no significant interaction
between robot head position and gaze condition, F (3, 30) = 0.23, p = .878, partial
η2 = .02. As a result, hypothesis 1 was not supported. The detailed results are shown in
Table 5.2 and Table 5.3.

F df1 df2 p

A 0.32 1 10 .586
B 0.57 1 10 .469
C 0.18 1 10 .684
D 0.86 1 10 .375

Table 5.1: Test for Equality of Variances (Levene’s) for Anticipation of Danger. As we can
see, Levene’s test is not significant with a significance level of .05.

Cases Sum of Squares df Mean Square F p η2p

Gaze condition 2.896 3 0.965 0.45 .719 .04
Gaze condition * Group 1.448 3 0.483 0.23 .878 .02
Residuals 64.406 30 2.147

Table 5.2: Within Subjects Effects for Anticipation of Danger. As we can see, the main
effect for gaze condition is not significant.

Cases Sum of Squares df Mean Square F p η2p

Group 0.010 1 0.010 < 0.01 .983 < .01
Residuals 217.219 10 21.722

Table 5.3: Between Subjects Effects for Anticipation of Danger. Group means the two
different robot head position. The results indicated no significant main effect
for robot head position.
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The possible reasons for this are that the motion pattern of the robot arm is too simple and
its speed is not high enough, so that the participants can completely predict its movement.
In addition, participants were asked to perform a practice session consisting of thirty
assembly tasks before the start of the experiment. Because in previous pilot studies, we
noticed that participants often forgot some task details (e.g., forget to write numbers
on paper after completing each assembly task), this practice session was designed to
familiarize participants with the tasks to be completed. This seems to exacerbate the
phenomenon of participants being too knowledgeable about the behavior of the robot
arm’s movement. This guess was confirmed by some participants, who gave an open
comment ”The movement of the robot arm is too simple.”. Moreover, some participants
gave the feedback ”I don’t think the robot arm will hurt me.” because they knew that the
robot arm would stop when there was a potential collision. These reasons together may
lead to randomness in the mean scores of the participants on the questionnaire.

5.2 Intent Communication

Figure 5.2: Mean scores and standard errors across gaze conditions on intent communi-
cation item.
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Hypothesis 2 described that robot’s gaze behavior in condition Dwould better communicate
the robot’s intent to the human user than gaze behaviors in other conditions. To test
this hypothesis, participants in two groups responded to the subjective item “The robot
communicated its intent clearly” between the gaze conditions where they used a similar
nine-point Likert-type scale to give their answers as on anticipation of danger.

The means and standard errors for intent communication are shown in Figure 5.1.
Mauchly’s sphericity test showed that the sphericity is not violated (X2(5) = 7.892,
p = .165). In addition, the Levene’s test is not significant as shown in Table 5.4, so equal
variances are assumed.

We found no significant main effect for robot head position, F (1, 10) = 2.33, p = .158,
partial η2 = .19; no significant main effect for gaze condition, F (3, 30) = 0.94, p = .434,
partial η2 = .09; and no significant interaction between robot head position and gaze
condition, F (3, 30) = 0.95, p = .431, partial η2 = .09. Therefore, hypothesis 2 was not
supported. The detailed results are shown in Table 5.5 and Table 5.7.

F df1 df2 p

A 0.10 1 10 .764
B 0.02 1 10 .894
C 4.50 1 10 .060
D 0.86 1 10 .376

Table 5.4: Test for Equality of Variances (Levene’s) for Intent Communication. As we can
see, Levene’s test is not significant with a significance level of .05.

Cases Sum of Squares df Mean Square F p η2p

Gaze conditions 8.396 3 2.799 0.94 .434 .09
Gaze conditions * Group 8.448 3 2.816 0.95 .431 .09
Residuals 89.406 30 2.980

Table 5.5: Within Subjects Effects for Intent Communication. As we can see, the main
effect for gaze condition is not significant.

Though hypothesis 2 was not supported by the results of ANOVA, we can see a considerable
difference in the mean scores for intent communication of two head positions from Figure
5.2. Actually, the mean scores when the robot head is on the table (M = 6.78) and when
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Table 5.6: Between Subjects Effects for Intent Communication

Cases Sum of Squares df Mean Square F p η2p

Group 17.510 1 17.510 2.33 .158 .19
Residuals 75.219 10 7.522

Table 5.7: Between Subjects Effects for Intent Communication. Group means the two
different robot head position. The results indicated no significant main effect
for robot head position.

the robot head is on top of the robot (M = 5.5) did give us some feeling of difference.
This is also reflected in the p value, p = .158, which is already close to the significance
level of .05 compared with other p values.

According to the feedback collected from the participants, we found that a large part
of the participants was confused about the behavior of the robot arm, giving comments
like ”The interaction was good but I did not understand why the robot do ... when I got
close.” or ”Sometimes the reaction is random.”. One participant directly reveals that he
thought he doesn’t need to care about the intent of the robot, because he subconsciously
believes that robots should cooperate with humans to work, and when a collision occurs,
humans should have the priority to continue fetching objects. Furthermore, according
to an analysis of recorded video of the experiments, despite the fine-tuning, the robot’s
head still appeared slow relative to the rapid movements of the human hand. This led to
the fact that participants had often finished grasping objects by the time the robot head
exhibited obvious behaviors. In this case, the participant has no motivation to guess the
robot’s intent. So in short, there are two reasons why the robot’s head behavior does not
improve intent communication much. On the one hand, the movement of the robot’s head
is not fast enough and in some corner cases not consistent. On the other hand, some
participants saw robots as their vassals rather than collaborators.

5.3 Human-perceived Competence of The Robot

Hypothesis 3 stated that gaze behaviors in conditions B, C, and D improve the human-
perceived competence of the robot compared with gaze behavior in condition A. To look for
statistically significant differences between the robot head positions and gaze conditions
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Figure 5.3: Mean scores and standard errors across gaze conditions on human-perceived
competence of the robot.

on the human-perceived competence measure, we collected participants’ responses to six
subjective items (”Knowledgeable”, ”Interactive”, ”Responsive”, ”Capable”, ”Competent”,
”Reliable”).

Figure 5.3 shows the means and standard errors for human-perceived competence of the
robot. Mauchly’s sphericity test showed that the sphericity is not violated (X2(5) = 8.280,
p = .144). However, the Levene’s test showed that the homogeneity is violated (p = .038),
as shown in Table 5.8. Because the JASP software did not provide a correction method for
Levenes’ test in a two-way ANOVA, and p = .038 was not far from a significance level of
0.05, we ignored the correction for Levenes’ test.

The results of the ANOVA indicated no significant main effect for the robot head position,
F (1, 10) = 0.56, p = .472, partial η2 = .05; a significant main effect for gaze condition,
F (3, 30) = 5.51, p = .004, partial η2 = .36; and no significant interaction between the
robot head position and gaze condition, F (3, 30) = 0.32, p = .809, partial η2 = .03. The
summarized results are shown in Table 5.9 and Table 5.10. Post-hoc testing using pairwise
t-tests indicated that human-perceived competence of the robot was significantly higher
for gaze condition D than they were for gaze condition A (pholm = .011), as shown in
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Table 5.11. There was no significant difference between the human-perceived competence
of the robot under other gaze conditions, see Table 5.11. Based on the above results,
hypothesis 3 was not supported.

F df1 df2 p

A 0.07 1 10 .790
B 0.08 1 10 .785
C 1.83 1 10 .206
D 5.72 1 10 .038

Table 5.8: Test for Equality of Variances (Levene’s) for Human-perceived Competence of
The Robot. As we can see, Levene’s test is significant with a significance level
of .05.

Cases Sum of Squares df Mean Square F p η2p

Gaze conditions 20.012 3 6.671 5.51 .004 .36
Gaze conditions * Group 1.174 3 0.391 0.32 .809 .03
Residuals 36.345 30 1.211

Table 5.9: Within Subjects Effects for Human-perceived Competence of The Robot. As
we can see, the main effect for gaze condition is significant.

Cases Sum of Squares df Mean Square F p η2p

Group 1.299 1 1.299 0.56 .472 .05
Residuals 23.281 10 2.328

Table 5.10: Between Subjects Effects for Human-perceived Competence of The Robot.
Group means the two different robot head position. The results indicated no
significant main effect for robot head position.

The non-significant between-subjects effects seem to be counter-intuitive because some
participants in pilot studies explicitly mentioned that mounting the robot head on top of
the robot is too far away. In contrast, some participants in real studies said that indeed
they could feel the existence of the head behavior with both robot head positions. This
may be due to the natural differences in subjective feelings among different individuals.
Another explanation is, when the robot head is on top of the robot, the robot looks more
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Mean Difference SE t Cohen’s d pholm
A B −0.937 0.477 −1.967 −0.768 .234

C −1.156 0.477 −2.426 −0.947 .107
D −1.625 0.477 −3.409 −1.331 .011

B C −0.219 0.477 −0.459 −0.179 .667
D −0.687 0.477 −1.442 −0.563 .479

C D −0.469 0.477 −0.983 −0.384 .667

Table 5.11: Post Hoc Comparisons - Human-perceived Competence of The Robot. A
significance level of .05 is used.

human-like, which probably compensates for the disadvantage of the greater distance.

Notably, although we identified significant differences between conditions A and D, some
participants reported that head shaking was actually not observed under condition D.
Some participants also have the feeling ”Out of the corner of my eye I already know the
robot head is moving.”. Therefore, it is possible that the participants were not sensitive to
the details of the different head movements, but merely noticed the sound or vibration
when the head switched its behaviors.

5.4 Discomfort

Another subjective item we investigated is discomfort. We used six indicators to collect
participants’ responses, including ”Aggressive”, ”Awful”, ”Scary”, ”Awkward”, ”Dangerous”
and ”Strange”. Hypothesis 4 was based on this item and proposed that gaze behaviors in
conditions B, C, and D would reduce the discomfort of human users compared with gaze
behavior in condition A.

Themeans and standard errors for discomfort are shown in Figure 5.4. Mauchly’s sphericity
test showed that there is no violation of sphericity (X2(5) = 9.467, p = .094). Equal
variances are assumed because Levene’s test is not significant, as shown in Table 5.12. We
found no significant main effect for robot head position, F (1, 10) = 1.33, p = .275, partial
η2 = .12; no significant main effect for gaze condition, F (3, 30) = 0.48, p = .699, partial
η2 = .05; and no significant interaction between robot head position and gaze condition,
F (3, 30) = 0.88, p = .465, partial η2 = .08. The summarized results are shown in Table
5.9 and Table 5.10. Therefore, hypothesis 4 was not supported.
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Figure 5.4: Mean scores and standard errors across gaze conditions on discomfort item.

On the item of discomfort, most participants gave a relatively small scale like 1 or 2. This
could be due to the cuter facial expression of the robot’s head or the participants’ belief
that the presence of the head is beneficial to them anyway. However, there are also a small
number of participants who gave comments such as ”The head movement is stiff.” and
”The head movement is sometimes strange.”.

5.5 Task Execution Time

Task execution time represents the total time spent by participants in completing 30
assembly tasks. Due to the low precision of timing, we round up all the values. Hypothesis
5 stated that gaze behavior in conditions D could reduce task execution time.

The means and standard errors for task execution time are shown in Figure 5.5. Mauchly’s
sphericity test showed that there is no violation of sphericity (X2(5) = 6.753, p = .242).
Equal variances are assumed because Levene’s test is not significant. The results of the
ANOVA indicated no significant main effect for the robot head position, F (1, 10) = 4.31,
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F df1 df2 p

A 2.198 1 10 .169
B 0.002 1 10 .968
C 0.693 1 10 .425
D 0.541 1 10 .479

Table 5.12: Test for Equality of Variances (Levene’s) for Discomfort. As we can see,
Levene’s test is not significant with a significance level of .05.

Cases Sum of Squares df Mean Square F p η2p

Gaze conditions 1.717 3 0.572 0.48 .699 .05
Gaze conditions * Group 3.129 3 1.04 0.88 .465 .08
Residuals 35.766 30 1.192

Table 5.13: Within Subjects Effects for Discomfort. As we can see, the main effect for
gaze condition is not significant.

p = .065, partial η2 = .30; no significant main effect for gaze condition, F (3, 30) = 0.64,
p = .595, partial η2 = .06; and no significant interaction between robot head position and
gaze condition, F (3, 30) = 0.48, p = .700, partial η2 = .05. The summarized results are
shown in Table 5.16 and Table 5.17. Therefore, hypothesis 5 was not supported.

Even though not significant, with p = .065, there is still a considerable difference between
subjects difference in task execution time. Perhaps this is because the increased distance
between the robot head and the human allows the human to focus more on the assembly
tasks. According to the analysis of the behavior of the participants, most of them were
casual about speed control. When encountering a new head behavior, some curious
participants even temporarily paused the task in progress to test the behavior of the robot
and even play with it. In addition, compared with the robot, the participants have absolute
control over the task execution. As the arm approaches, they can decide at will whether
to pick up the object faster or let the arm go at first. For these reasons, the presence of
the gaze behavior showed little impact on task execution time.
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Cases Sum of Squares df Mean Square F p η2p

Group 2.611 1 2.611 1.33 .275 .12
Residuals 19.573 10 1.957

Table 5.14: Between Subjects Effects for Discomfort. Group means the two different
robot head position. The results indicated no significant main effect for robot
head position.

F df1 df2 p

A 2.192 1 10 .169
B 2.187 1 10 .170
C 4.400 1 10 .062
D 1.776 1 10 .212

Table 5.15: Test for Equality of Variances (Levene’s) for Task Execution Time. As we can
see, Levene’s test is not significant with a significance level of .05.

5.6 Familiarity

Familiarity may have a potential impact on task execution time. We investigated the
relation between them by measuring a linear correlation. By the ANOVA analysis of task
execution time, we already know that there is no significant between-group effect, so
we merged the samples of two robot head positions. The results showed that the two
variables were weak correlated, r(10) = .21, p = .513. See Table 5.18. This may be
because the collaborative task conducted in the experiment was too easy or the sample
size was too small.
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Figure 5.5: Mean and standard errors across gaze conditions on task execution time.

Cases Sum of Squares df Mean Square F p η2p

Gaze conditions 1936.250 3 645.417 0.64 .595 .06
Gaze conditions * Group 1442.875 3 480.958 0.48 .700 .05
Residuals 30217.375 30 1007.246

Table 5.16: Within Subjects Effects of Task Execution Time. As we can see, the main
effect for gaze condition is not significant. SC stands for Sphericity Correction,
the data is corrected using the Greenhouse-Geisser method.

Cases Sum of Squares df Mean Square F p η2p

Group 72270.375 1 72270.375 4.31 .065 .30
Residuals 167864.375 10 16786.437

Table 5.17: Between Subjects Effects of Task Execution Time. Group means the two
different robot head position. The results indicated no significant main effect
for robot head position.
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Figure 5.6: The twelve sample points collected. The figure gives us the impression that
the correlation between familiarity and task execution time is weak.

Variable Familiarity Time

1. Familiarity Pearson’s r –
p-value –

2. Time Pearson’s r 0.210 –
p-value 0.513 –

Table 5.18: Pearson’s Correlations of familiarity and task execution time. As we can see,
the correlation is weak.
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6 Conclusions and Future Work

Based on the results obtained from the experiment, we found that all of the five hypotheses
we proposed were not supported. Participants’ rating on anticipation of danger, intent
communication, human-perceived competence of the robot, discomfort and task execution
time were all not influenced by the position of robot head. Our interest in the impact
caused by the different locations of the robot head head initially came from the work of
Lemasurier et al. [41], which found that the robot signal function is directly impacted
by the distance between the signal and the human user. Obviously, the change in robot
head position will lead to the change in distance between the robot and the human. The
reason we did not get similar results could be that the task performed in the our study
was different. However, we still got beneficial insights. An important finding was that
the proximity of robot head to human tends to be associated with shorter task execution
time, F (1, 10) = 4.31, p = .065, partial η2 < .30. In addition, the gaze behavior had a
significant influence on the human-perceived competence of robot. The robot with the
gaze behavior in condition D was more competent in human eyes than the robot with
gaze behavior in condition A.

Now it is time to answer the two research questions. The first research question is: To
what extent, if any, will well-defined robot gaze behavior leads human users to anticipate
the robot’s intent? The answer is no because the result of the ANOVA showed us that
there is no significant main effect for gaze behavior on this item. The second research
question is: Do human users get any benefit with a robot equipped with well-defined gaze
behavior? The answer is yes. There are two benefits. On the one hand, a well-defined
gaze behavior can improve the human-perceived competence of the robot, which may lead
to the human being working more confidently, although we did not directly prove this in
our study. On the other hand, a well-defined gaze behavior, e.g. with an optimal distance
between the robot and the human, has the potential to shorten the task execution time.

For future research, it’s a good idea to learn the trajectory from more complex demonstra-
tions. The movement speed of the robot arm also can be further improved. In addition,
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more vivid facial expressions and smooth head movements have potential to improve the
probability of robots being perceived by humans as collaborators. Furthermore, using a
questionnaire about comfort instead of discomfort may bring different results, as discussed
in section 5.4. Finally, it is also a beneficial attempt to add a questionnaire to study the
influence of gaze behavior on human’s work confidence.
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