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Abstract

Robust and efficient motion planning is essential for robots operating in complex, dynamic
environments, but achieving both fast reactions and globally optimal paths remains a
major challenge. This thesis tackles the problem of balancing computational efficiency
and effective global path-finding in robot motion planning. Reactive methods like Rie-
mannian Motion Policies (RMPs) offer real-time performance and safety guarantees but
often get stuck in local minima in complex environments. In contrast, global planning
methods can find optimal paths but are often too slow for dynamic settings. We propose
a hierarchical approach that combines local reactive control with global planning using
probabilistic dynamic graphs. Our method integrates RMPs for reactive control, Stein
Variational Probabilistic Roadmaps (SVPRMs) for adaptive sampling-based planning, and
Value Iteration for computing paths. In this setup, roadmap nodes act as attraction points
in configuration space, and their positions are continuously adapted to environmental
changes using Stein Variational Gradient Descent. The advantage function from Value
Iteration adjusts the strength of these attraction points within the RMP framework, blend-
ing local and global strategies. Experiments in 2D environments and with a simulated
7-DoF Franka robot show that our approach outperforms purely reactive methods in envi-
ronments with local minima and achieves competitive success rates in dynamic settings
compared to established techniques. The results also suggest that the global roadmap can
be updated less frequently than the reactive controller, with Stein Variational Gradient
Descent helping to maintain the accuracy of the value function between updates. Overall,
this work demonstrates a promising strategy for achieving fast, safe, and globally-aware
robot motion planning in dynamic environments.
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Abbreviations, Symbols and Operators

List of Abbreviations

Notation Description

APF Artificial Potential Field

DoF Degree of Freedom

GDS Geometric Dynamical System

GPMP Gaussian Process Motion Planning

JIT Just-in-Time

KL Kullback-Leibler divergence

MDP Markov Decision Process

MPC Model Predictive Control

MPPI Model Predictive Path Integral

ODE Ordinary Differential Equation

OSC Operational Space Control



PD Proportional-Derivative controller

PRM Probabilistic Roadmap

RBF Radial Basis Function

RMP Riemannian Motion Policy

RRT Rapidly-Exploring Random Tree

SBMP Sampling-based Motion Planning

SD Standard Deviation

SDF Signed Distance Field

SVGD Stein Variational Gradient Descent

SVPRM Stein Variational Probabilistic Roadmap
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1. Introduction

The increasing integration of robots into human environments demands navigation systems
that ensure safety while efficiently reaching goals. As robots transition from controlled
industrial settings to dynamic spaces shared with humans, the capability to react to
unpredictable movements becomes crucial. This thesis addresses a fundamental chal-
lenge in robot motion planning: balancing reactive collision avoidance with global path
optimization in dynamic environments.

1.1. Motivation

Human-robot collaboration offers significant potential across various domains, from
manufacturing to healthcare. However, realizing this potential requires robots to operate
safely alongside humans, who represent dynamic obstacles with unpredictable trajectories.
Unlike static environments where paths can be pre-planned, dynamic settings require
continuous adaptation to changing conditions.

Safety relies on detecting potential future collisions and generating reactive movements.
Detection of obstacles can be done in various ways [1, 2, 3], we will focus on generating
optimal reactive motions. Robots must avoid collisions and reach their destinations without
getting stuck in local minima.

Motion planning varies from reactivemethods [4, 5, 6, 7] to global techniques [8, 9, 10, 11].
Reactive motion generation methods prioritize computational speed, enabling high-
frequency control loops that minimize delays between obstacle detection and robot
response. This responsiveness is achieved by limiting the considered environmental
information and planning horizon, focusing only on immediate actions rather than com-
plete future trajectories. While these approaches excel at local obstacle avoidance, they
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frequently encounter local minima: situations where the robot becomes trapped in config-
urations from which purely reactive strategies cannot progress toward the goal.

Conversely, global planning methods provide completeness guarantees, ensuring that the
optimal path will be found if one exists. These approaches consider the entire environment
and planning horizon, generating complete trajectories from start to goal. However, this
comprehensive planning typically requires significant computational resources, reducing
the frequency at which plans can be updated in response to environmental changes. This
limitation can compromise safety in highly dynamic environments where rapid reactions
are necessary.

The challenge lies in developing approaches that combine the complementary strengths of
reactive and global methods, maintaining the computational efficiency and responsiveness
of reactive approaches while overcoming their susceptibility to local minima through
global awareness.

1.2. Proposed Approach

This thesis presents a hierarchical approach that integrates reactive control with global
planning to enable robots to navigate safely in dynamic environments while avoiding local
minima. The key insight driving our method is that different components of the planning
system can operate at different frequencies and in different coordinate spaces, creating a
hierarchy that balances computational efficiency with plan optimality.

Our approach combines three key components:

1. Riemannian Motion Policies (RMPs) [5] provide a framework for reactive control
with safety guarantees, enabling high-frequency responses to dynamic obstacles.

2. Stein Variational Probabilistic Roadmaps (SVPRMs) [12] create and continuously
adapt a graph of configuration points that effectively represents the connectivity of
the free space.

3. Value Iteration [13] computes optimal paths through the roadmap, producing a
policy that directs the robot from any node toward the goal.

The innovation lies in how these components interact: the global planner sets sub-goals
in the environment that are dynamically weighted based on their value. These sub-goals
are followed by the fast reactive controller, while their positions are continuously updated
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using Stein Variational Gradient Descent (SVGD) to maintain a valid representation of the
free space despite moving obstacles. This approach creates a smooth transition between
the different timescales of planning and control, allowing the system to adapt to dynamic
environments while maintaining global awareness.

While learning-based methods such as reinforcement learning have shown remarkable
success recently [14, 15, 16, 17] they present challenges for safety-critical applications.
These approaches often achieve robustness through domain randomization [18], training
on perturbed environment dynamics with the expectation that real-world conditions
represent just another variation. However, when real systems differ significantly from
training environments or variations are difficult to simulate, e.g. when human behavior is
involved, performance guarantees become difficult to establish.

Safety-critical applications also benefit the ability to understand why the system made
specific decisions and how failures occur. Classical approaches offer explicit domain
knowledge and theoretical guarantees that can be difficult to establish with learning-
based methods. Our method relies primarily on classical approaches while maintaining
integration points where learning techniques could be applied in future work. This design
choice prioritizes safety guarantees and system transparency while preserving the potential
for data-driven improvements.

Different levels in planning hierarchies often operate most effectively in different coordi-
nate spaces. For example, high-level planning might reason in task space (end-effector
position and orientation), while low-level control operates in joint space (robot config-
uration). For robots with redundant degrees of freedom, such as 7-DoF manipulators,
this creates the need for controllers that can efficiently map between these spaces. Our
approach addresses this challenge through RMPs, which provide a mathematically rigorous
framework for combining policies defined in different spaces.

The main contributions of this thesis are:

1. The composition of RMPs, SVPRMs and Value Iteration in a hierarchical motion
planning framework into a cohesive system that enables robots to navigate dynamic
environments while avoiding local minima.

2. A multi-timescale approach that decouples global planning from local control while
maintaining coordination between them: advantage functions weight reactive poli-
cies at the local level, while SVGD continuously adapts roadmap nodes to bridge the
temporal gap between slow global updates and fast reactive control.
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3. Experimental validation in both 2D toy examples and physically simulated 7-DoF
robot environments, demonstrating the approaches effectiveness across different
dimensionalities and dynamics.

1.3. Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2 reviews relevant literature on motion planning approaches, frommyopic reactive
methods to global planners, with particular attention to hierarchical approaches and
techniques for dynamic environments.

Chapter 3 introduces the theoretical foundations underpinning our approach, including
Riemannian Motion Policies, Stein Variational Probabilistic Roadmaps, and Value Iteration.

Chapter 4 details our proposed hierarchical approach, explaining how global planning
and reactive control are integrated through dynamic roadmaps and advantage functions.

Chapter 5 describes the experimental setup used to evaluate our approach, including both
2D toy environments and simulated 7-DoF robot scenarios.

Chapter 6 presents and analyzes the experimental results, comparing our approach against
established baselines and examining the impact of different parameter settings.

Chapter 7 summarizes the findings, discusses limitations, and suggests directions for
future research.
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2. Related Work

Motion planning is a well-studied problem in robotics, concerned with the generation of
collision-free trajectories from initial states to goals. As robots increasingly operate in
complex, dynamic environments alongside humans, planning approaches must balance
computational efficiency, path optimality, and reactivity.

Methods in this field can be categorized by their environmental awareness, temporal
scope, and computational strategy. Each category presents distinct trade-offs between
real-time performance and solution quality.

This chapter examines five families of approaches: myopic methods that offer reactivity but
risk local minima, sampling-based planners that efficiently handle high-dimensional spaces,
trajectory optimization techniques that generate smooth paths, hierarchical approaches
that combine planning levels, and specialized extensions for dynamic environments with
moving obstacles.

2.1. Myopic Methods

Myopic (reactive or local) methods compute control commands based on the current state
and immediate surroundings without planning complete trajectories. While computation-
ally efficient, they are susceptible to local minima problems.

The foundational Artificial Potential Field (APF) approach [4] models the robot’s config-
uration space as a potential field with attractive goals and repulsive obstacles. Khatib
extended this to Operational Space Control (OSC) [19] for dynamic control of robotic
manipulators, transforming dynamics from joint to task space along the kinematic chain.
Both methods suffer when attractive and repulsive forces balance, creating local minima.

Although myopic methods are limited to creating movement based on the current state
alone, they can still be used to generate complex behavior, e.g. with diffeomorphic
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mappings. Saveriano et al. [20] model demonstrations as trajectories of a stable linear
attractor on some Riemannian manifold and use a Gaussian Mixture Model to map
desired space. ImitationFlow [21] similarly employs normalizing flows to find mappings,
supporting not just point attractors but also oscillatory patterns.

Riemannian Geometry is well suited for describing robotics problems [22]. It can be
used to combine multiple simpler motion policies, defined in different spaces, into more
complex motions in a stable geometrically consistent manner as done with Riemannian
Motion Policies (RMPs) [5]. A more detailed description of RMPs and how tree-structured
task spaces [23] and automatic differentiation libraries [24] can be used to compute them
efficiently is provided in Chapter 3.

RMPs have been applied to multi-robot systems [25], under-actuated systems [26], LiDAR-
to-camera transfer learning [27], and human-robot interaction [28]. In the latter, mission-
specific policies are reweighed by their alignment to the human operators intent, while
preserving independent motions, identified with an orthogonality measure to the input
and already processed policies.

There are several extensions to the RMP framework. The challenge of incorporating
changing importance weights, additional to the distance based metrics, is addressed
with RMPfusion [29]. They demonstrate that additional correction terms, based on the
weight functions’ gradients, are necessary to maintain Lyapunov stability. This approach
requires all subtask policies to be Geometric Dynamical Systems (GDS) [23] but allows
for weight-changing functions that can also be learned.

A significant theoretical extension, Geometric Fabrics [30], overcomes GDS limitations
by allowing metrics to depend on both position and velocity while choosing the forcing
function independently. Instead of using solely position-dependent Riemannian metrics
or having to limit expressivity of forcing functions with curvature terms, it employs
Finsler energies for velocity-dependent geometries. The approach modifies the pullback
operations and replaces the resolve operation with an “energize” operation, decoupling
priority weights from the geometry while ensuring stability, thus enabling more expressive
and natural motions.

A probabilistic generalization is presented in Composable Energy Policies [6]. This frame-
work combines multiple probabilistic policies by maximizing their joint probability, which
they show is equivalent to minimizing a sum of energy functions. The authors evaluate
Cross-Entropy Method and reward-weighted regression to find the maximum likelihood
without explicit task map inversions. They show that RMPs are a special case where all
policies are Gaussian, limiting expressivity. Whereas their method supports multimodal
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or partially uniform distributions that can better represent optimal behavior, especially in
complex environments.

Control Barrier Functions offer explicit safety guarantees by defining safe regions in state
space. Recent work has focused on dynamic environments [31] and combining multiple
safety objectives [7], where they minimize not only the Mahalanobis distance of desired
accelerations in the joint space, but the sum of distances in all task spaces.

While these reactive approaches offer computational efficiency and have been extended to
give control-theoretical safety guarantees, all of these can become trapped in local minima
when navigating complex environments.

2.2. Sampling-Based Motion Planning

Sampling-based Motion Planning (SBMP) methods are at the opposite end of the planning
spectrum. They provide more global solutions by constructing a sparse representation of
the configuration space.

Unlike grid-based approaches that suffer from the curse of dimensionality, sampling-based
methods scale more effectively to high-dimensional spaces. Grid-based methods such
as A* [32], D* [33], and hybrid A* [34] discretize the state space and define motion
primitives connecting states into a graph structure. While effective for low-dimensional
problems, these methods become computationally intractable as dimensions increase due
to the exponential growth in the number of grid cells.

Sampling-based methods address this limitation by constructing a sparse representation of
the configuration space. The two foundational algorithms in this category are Probabilistic
Roadmaps (PRMs) [8] and Rapidly-Exploring Random Trees (RRTs) [9]. PRMs build a
roadmap by randomly sampling configurations in the free space and connecting them
with feasible paths, creating a graph that can be queried for multiple planning problems.
RRTs incrementally build a tree from the start configuration, extending branches toward
randomly sampled points until reaching the goal region.

Numerous extensions to these algorithms can be found in literature. RRT-Connect [35]
accelerates convergence by growing trees from both the start and goal configurations.
PRM* and RRT* [36] provide asymptotic optimality guarantees, ensuring that the solution
approaches the optimal path as the number of samples increases. Informed RRT* [37]
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further improves efficiency by focusing sampling within a shrinking ellipsoidal region that
biases sampling towards the optimal solution.

Several approaches have been developed to address the computational burden of collision
checking. Lazy PRM [38] initially assumes all edges are collision-free, then iteratively
finds shortest paths and removes colliding edges until a valid path is found or additional
sampling is required. This significantly reduces the number of collision checks during
graph construction.

The quality of sampling strategies has also received considerable attention. LEGO [39]
addresses the challenge of adequately representing difficult regions such as narrow pas-
sages by learning a distribution that identifies these critical areas based on feature vectors
describing the environment. HPPRM [40] creates an artificial potential field discretized
into a grid, using the mean potential in each cell to guide node placement in the PRM.
Chen et al. [41] propose an improved sampling strategy where nodes repel each other
except at obstacle boundaries or move toward boundaries if they are inside obstacles.
Their method also adds additional samples near difficult connections when the local
planner success rate is low.

Recently efforts have been made to leverage parallel computing on GPUs and CPUs.
VAMP [42] uses single instruction multiple data structures to accelerate sampling-based
motion planning, using body spheres and parallel edge evaluation for efficient colli-
sion checking. GTMP [11] introduces a random multipartite graph for planning in
configuration-time space. Each layer of the graph represents one timestep, with all nodes
of one layer connected to all nodes of the next layer. Value Iteration is then applied to
find optimal paths, with JAX vectorization enabling efficient computation. Kino-PAX [43]
parallelizes RRTs for GPUs by extending multiple nodes simultaneously and using space
decomposition to ensure uniform node distribution.

While sampling-based methods offer significant advantages for high-dimensional planning
problems, it is worth noting that the resulting paths often lack smoothness and may
require post-processing. Additionally, many more extensions and variations exist beyond
those discussed here [44]. The development of sampling-based methods continues to
be an active research area, with ongoing efforts to improve computational efficiency,
solution quality, and applicability to dynamic environments, which we address separately
in Section 2.5.
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2.3. Trajectory Optimization

Another family of approaches formulate motion planning as optimization over multiple
control inputs or trajectory parameters, seeking to minimize a cost function depending
on system dynamics and collision constraints. Early optimal‐control methods include
Differential Dynamic Programming (DDP) [45], based on the second order approximations
and iterative Linear Quadratic Regulator (iLQR) [46], which alternates between linearizing
the dynamics around a nominal trajectory and solving an LQR sub-problem to update the
control law.

Trajectory optimizers can also be classified by their planning horizon. In receding-horizon
Model Predictive Control (MPC), a finite time window of duration T is optimized at each
step, and only the first control action is executed and the remainder of the trajectory is
further optimized, after shifting the window forward. The endpoint of this window is
evaluated by its proximity to the goal rather than being strictly constrained to reach it,
Model Predictive Path Integral (MPPI) control [47] implements such an approach, using
Monte Carlo integration with importance sampling. In full-horizon methods, the entire
trajectory from start to goal is optimized in one shot, fixing the final state to the goal
configuration, as in CHOMP [48], which optimizes trajectories using covariant gradient
descent with respect to a cost that balances smoothness and collision avoidance. From this
perspective myopic controllers can be viewed as reducing the horizon to a single timestep,
optimizing only the immediate action at the current state.

Gradient-oriented methods characterize one branch of optimization frameworks, with
sampling-based techniques forming the alternative. Sampling-based trajectory optimiza-
tion explores the solution space by evaluating multiple trajectory candidates and selecting
the best solution.

Gradient‐based planners other than CHOMP include Gaussian Process Motion Planning
(GPMP) [10], generating a smooth trajectory initialization by sampling from a Gaussian
process and subsequently optimizing the sample to both avoid obstacles and stay close
to the means of the Gaussian process to ensure smoothness. Its extensions GPMP2 [49]
and GPMP-Graph [50] formulate the whole problem as probabilistic inference on factor
graphs, and search for the maximum a-posteriori solution.

Examples for sampling-based optimization are the Cross‐Entropy Method (CEM) [51] and
its sample‐efficient variant iCEM [52], which iteratively update a sampling distribution
to fit the top-performing samples from previous iterations. Howell et al. [53] evaluate
random perturbations to a trajectory in the MuJoCo physics simulator and replace it by
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the current best sample. STORM [54] employs Halton sequences for low-discrepancy
sampling of control inputs, then fits B-splines and parallelizes trajectory evaluation on
GPUs. Its cost functions incorporate learned approximations for collision avoidance, joint
limits, and singularity avoidance. VP-STO [55] performs MPC by iteratively updating
the mean and covariance of trajectories represented by via-points that are interpolated
with cubic splines. PRIEST [56] enhances CEM by projecting sampled trajectories onto
a feasible set through an iterative optimization process using Lagrange multipliers for
collision and joint constraints.

Klein et al. [57] optimize cubic splines to become geodesics by minimizing the kinetic
energy in a Riemannianmanifold. They investigate different Riemannianmetrics for region
avoidance, finding that only inverse barrier function metrics enforce hard constraints on
geodesics to avoid undesirable regions.

Despite their successes, trajectory optimizers face challenges: gradient‐based methods
can become trapped in non‐convex obstacle spaces or suboptimal homotopy classes, and
both sampling and gradient approaches are highly sensitive to initialization.

2.4. Hierarchical Motion Planning

To mitigate limitations of individual approaches, hierarchical motion planning combines
planning at different levels of abstraction, temporal scales, and computational complexities.
Purely reactive methods can become trapped in local minima, while global planners may
be computationally prohibitive for real-time applications. By decomposing the motion
planning problem into layers, hierarchical approaches can balance computational efficiency
with plan optimality while enabling appropriate abstraction for different tasks.

The elastic bands method [58] represents one of the earliest hierarchical approaches.
This method models a trajectory as overlapping, collision-free bubbles. Bubbles move via
artificial forces to avoid obstacles and stay connected, creating tension. New bubbles are
added when gaps form, and redundant ones are removed. While effective in smoothing
paths in a planar environment, it doesn’t address high-dimensional challenges in SE(3)
for articulated manipulators.

Structured control hierarchies offer an alternative approach. Sentis and Khatib [59] pro-
posed projecting lower-priority tasks into the null space of higher-priority tasks, ensuring
critical constraints are never violated by subordinate objectives. More flexible prioritization
appears in recent work like RAMP [60], which employs a two-level MPC architecture with
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a high-level MPPI planner generating global paths and a low-level vector field controller
providing immediate reactivity. Similarly, Zhu et al. [61] developed a dual-MPC hierarchy
with different planning horizons for global guidance and local obstacle avoidance.

Several approaches integrate sampling-based planning with trajectory optimization. IOS-
MP [62] alternates between the two, using PRM* or BIT* to find a path, then refines it
using augmented Lagrangians and adds the optimized path back into the planner’s graph,
possibly enhancing it with new samples. BITKOMO [63] uses a similar concept using
KOMO [64] to refine, while optimization costs inform subsequent sampling. PINSAT [65]
employs a hierarchical planning framework where a graph search uses ”dummy actions”
that overlook collision constraints, while B-spline optimization at the lower level deter-
mines actual edges and collision, which after evaluation adjust the successor states and
priority queue.

Some recent hierarchical approaches leverage RMPs. Chen et al. [66] develop a pipeline
that uses Informed RRT* as a global planner with Riemannian Motion Policies for local
control, allowing the robot to follow global paths while reactively avoiding obstacles
detected from point cloud data.

Hansel et al. [67] introduce HiPBI, which reformulates RMPs within a probabilistic frame-
work to enable policy blending. HiPBI [67] uses the probabilistic perspective on RMPs as
Gaussian distributions, shifting from metric-weighted averaging to a Boltzmann Product
of Experts optimized via iCEM. For multi-agent systems, HiPBOT [68] frames RMP policy
blending as an Optimal Transport problem, jointly optimizing motion policy weights across
all agents while maintaining individual reactivity. The approach defines a cost function for
transferring weights from prior expert distributions to agent-specific expert distributions.
Both HiPBI and HiPBOT evaluate different policy weights through forward simulations
over fixed time windows, effectively functioning as MPC.

Ourmethod aligns with this hierarchical paradigm by establishing explicit subgoals through
a PRM and following them with low-level attractor policies whose weights are dynamically
adapted using Value Iteration and SVGD. This approach integrates global planning with
reactive control while maintaining computational efficiency and overcoming local minima.

2.5. Motion Planning in Dynamic Environments

Dynamic environments present additional challenges for motion planning, as both the
validity and optimality of paths can change over time. While some methods in the
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previous sections can be accommodate for moving obstacles, they often struggle with
rapidly changing environments. This section surveys specialized techniques for preserving
feasible paths in dynamic environments without the need for full replanning.

Some strategies directly incorporate temporal dimensions into the planning process. In
SIPP [69] “safe intervals” are introduced, time periods during which specific regions
remain collision-free. These allow a modified A* algorithm to efficiently find optimal paths
without checking safety at every time step. Building on this concept, Hüppi et al. [70] and
Gentner et al. [71] identified collision-free time intervals for roadmap nodes when object
trajectories are known. Both approaches implement time-sensitive A* variants accounting
for estimated arrival times at nodes, with Gentner additionally introducing “exit nodes”, a
heuristic from which moving goals become reachable.

Several RRT extensions address dynamic environments specifically. RRTX [72] builds on
the rewiring of RRT# [73] while improving efficiency through the concept of consistency,
measuring differences between stored graph costs and local minimum costs-to-come.
When consistency is violated due to environmental changes, nodes are rewired to better-
path parents, until a sufficient consistency is achieved. Liao et al.’s Bi-HS-RRTX [74]
enhances RRTX with bidirectional search and a hybrid sampling strategy combining global
bias with local planning. Qi et al.’s Mod-RRT [75] prunes nodes if they become colliding
and the resulting orphans of the tree search for the lowest cost parents in their neighbors,
and dynamically chooses alternatives when the robot cannot reach its next waypoint based
on Pareto dominance of path length and steering angle. Yuan et al. [76] also focuses on
reconnection strategies for goal-biased RRTs. They implement a hierarchy of reconnection
methods when obstacles invalidate paths and estimate “safe points” until when the robot
can still safely follow its original path before a re-routing has to be found.

Optimization-based methods have also been adapted for dynamic scenarios. Kolur et al.’s
POSH [77] extends GPMP-Graph by optimizing the factor-graph, representing multiple
lines from start to goal, via the Levenberg-Marquardt algorithm, then pruning unreachable
states and re-optimizing after each step. Similarly, JIST [78] uses an RRT-like approach
to grow the factor graph with a fixed node budget, pruning invalid portions after each
step and selecting the lowest-cost leaf for execution.

We adopt concepts from the Elastic Roadmap approach by Yang and Brock [79]. Unlike
traditional roadmaps with fixed configurations, Elastic Roadmaps feature nodes that
actively respond to changes. These nodes are sampled near obstacle boundaries and
continuously repositioned using a task-level controller to remain near obstacle features
while avoiding collisions. Node connectivity is determined by straight-line visibility in task
space, with a graph search algorithm continuously computing optimal node sequences.
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Lehner et al. [80] extend this concept with a workspace connectivity graph of spheres,
using Exploring/Exploiting Trees to find optimal paths within spheres that are then
integrated into the Elastic Roadmap.

Building on the Stein Variational Probabilistic Roadmap (SVPRM) approach [12], which
we discuss in more detail in Chapter 3, we replace the Elastic Roadmap’s null‐space control
for node updates and edge traversal with Stein Variational Gradient Descent (SVGD) to
adapt the nodes in dynamic environments, and represent edges with Riemannian Motion
Policies. This substitution exploits RMP’s multi‐objective flexibility and theoretical control
guarantees, while SVGD’s probabilistic foundation concentrates nodes in regions of high
posterior feasibility, yielding more sample‐efficient, globally distributed coverage of the
free configuration space than null‐space control’s local constraint–focused approach.

The approaches discussed demonstrate diverse strategies for addressing dynamic environ-
ment challenges, from adaptive roadmaps to time-aware planners and rapidly reconnecting
trees to iterative optimization methods. Our proposed method, detailed in Chapter 4, com-
bines SVPRM’s adaptability with RMPs’ reactive capabilities in a hierarchical framework
that efficiently handles dynamic obstacles while avoiding local minima.
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3. Foundations

This chapter introduces the fundamentals that form the theoretical foundation of the
proposed method. The approach presented in this thesis combines reactive control with
global planning to enable robots to navigate safely in dynamic environments.

Three key components underpin this method: Riemannian Motion Policies provide reac-
tive control with safety guarantees, Stein Variational Probabilistic Roadmaps implement
adaptive sampling-based planning, and Value Iteration to determine optimal paths through
the roadmap.

3.1. Riemannian Motion Policies

Riemannian Motion Policies (RMPs) provide a framework for generating reactive robot mo-
tions while maintaining safety guarantees in dynamic environments. Originally proposed
by Ratliff et al., RMPs [5] leverage differential geometry principles to develop controllers
that operate across different coordinate systems.

In this section, we first examine the general problem of motion generation. We then
investigate how quadratic costs motivate the development of the RMP framework and
demonstrate how task maps connect different spaces. Following this, we discuss example
policies for common robotics tasks and finally describe two algorithms, which efficiently
compute RMPs through structured composition of task spaces.

3.1.1. Reactive Motion Generation

Motion generation can be understood as finding the optimal control function [81] u : R→
U for an agent in an environment described by a dynamical system f : X ×U → TX , such
that the resulting trajectory of states x : R→ X achieves a specified goal. One way this
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can be found, is via the constrained minimization of a cost function. In this formulation,
U ⊆ Rd denotes the d-dimensional space of possible controls, and X ⊆ Rn represents the
space of all possible system states, with TX being its tangent space.

The general problem can be expressed as:

min
u(·),T

∫︂ T

0
L(x(t),u(t)) dt+Φ(x(T )) (3.1)

subject to ẋ(t) = f(x(t),u(t)),
u(t) ∈ U , x(t) ∈ X ,
x(0) = x0, x(T ) ∈ XT ,

0 ≥ g(x(t),u(t)),
0 = h(x(t),u(t)), ∀t ∈ [0, T ],

where L is the running cost function and Φ is the final state cost function. The boundary
conditions constrain the system to start at the current state x0 and end in the space of
desired goal states XT . State and action inequality constraints g may represent environ-
mental conditions to avoid, such as collisions with obstacles, while equality constraints h
might enforce specific relationships between state variables e.g. caused by the kinematic
chain of a multi-body agent.

This optimal control problem does not have a general closed-form solution for arbitrary
cost functions, constraints and dynamics. Moreover, our model of the system dynamics
f(x,u) may change during execution, for instance, when obstacles move unexpectedly.
Therefore, we require computational efficiency to react quickly to environmental changes.

This leads us to high-frequency reactive motion generation, where the agent continuously
responds to the current observed state. The objective is to define a motion policy that
rapidly computes control commands u(t) based on the current state x0, while guaranteeing
that the resulting trajectory x(t) maintains safe distances from obstacles and satisfies the
remaining constraints.

3.1.2. Quadratic Costs and Metric-Weighted Optimization

A class of such reactive motion policies are RMPs [5]. They provide control-theoretical
guarantees while maintaining computational efficiency, as they only consider the current
state (positions and velocities). These policies provide control commands in the form of
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accelerations U ⊆ T 2X , functioning as second-order dynamical systems that can describe
a rich variety of behaviors.

With a slight relaxation of notation, we reuse f to describe the motion policy, rather than
the whole system,

u(t) = ẍ(t) = f(x(t), ẋ(t)), (3.2)

and explicitly represent the position as x, velocity as ẋ and acceleration as ẍ, instead of
using a reduced form as above.

Not all objectives are intuitive to describe in the same space as the control inputs. Consider
a robot arm needing to avoid a specific region occupied by an obstacle. Defining this
region in SE(3) space (position and orientation), and deriving avoidance movements there,
is more intuitive than working directly in the robot’s joint space. We refer to this space as
the task space, or operational space, denoted X . The region where the robot arm would
be in collision is the collision space Xcoll ⊆ X , and the set of states that are not in collision
is the free space Xfree = X/Xcoll [82].

The space of joint positions of a robot arm is referred to as configuration space C or
joint space. Defining the free space in configuration space Cfree ⊆ C is typically non-
trivial. This is, among other reasons, because the task space is often represented as a
6-dimensional vector X ⊆ R6, using the logarithmic map to represent the SE(3) space,
while the configuration space for many robots is a 7-dimensional vector C ⊆ R7, as most
robot arms have 7 degrees of freedom. Also the connection between those spaces is often
highly non-linear, due to the complex kinematic chains.

Task maps ψ capture the relationship between different spaces:

x = ψ(q) x ∈ X , q ∈ C,

ẋ =
d

dt
ψ(q) = Jψ(q)q̇,

ẍ =
d2

dt2
ψ(q) = Jψ(q)q̈+ J̇ψ(q)q̇, (3.3)

using the Jacobian matrix Jψ and it’s time derivative J̇ψ. In the case of a robot arm, these
equations include the forward kinematics. Describing the agent’s behaviour as a dynamical
system in the task space (or operational space) and using these Jacobians enables a more
intuitive way to control, for example, a robot’s end-effector [19].

Suppose we havemultiple functions fi(x, ẋ) providing desired accelerations ẍdi in potentially
different task spaces. Finding the acceleration in joint space that best satisfies these desired
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accelerations can be formulated as the solution to the following least squares problem:

f(q, q̇) = argmin
q̈

1

2

∑︂
i

∥ẍdi − Jψi
q̈− J̇ψi

q̇⏞ ⏟⏟ ⏞
ẍi

∥2Mi
, (3.4)

∥x∥2M = x⊤Mx,

where the Riemannian Matrix M is a symmetric positive semidefinite matrix. We drop
the notation showing Jψ ’s dependency on q. To find the optimal solution, we look for the
roots of the gradient with respect to q̈:

∇q̈

[︄
1

2

∑︂
i

∥ẍdi − Jψi
q̈− J̇ψi

q̇∥2Mi

]︄
!
= 0

1

2

∑︂
i

J⊤ψi
2Mi(ẍdi − Jψi

q̈− J̇ψi
q̇) = 0∑︂

i

J⊤ψi
MiJψi

q̈ =
∑︂
i

J⊤ψi
Mi(ẍdi − J̇ψi

q̇)

q̈ = (
∑︂
i

J⊤ψi
MiJψi

)†(
∑︂
i

J⊤ψi
Mi(ẍdi − J̇ψi

q̇)), (3.5)

where † denotes the Moore–Penrose pseudo-inverse.

The Riemannian metric allows us to weight different desired accelerations ẍdi according to
their importance. It’s worth noting that if only a single desired acceleration is considered,
the metric matrix would be canceled out by its inverse. Additionally, if joint and task
space are identical (i.e., Jψ = I), then the result simplifies to a metric-weighted average.
If we then consider J⊤ψMJψ to be the pull-back of a metric M to the domain of ψ, and
J⊤ψM(ẍdi − J̇ψi

q̇) the transformation of a vector field ẍ to the same domain, we can view
the solution again as a metric-weighted average.

An RMP is defined as a tuple in a space (f,M)X . The pull-back of this RMP through a task
map is defined as:

pullψ(f,M)X =
(︂(︁

JTMJ
)︁† JTMf, JTMJ

)︂
C
,

and similarly, a push-forward operation can be defined as:

pushψ(f,M)C =
(︂
Jf+ J̇q̇, J†M(J†)T

)︂
X
,

mapping a configuration space policy to a task space policy.
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After pushing from joint space to task space, evaluating the policy there, and then pulling
the result back into joint space, addition of RMPs is allowed like:

Rc =
∑︂
i

Ri = Ω

(︄(︄∑︂
i

Mi

)︄+∑︂
i

Mifi,
∑︂
i

Mi

)︄
,

resulting in the same metric-weighted average as in 3.5, finalizing the definition of an
algebra on RMPs.

3.1.3. Policy Formulations for Goal Attraction and Obstacle Avoidance

To generate safe and stable motions with the above operations, Cheng et al. [23] analyze
a class of systems called Geometric Dynamical Systems (GDS), which can be shown to
stay coordinate-free and Lyapunov stable under the RMP-Algebra. In this framework, the
desired acceleration ẍd should follow the gradient of an artificial potential field ∇xΦ, and
the Riemannian metric M(x, ẋ) is set to depend on the position and velocity.

With velocity dependency in the metric, we can modify behaviors contextually. For
example, a collision avoidance policy can be deactivated if the obstacle is moving away
from the agent. This smooth transition of importance allows for more nuanced behavior
than a strict hierarchy of importance, as seen in methods like Null Space Projection [59].

We use non-linear PD-like controllers of the following form:

f(x, ẋ) = −
(︂
∇xΦ(x) + B(x, ẋ)ẋ+ ξM(x, ẋ)

)︂
, (3.6)

where Φ(x) is the potential to be minimized, B(x, ẋ) represents dampening terms, and
ξM(x, ẋ) are terms induced by the curvature of the space.

As an example of such a system realizing a goal attraction policy from [25], we can define
the space to be the vector from the end-effector position xEE to a goal position xgoal,
denoting a state in this space generally as x :

x = ψattraction(q) = xgoal − ψEE(q),

where ψEE maps the joint positions to the position of the end-effector in task space.

19



The forcing term in the form of Equation 3.6 is:

γ(x) = exp
(︃
−∥x∥

2

2σ2

)︃
,

w(x) = γ(x) wu + (1− γ(x)) wl, 0 ≤ wl ≤ wu <∞,

∇xΦ(x) = tanh (α ∥x∥) w(x) x
∥x∥

,

B(x, ẋ) = η w(x) I,

ξM =
dw

dt
ẋ− 1

2
∇xw(x)∥ẋ∥2,

= −1

2
∥ẋ∥2

(︂
I− 2 ˆ︁ẋˆ︁ẋT)︂∇xw(x),

ˆ︁ẋ =
ẋ
∥ẋ∥

,

with σ setting the spatial scale of γ(x), affecting how fast the influence diminishes with
distance. Weights wu and wl define metric scaling limits. Parameter α adjusts potential
gradient steepness near the goal, where control should weaken. η is a damping coefficient
for the velocity-dependent term B. Terms ξ maintain stability in curved spaces. We use a
scaled identity matrix as metric M(x, ẋ) = w(x) I. See the appendix of [23] for a thorough
stability analysis.

As another example, we will use the obstacle avoidance policy from [83], where the space
is the distance between an agent’s link and an obstacle, denoted as the scalar x:

∇xΦ(x) = kp exp(−x/ℓp),

ξ(x, ẋ) = −kd
[︃
1− 1

1 + exp(−ẋ/vd)

]︃
ẋ

x/ℓd + ϵd
,

m(x, ẋ) =

[︃
1− 1

1 + exp(−ẋ/vd)

]︃
g(x)

µ

x/ℓm + ϵm
,

g(x) =

⎧⎨⎩ x2/r2 − 2x/r + 1, x ≤ r,

0, x > r,

In this formulation, the gradient repels the agent from the obstacle, with the curvature
term acting as a barrier. This differs from the collision controller derived in [23]. An
analysis of this policy’s geometric dynamical properties and Lyapunov stability is beyond
the scope of this work.
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3.1.4. Composition of Task Spaces

An efficient, recursive calculation of the pull-back operation can be achieved when task
maps can be arranged in a tree structure. The RMP-flow algorithm [23] defines the nodes
of the RMP-Tree, to contain the functions fi(x, ẋi) and M(x, ẋ), along with the states x and
ẋ, while each edge represents a task map ψ.

In alignment with the algebra mentioned in Section 3.1.2 we execute a push-forward
throughout the tree, propagating states from parent to child nodes:

(xc, ẋc) = (ψ(xp), J(xp)ẋp),

followed by a pull-back operation:

f =
K∑︂
i=1

J⊤i (fi −MiJ̇iẋ), M =

K∑︂
i=1

J⊤i MiJi ,

aggregating the forces and metrics from child to parent nodes. Finally a resolve operation
is added:

ẍ = M†f, (3.7)

computing the acceleration used as control command.

Li et al. introduce RMP2 [24] where the task map relationships are constructed auto-
matically using automatic differentiation libraries, which relaxes the structure from a
tree to a directed acyclic graph. This approach simplifies implementation and improves
space complexity when the Jacobian vector product is correctly utilized. However, if the
Jacobian matrix is calculated explicitly, the time complexity can be worse than that of the
original RMP-flow algorithm.

3.2. Stein Variational Probabilistic Roadmaps

In this section, we examine Stein Variational Probabilistic Roadmaps (SVPRMs) [12],
which is a global sampling based approach. This method effectively covers the free space
and can incorporate prior information, emphasizing critical regions. We begin with a brief
overview of Probabilistic Roadmaps (PRMs) in general, then explore how SVPRMs utilize
Stein Variational Gradient Descent to systematically optimize the distribution of roadmap
nodes. Finally, we analyze how different node connection strategies impact the roadmap’s
effectiveness in dynamic environments with moving obstacles.
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3.2.1. Sample-Based Planning with Probabilistic Roadmaps

Probabilistic Roadmaps (PRMs) are sampling-based planners that can efficiently answer
multiple queries about how to navigate from one point to another. A key advantage of this
approach is that it retains most of its information between queries, making subsequent
path computations relatively fast.

The basic structure of the PRM algorithm involves

1. sampling configurations,

2. deciding which samples should be included in the roadmap, and

3. determining how to connect them.

The resulting graph can then be used in various ways to generate motion plans, e.g. with
graph-search algorithms as discussed in Chapter 2.

This approach is computationally more efficient than using a grid-like structure to dis-
cretize the space, which would suffer severely from the curse of dimensionality. Higher-
dimensional spaces remain to be more challenging than lower-dimensional ones for
probabilistic roadmaps, but the scaling properties are significantly better.

An important consideration is how to sample the configurations effectively. Algorithms
like PRM* [36] can guarantee asymptotic completeness, ensuring that a solution will be
found if one exists and if enough samples are taken. A good roadmap should represent
the connectivity of the search space adequately in all important regions, particularly in
narrow passages and around the goal.

3.2.2. Particle-Based Distribution Approximation with Stein Variational
Gradient Descent

In our context, the search space is the free configuration space Cfree. For generality,
we formulate this section for a general case Xfree, which does not necessarily have to
be part of the SE(3) space where we defined our obstacle positions. Lambert et al.
formulate the problem probabilistically [12], treating the state as a random variable X.
To ensure sampled points are collision-free, they introduce a binary random variable Z.
The parametrized conditional distribution p(Z = 1|X = x; Θ) represents the probability
that a configuration is collision-free. And we assume we have a method to evaluate this
efficiently for specific samples.
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Using Bayes’ rule, this can be expressed as:

p(x|z; Θ) =
p(z|x; Θ)p(x)∫︁

X p(z|x)
,

providing us with a distribution of states. For brevity, we omit explicit mention of random
variables in the notation. Sampling directly from this distribution is generally intractable
due to the need to integrate over the entire space to compute the marginal distribution.

Instead, the SVPRM approximates p(x|z; Θ) with a set of N particles representing a
distribution p̃(x):

{xi}Ni=1 ∼ p̃(x), xi ∈ Rd.

These particles are iteratively updated via:

xi ←− xi + ϵφ∗(xi),

to minimize the Kullback-Leibler divergence (KL) DKL(p̃(x) ∥ p(x|z)), using Stein Varia-
tional Gradient Descent (SVGD):

φ∗(xi) =
1

N

N∑︂
j=1

[︂
k(xj , xi)∇xj log p(xj |z) +∇xjk(xj , xi)

]︂
, (3.8)

∇x log p(xj |z; Θ) = ∇x log p(z|xj ; Θ) +∇x log p(xj),

k(xj , xi) = exp
(︃
− 1

2h
(xj − xi)⊤M(xj − xi)

)︃
,

using the score of the collision probability scaled with an Radial Basis Function (RBF)
kernel k.

The kernel incorporates a Hessian:

M =
1

N

N∑︂
j=1

H(xj),

H(x) = −∇2
x log p(x|x),

computed using the x values from previous iterations to repel nodes from obstacles. The
gradient of the RBF kernel ensures the nodes are spread out in the search space.
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To approximate the collision probability SVPRM uses a cost function h(x), based on the
distance of the agent to the nearest obstacle, similar to approaches in [10, 48]:

p(z = 1|x; Θ) ∝ exp(−α ∥h(x)∥2), (3.9)
h(x) = [c(x, sj)]

⃓⃓
j=1:K

,

c(x, sj) =

{︄
−d(x, sj) + ϵ d(x, sj) ≤ ϵ,
0 otherwise,

representing the robot using body-spheres sj , a set of spheres encapsulating the robot’s
geometry, to simplify the computation [84].

Priors, such as mixtures of Gaussians, can be used to move the nodes towards the agent’s
current position and the goal position. This increases the density of nodes to improve the
range of possible directions in these regions of interest.

3.2.3. Graph Connectivity for Dynamic Scenarios

Determining how to connect nodes in the roadmap is another critical aspect of the al-
gorithm. Some approaches use steering functions [85], some just assume straight lines
[8]. While having more edges increases the computational intensity of subsequent motion
planning steps due to the increased need of collision checking, it is important to have
cycles in the graph in dynamic environments. This redundancy allows for alternative paths
if certain edges become blocked during execution [86, 87]. Since we compute pairwise
distances for the kernel in SVGD and in Value Iteration as well, a distance-based condition
to determine connectivity does not introduce a lot of additional computation steps. More-
over, this approach helps strike a balance between edge density and graph redundancy.
We will use straight lines, as this approach can be easily vectorized, whereas methods like
following a steering function might not be as well-suited for GPU implementation [42].

3.3. Value Iteration

As discussed previously, we need a method to find the optimal path along the graph
resulting from the PRM. Since the graph is only an abstraction, wemight need to recompute
this path frequently, e.g. if the agent moves to a different part of the graph, after evading
an obstacle.
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Therefore, it would be beneficial if most of the planning information could be reused
when it becomes necessary to recompute the optimal sequence of nodes. Value Iteration,
a component of dynamic programming [13, 88], produces a policy that indicates the
direction to the goal from any node in the graph simultaneously. We first outline the
Bellman equations defining the value function and describe how optimal actions are
derived from it.

3.3.1. Bellman Equations

To find the best path to the goal, we must frame the problem as a finite Markov Decision
Process (MDP) [89]. An Markov Decision Process (MDP) consists of a finite set of states
S, a finite set of actions A, a set of rewards R, a discount factor γ ∈ [0, 1], and a
dynamics function pMDP : S ×R× S ×A −→ [0, 1], which represents the joint probability
of transitioning to a particular state and receiving a specific reward based on the previous
state and the last action taken.

In our context, the states are the nodes of the PRM, so S ⊂ X . The possible actions at
each node are described by attraction policies A = F = {fi | fi : Xi × TXi → Ui}. If we
select one motion primitive for each edge and assume they deterministically guide us
toward the intended node, the method approaches an all pairs shortest path algorithm.
However, the Bellman formulation allows for more general definitions.

Value Iteration provides us with the value function vπ∗ : S → R and the action-value
function qπ∗ : A×S → R for the optimal policy π∗ : S → A. The value function represents
the expected return G, which is the sum of discounted rewards R received when starting
in state x and following policy π. The action-value function is similar, except that the first
action is substituted by the action fi.

vπ(x)
.
= Eπ [Gt | Xt = x] = Eπ

[︄ ∞∑︂
k=0

γkRt+k+1

⃓⃓⃓⃓
⃓ Xt = x

]︄
, x ∈ S,

qπ(fi, x)
.
= Eπ [Gt | At = fi, Xt = x] = Eπ

[︄ ∞∑︂
k=0

γkRt+k+1

⃓⃓⃓⃓
⃓ At = fi, Xt = x

]︄
, fi ∈ A,

where X is the random variable representing the state, and A is the random variable
representing the action. Optimal policies maximize this return, so all optimal policies
share the same optimal value and action-value functions.
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These functions can be formulated recursively through the Bellman Optimality Equations:

v∗(x) = max
fi∈F

qπ∗(fi, x), (3.10)

= max
fi

Eπ∗ [Gt | At = fi, Xt = x] ,

= max
fi

Eπ∗ [Rt+1 + γGt+1 | At = fi, Xt = x] ,

= max
fi

E [Rt+1 + γv∗(St+1) | At = fi, Xt = x] ,

q∗(fi, x) = E
[︂
Rt+1 + γmax

fj∈F
q∗(fj , Xt+1)

⃓⃓⃓
At = fi, Xt = x

]︂
. (3.11)

Using this recursive property, Value Iteration iteratively updates an approximation of the
optimal value function:

vk+1(x)
.
= max

fi
E[Rt+1 + γ vk(Xt+1) | At = fi, Xt = x], (3.12)

which can be shown to converge for arbitrary initializations.

Finally, the Advantage Function [90] is defined as:

a∗ (fi, x) = q∗ (fi, x)−max
fj

q∗ (fj , x) = q∗(fi, x)− v∗(x), (3.13)

providing a measure on how much moving to a certain state improves the value.

3.3.2. Policy Extraction and Exploration

Once Value Iteration converges to the optimal value function v∗(x), the optimal policy
π∗(x) can be extracted by selecting the action that maximizes the expected value:

π∗(x) = argmax
fi∈F

E[Rt+1 + γv∗(Xt+1)|At = fi, Xt = x].

However, sometimes it is beneficial to incorporate exploration strategies, e.g. if there are
areas where the approximation of the optimal action is inaccurate due to the dynamic
nature of the environment. Two common approaches for balancing exploration and
exploitation are the ϵ-greedy strategy and the Boltzmann or Gibbs distribution.

The ϵ-greedy approach introduces stochasticity into the policy by selecting a random action
with probability ϵ instead of following the greedy policy. The Boltzmann distribution
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assigns selection probabilities proportional to the exponential of the preference of an
action, controlled by a temperature parameter τ using the softmax function:

softmax(x, τ) =
1∑︁

i exp(
xi
τ )

exp
(︂x
τ

)︂
, (3.14)

where xi are the elements of the vector x and exp is the exponential function, applied
element wise.
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4. Integration of Global Planning and
Reactive Motion Generation

This chapter details the methodology of our approach, focusing on overcoming local
minima of reactive motion generation in dynamic settings. Our main contribution lies
in the integration of fast local reactive control with computationally more intensive
global planning using a Probabilistic Roadmap (PRM) and Riemannian Motion Policies
(RMPs), while Stein Variational Gradient Descent (SVGD) bridges between these different
operational frequencies.

The architecture includes the following processes, also shown in Figure 4.1. We overcome
the local minima that RMPs can get stuck in by following subgoals that are part of a PRM.
SVGD continuously optimizes subgoal positions to adapt to the changing environment.
The decision, which subgoals to follow, is based on a policy resulting from Value Iteration
on the PRM graph. This approach enables efficient navigation while maintaining safety
guarantees and computational feasibility.

In the following sections we will discuss the details on the approximation of collisions and
the choice between configuration space and task space subgoals. We then elaborate how
the optimal policy is followed by reweighing RMPs with the advantage function and finish
by hypothesizing on the effects of using SVGD to attain an approximation of the value
in-between collision checks.

4.1. Collision Probability Estimation for Motion Planning

To enable efficient computation of collision probabilities and safe motion generation, we
implement a distance measure that balances accuracy with computational efficiency. This
measure informs both the SVGD for updating roadmap nodes and the reactive control of
the RMPs.
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SDF Update SVGD Step Value Iteration Advantage RMP

Figure 4.1.: Decoupledmodules. The continuously updated SignedDistance Fields (SDFs)
informs Stein Variational Gradient Descents (SVGDs) for node repositioning,
away from the obstacle (red). Value Iteration evaluates edge traversabil-
ity via SDFs as well, producing advantage functions that connect the agent
(turquoise) to the roadmap and weight attraction policies in the RMP Frame-
work.

We employ several conservative simplifications to reduce implementation complexity and
computational burden. The agent is represented by a set of body spheres, as described in
Section 3.2.2. Similarly, obstacles are approximated using sphere or box primitives. These
approximations significantly simplify the calculation of distances between the agent and
obstacles, making the implementation straightforward and computationally efficient.

The metric consists of multiple parts. To prevent self-collisions, we compute pairwise
distances between the links of the agent. For efficiency, we exclude links that cannot collide
with each other due to the kinematics of the agent, such as adjacent links. While more
complex collision detection methods exist, including learned approximators [3, 91], they
are not the focus of this work. We also account for workspace boundaries by evaluating the
distances of individual link centers to the boundaries after computing the kinematics. In
addition, we consider the distance of the joint configurations to joint limits. These various
distance measures are scaled to ensure that distances measured in different spaces (e.g.,
joint limits in radians versus obstacle distances in meters) can be meaningfully compared.

The minimum of these scaled distances is used for both collision avoidance and estimating
collision probability. Since the distances toward joint limits that we consider harmful
are relatively small, a linear scaling approach is sufficient for our purposes. Our method
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therefore differs from approaches such as [12, 10, 48], where a sum of squares is employed.
Here, the gradient points away from just the closest obstacle, rather than multiple ones.
Since both SVGD and RMP can be evaluated at relatively high frequencies, allowing for
small step sizes, considering only the closest constraint is sufficient for effective collision
avoidance, while being independent on the number of body spheres.

4.2. Probabilistic Roadmap Nodes as Attractors

In our approach, the nodes of the PRM represent the goals of attraction policies defined
as Riemannian Motion Policies. As discussed previously, RMPs can be formulated in
different spaces, which provides flexibility but also requires careful design choices. A key
consideration, then, is how to select the space for the class of policies, which we will use
to guide the agent along the subgoals towards the end-goal.

One potential approach could be to construct the PRM in task space, which would simplify
certain aspects of the problem since task space typically has fewer dimensions and is more
intuitive in most scenarios. However, determining configuration space connectivity from
task space connectivity presents significant challenges. For example, consider a SCARA
robot with two Degrees of Freedom (DoFs) that can reach the same point in both an “elbow
down” and an “elbow up” configuration. In this case, the connectivity of two workspace
points might depend on the specific elbow position, making it difficult to accurately
represent the connectivity in task space alone. This problem becomes intractable as the
agent’s degrees of freedom exceed the dimensions of the workspace.

Therefore, we have chosen to construct our PRM in joint space. Additionally, we incorporate
another RMP defined in task space to track the goal once the agent is sufficiently close.
For the current implementation, this task-space policy is not part of the roadmap. In
Section 7.2 we discuss how we can achieve a tighter integration in future work.

4.3. Dynamic Metric Weighting Through Advantage Functions

As mentioned in Section 3.3 the states of our MDP are the nodes of the PRM S ⊂ X
and the actions are the edges of the PRM, representing the choice to follow a specific
attraction policy A = F . To effectively guide the agent’s motion through the environment,
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we establish a reward function r : C × C → R designed to find the shortest path in the
free space Cfree:

E[Rt+1|q, fi] = r(q,qT ) =
g(q,qT )− ∥q− qT ∥2

p(z|q,qT )
, (4.1)

it is important to note that our reward function is defined solely on states. We assume
that executing an action means following the policy fi from the current state q to the
attraction center of the policy, denoted as qT . This assumption results in deterministic
dynamics and enables us to uniquely identify actions with their goal state.

We use the configuration-space Euclidean distance ∥q− qT ∥2, applying collision penalties
inversely proportional to p(z|q,qT ). This probability is estimated by sampling nd discrete
points along the path and assuming independence:

p(z|qi,qj) =
nd∏︂
k=0

p

(︃
z
⃓⃓⃓
qi +

k

nd
(qj − qi)

)︃

= exp

(︄
−α

nd∑︂
k=0

h
(︃
qi +

k

nd
(qj − qi)

)︃)︄
.

This discretization is a pragmatic approximation that yields effective results despite theo-
retical limitations [42], and possible deviations from the actual trajectory, resulting from
fi. Here, h represents the cost function defined earlier as Equation 3.9.

Following the terminology of [71], we define exit nodes Sexit near goals. When solving
inverse kinematics is inexpensive, exit nodes correspond to exact goal positions. Otherwise,
they’re selected based on potential proximity to the closest goal if following a target
tracking RMP. For distances below a threshold ∆g, we assign the reward:

g(q,qT ) =

⎧⎨⎩
(︂
1− ∥ψee(q)−xgoal∥2

∆g

)︂2
rg, if q = qT ∧ q ∈ Sexit

0, otherwise,
(4.2)

where xgoal is the position of the closest goal in task space and rg > 0 is the reward given,
if matching the goal position exactly. ψEE maps the configuration q to the task space. Note
the reward only applies to edges connecting nodes to themselves.

After establishing the reward function, we perform Value Iteration to obtain the value
function v(q). It is important to note that the agent’s current position is not explicitly
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included as a node in the PRM. Instead, we compute the action-value function q : F×C → R
by evaluating the paths from the agent’s current position qagent to the nearest nodes:

q(fi,qagent) = r(qagent,qT ) + v(qT ).

Since we modeled the action to deterministically end in state qT , the expectation can be
reduced to this simple sum of one local edge reward and the value of the corresponding
PRM node.

We then want to use the softmax (see Equation 3.14) of the action-value function to
weight the attraction policies that guide the agent towards the nodes of the PRM. To
enhance numerical stability, we substitute the action-value function with the Advantage
Function as described in [92]:

softmax
(︁
q
(︁
fi,qagent

)︁)︁
= softmax

(︃
q(fi,qagent)−max

fi
q(fi,qagent)

)︃
= softmax(a(fi,qagent)).

Consequently, the metric function of the roadmap following policy becomes:

M(qagent) = w(qagent) softmax(a(fi,qagent)) I, (4.3)

where we omit the temperature parameter of the softmax function for simplicity of
notation, w(q) represents the distance-based weighting factor defined in Section 3.1.3,
and I is the identity matrix. The forcing term of the attraction policy remains identical.

4.4. Alternative Approach to Action-Value Function Integration

It is important to distinguish our approach from the integration of RMPs and action-value
functions discussed in the appendix of [5]. They demonstrate how extracting the optimal
policy π∗ of a second-order Taylor approximation of an action-value function ˜︁q, results in
a least squares problem as in Equation 3.4:

π∗(x) = argmin
a∈A

˜︁q(a|s) = argmin
ẍ

1

2
∥π∗(x, ẋ)− ẍ∥2∇2

a˜︁q . (4.4)

Here, the action space A consists of control inputs U , which are accelerations in the RMP
framework A ⊆ U ⊆ T 2X . The state of the MDP consists of both the agents position and
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velocity S = X × TX , π∗ : S → A is the optimal policy, and ∇2
a˜︁q is the Hessian of the

action-value function with respect to actions.

This formulation allows them to define the RMP
(︁
π∗(x, ẋ),∇2

a˜︁q)︁X . Our approach differs in
that we discretize the state-action space by decomposing it into multiple weighted point
attraction policies S = X ,A = F .

This discretization enables us to decouple the state-action function into a local part (r)
and a global part (v), which can be updated at different rates. The global part can be
estimated over a sparse discretized state-action space using Value Iteration.

While the actions in the continuous case (accelerations) and our discrete case (graph
edges) differ conceptually, the edges in our approach represent following a controller that
computes accelerations, similar to elastic roadmaps [79]. When we sum all attraction
policies, we obtain:

f =

(︄∑︂
i

Mi

)︄†(︄∑︂
i

Mi fi

)︄
,

=

(︄∑︂
i

softmaxi(q(fi,qagent)) wi I

)︄†(︄∑︂
i

softmaxi(q(fi,qagent)) wi I fi

)︄
,

=
∑︂
i

softmaxi(q(fi,qagent)) wi∑︁
j softmaxj(q(fj ,qagent)) wj

fi ,

=
∑︂
i

softmaxi(q(fi,qagent) + lnwi) fi ,

leaving out the Jacobian of the task map, as it is the identity matrix I, since all attraction
points are in the same space in our case. The notation softmaxi refers to the softmax
function applied to the i-th component, and ln is the natural logarithm.

This sum of RMPs results in the expected value of a Boltzmann action distribution π∗EBM,
which is commonly employed to select actions based on a preference function Ht while
still enabling exploration, which we brought up in Section 3.3.2:

E[π∗EBM(f)] =
∑︂
i

softmaxi(Ht(fi)) fi ,

Ht(fi) = q(fi,qagent) + lnwi .

As noted in Chapter 13.1 of [89], using an estimated action-value function as a preference
function has certain limitations. For instance, to ensure that the softmax approximates
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the true optimal policy well, the temperature parameter τ would need to be appropriately
initialized, which presents practical challenges. However, since our work does not yet
incorporate learning-based approximation methods for the action-value function, where
scheduling of the temperature parameter would also be an issue, this does not significantly
impact our approach at this stage.

The term ln(w), resulting from the weighting function defined in Section 3.1.3, can be
interpreted as a bias that enhances the importance of an attraction point when it is closer
to the agent. In such cases, we assume the discretized approximation will more accurately
represent the actual action-value function. This also results in a smoother transitions
when subgoals get into the local reach of the agent.

4.5. Stein Variational Gradient Descent as Prior for Replanning
with an Iterative Motion Planner

An essential feature of our approach is the integration of SVGD with iterative motion
planning. As the nodes of our graph adjust their positions to avoid obstacles, the values
associated with large portions of the graph maintain proximity to their actual values.
This property allows us to update the value function at a lower frequency than the edges
needed for the evaluation of the advantage function.

When the advantage function can be evaluated quickly with reasonable accuracy, the
weights of the RMP remain relatively correct. This characteristic ensures safety through the
quick reactive execution of the motion policies while also adaptively avoiding local minima.
We expect SVGD to accelerate the convergence of the Value Iteration, by preserving the
accuracy despite environmental changes, thereby further improving planning efficiency.
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5. Experiments

This chapter presents the experimental evaluation of the hierarchical reactive motion
generation method proposed in this thesis. The experiments are designed to assess the
viability of combining local reactive control with global planning through probabilistic
dynamic graphs.

We begin by detailing the implementation specifics, followed by descriptions of the testing
environments used for evaluation. Next, we compare our approach against baseline
methods. Finally, the chapter examines strategies in near-goal regions and analyzes the
impact of different update frequencies on planning and reactive control performance.

5.1. Implementation Details

We implemented our system using JAX [93], a high-performance numerical computing
library that provides GPU acceleration and automatic differentiation capabilities. JAX’s
Just-in-Time (JIT) compilation utilizes the XLA compiler [94] to convert Python code to
executables optimized for hardware accelerators. In our implementation, we used JAX
version 0.5.2 on NVIDIA RTX 2080 and RTX 3080 GPUs.

JAX executes code with Tracer objects rather than concrete arrays, tracking operations
to extract a computation graph that is subsequently optimized by XLA. The library’s
parallelization performance is primarily achieved through vectorization, which can be
distributed across multiple devices executing the same program, however we did not
utilize multi-device parallelization in our experiments.

To compute the Jacobians of the task maps as described in Section 3.1 and the gradients
necessary for the Stein Variational Gradient Descent detailed in Section 3.2, we leveraged
JAX’s automatic differentiation capabilities. We omitted the J̇q̇ term in our implementation,
to simplify computation and in turn increase control frequency, compensating for errors
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Figure 5.1.: A sparse 6-node adjacency matrix. Only the first 5 non-zero entries (filled
circles) are stored. Implicit elements (grey) include self-connections (identity)
and one triangular half (due to symmetry). Choosing upper vs lower triangle
affects truncation: red crosses denote entries removed due to storage limits,
black crosses denote their symmetric counterparts. Storing the lower triangle
truncates the last node’s edges entirely, while the upper triangle preserves at
least one edge for all nodes.

introduced by this [6]. This simplification also reduces the space complexity of the
algorithm [24]. Similarly, we chose not to incorporate curvature information into the
RBF kernel during the SVGD step, as convergence was already sufficiently fast, and the
additional computation would not significantly improve runtime.

For efficient storage of the Probabilistic Roadmap, we employed Batched-coordinate
(BCOO) sparse matrices in JAX. The adjacency matrix of the PRM is relatively sparse,
because edges are only created between nearby nodes. BCOO storage explicitly saves only
non-zero entries, but to use this format on the GPU, we have to fix a maximum number of
non-zero entries. This constraint risks truncating the adjacency matrix when the number
of edges exceeds the limit.

To mitigate possible negative effects we leverage that we use an undirected graph as our
PRM and the adjacency matrix is symmetrical. Therefore only one triangle needs to be
stored. We chose to save the upper triangle, excluding the diagonal, which we assume is
always connected. When the actual number of edges exceeds the set maximum, nodes
with edges that get truncated have a higher probability of retaining other connections.
In contrast, truncating the lower triangle would increase the risk of disconnecting nodes
entirely, as illustrated in in Figure 5.1.
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5.2. Simulation Environments and Scenarios

To comprehensively evaluate our method, we conducted experiments in two distinct
environments: a simplified two dimensional environment and a simulated 7-DoF Franka
robot environment. In this section we will review their dynamics and initializations.

For both environments we assume full and exact knowledge of the robot’s and obstacles’
positions is available, as sensor processing and state estimation are not the focus of this
thesis. Additionally, we require that differentiable Signed Distance Fields (SDFs) of the
obstacles are available.

5.2.1. Planar Navigation

This 2D toy environment provides a simplified setting to evaluate the fundamental capa-
bilities of our method. In this environment, the agent is modeled as a circular robot with
radius r = 0.75m, capable of omnidirectional movement with instantaneous acceleration
changes. Consequently, the configuration space of the robot is identical to the task space.

We use multiple scenes featuring diverse obstacles and target placements to highlight the
strengths and limitations of our method. Varying in complexity, they include mazes with
local minima, narrow passages, and scenarios requiring to traverse long, winding paths to
reach the goal.

We evaluated our method in both static scenarios and dynamic scenarios where obstacles
move according to Brownian noise acceleration inputs. In dynamic scenarios, obstacles
have a maximum speed of 4ms−1. The initial positions and velocities of the obstacles
are uniformly randomly chosen within the bounds of the scene, a 60m× 30m rectangle.
Unless otherwise specified we used 100 different initializations of each scene in both the
static and dynamic setting.

Motion is simulated using Euler integration, with the environment updating at 10Hz.
A simplified collision dynamics model is implemented to simulate obstacles bouncing
off of each other. Figure 5.2 presents the various scenes used in our 2D environment
experiments, with detailed descriptions provided in the caption.
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Maze Open Box

Gate H-shaped Box

Spiral-Maze Open Box Multi-Goal

Figure 5.2.: The scenes in the planar environment. The agent (dark green) is in it’s starting
area (light green), and the goal areas are marked as orange. “Maze” has
circular obstacles moving independently changing the optimality of different
homotopies over time. The “Box” scenes featuremoving local minima around
the start or goal. The “Gate” environment has multiple narrow passages
that move up and down. The path to the goal in the “Spiral-Maze” scene is
relatively long and deviates substantially from a straight line, and is further
complicated by moving circular obstacles.
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5.2.2. Franka Robot Environment in MuJoCo XLA

To evaluate our method in a more complex, higher-dimensional setting, we also conducted
experiments with a 7-DoF Franka robot in simulation, using MuJoCo XLA (MJX) with the
BRAX framework [95]. This framework is built on JAX, making it easier to access and
transfer the state of the simulator to our method.

Similar to the 2D environment, we tested scenarios with both static and moving obstacles,
using 30 different initializations each. In this environment, when obstacles collide with
each other, the ground, or an invisible wall forming a 2m × 2m box around the robot,
they simply reverse their velocity.

The simulator accepts positions as inputs, which an internal controller uses to calculate
exact joint forces. To generate these position commands from the accelerations produced by
the RMPs, we integrated the RMPs’ Ordinary Differential Equation (ODE) numerically using
Tsitouras’ 5/4 method [96] implemented in diffrax [97]. This integration is performed
over a short future time horizon TODE = 0.1 s, and the resulting position is passed to
the lower-level controllers. The environment updates at 100Hz for the RMP, while the
internal controllers operate at a higher frequency of 500Hz.

We test in two different scenes, illustrated in Figure 5.3. In the “Maze” scene, five obstacles,
randomly composed of spheres and boxes, have their positions xo = (xo, yo, zo)

T , velocities
ẋo = (ẋo, ẏo, żo)

T , and sizes so uniformly randomly chosen within the following intervals:

Position: xo, yo ∈ [−1m, 1m],

zo ∈ [0m, 1m],

Velocity: ẋo, ẏo, żo ∈ [0ms−1, 2ms−1],

Size: so,i ∈ [0.02m, 0.1m], ∀ i ∈ {1, . . . , d},

where s represents either the radius of the sphere or the half-width, -height or -depth of
the box respectively.

The goal location xg is uniformly sampled within the following bounds:

xg ∈ [−0.6m,−0.1m], (5.1)
yg ∈ [−0.6m, 0.6m], (5.2)
zg ∈ [0.1m, 0.6m], (5.3)

ensuring the goal is within reach of the arm.
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Maze Window

Figure 5.3.: The Franka robot environments. Left: The Maze environment with randomly
positioned spherical and box obstacles. Right: The Window environment
where the robot must navigate through a moving opening to reach the goal.

For the “Window” scene, the window position xw = (xw, yw, zw) and size sw = (ww, hw, dw)
are restricted to the following bounds:

Position: xw ∈ [0.2m, 0.45m],

yw ∈ [−0.75m, 0.5m],

zw ∈ [0.0m, 1.1m],

Velocity: ẋw, ẏw, żw ∈ [0ms−1, 0.5ms−1],

Size: ww, hw ∈ [0.385m, 0.525m],

dw ∈ [0.035m, 0.125m],

where the starting configuration always has the robot arm reaching through the top left
quadrant of the window, trying to reach a goal in one of the other quadrants.
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5.3. Benchmark Evaluation

To evaluate the effectiveness of our approach, we compared it against several baseline
methods. This section details the metrics used for comparison, the parameter settings for
our experiments, and finally discusses each baseline.

5.3.1. Metrics

We evaluated performance using four key metrics:

Success rate measures the proportion of trajectories in which the agent reached the
goal within a specified distance threshold ϵ and time bound T without collisions.
In the 2D environments, we set ϵ = 0.5m and T = 100 s. For the Franka robot
environment, we evaluated the distance between the end-effector position and the
goal, with ϵ = 0.02m considered a success and a time limit of T = 10 s.

Collision rate indicates the proportion of trajectories that failed due to collisions.

Path length is calculated as the piecewise linear approximation of the arc length of
the path from the start position to the first instance when the goal is reached in
configuration space.

Time to goal is measured by counting the evaluated timesteps until the first time the
goal is reached.

As our primary aim is to demonstrate the feasibility of the method, we do not directly
compare computation times against the baselines but instead provide an analysis of
computation time in Section 6.4.

5.3.2. Configuration Details

For our experiments, we configured our system with carefully selected parameters to
ensure meaningful comparisons. Because the two environment models feature different
space definitions and result in different computational complexities, we opted to vary
certain parameters between them.
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We employed n = 120 nodes in the PRM in the 2D environment. to accommodate the
higher-dimensional space and stricter tolerances, we increased this to n = 500 nodes in
the Franka robot environment.

In the planar setting nodes connect if within a distance ∆max = 15m, with up to 10000
edges stored and during collision checks, each edge is tested at 30 equidistant points for
path safety. For the Franka environment, the upper triangular adjacency matrix stored a
maximum of 5000 non-zero entries, as the collision checking there is more computationally
intense. Configurations were connected if their Euclidean distance was under 1.4 rad,
with the fifth and sixth joint dimensions scaled by 0.1 and the seventh joint excluded
from distance calculations. This balanced end-effector position and configuration space
distances efficiently. An increased sampling density of 100 configurations checked per
edge was necessary, due to the edge lengths being longer in relation to the agent’s potential
occupancy of the space.

We tuned the RBF kernel bandwidth to spread nodes evenly throughout the space: h = 5
for the 2D environment and h = 0.5 for the robot environment. For rewards, we used
horizons of Tr = 1 s (2D) and Tr = 0.1 s (robot), with a reward of 100 for exact goal
achievement and goal region parameters ∆g = 0.2m (2D) and ∆g = 0.05 rad (Franka),
see Section 4.3.

All modules ran sequentially, with Value Iteration running to convergence. This allows
us to focus on establishing method feasibility while deferring investigation of module
decoupling to future work.

5.3.3. Overcoming Local Optima in Reactive Control

To demonstrate that a myopic policy can get trapped in local minima, we compared the
success rate of RMPs [5, 24] with our method. This comparison was conducted in both
the 2D toy environments and the Franka robot environment, with particular interest in
how the methods handle local minima in the “Open Box” and “Window” scenes.

For a fair comparison, we maintained the same parameters, i.e. gains and dampening,
across both methods, as these significantly influence the agent’s speed. The RMP baseline
incorporates collision avoidance policies, a target reaching policy, and a dampening policy.
In 2D environments, collision policies keep a safe distance between the spherical agent,
task space limits, and obstacles. In the Franka environment, obstacle avoidance policies
maintain safe distances from obstacles, task space limits, potential self-collisions, and
joint limits. The dampening and target reaching policies are defined in task space.
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The key distinction between our method and the baseline RMP lies in the target-reaching.
The RMP has one single attraction policy, defined in task space. In our approach this
policy remains inactive (i.e., its metric is zero) until the agent approaches the goal region,
at which point its influence gradually increases, smoothly superseding a PRM-following
policy, not present in the baseline, to ensure a seamless transition to goal tracking.

5.3.4. Impact of Planning Horizon Length

Some MPC based methods attempt to overcome local minima by incorporating exploration
mechanisms that diversify the set of possible future trajectories for evaluation. However, if
the time horizon is too short, these methods can also get trapped because no exploration
trajectory can reach a better state outside the local minimum. To demonstrate this
limitation, we compared the success rate of HiPBI [67] with our method.

As discussed in the related works section, HiPBI functions by blending different RMPs
based on evaluated rollouts. To reduce bias, we maintained the same parameters for the
target reaching and collision avoidance RMP as in previous experiments. Compared to
the RMP baseline, HiPBI includes policies that introduce clockwise and counterclockwise
curling motions to do exploration. It then uses 200 evaluations looking ahead for 10 s, to
find the best blend.

5.3.5. Global Optimization and Initial Conditions

Other optimization-based methods offer a more global perspective on trajectories by
setting the end of the time horizon to coincide with goal attainment. However, their ability
to find the global optimum in trajectory space often depends heavily on initialization.

We compared our method against a Gaussian Process Motion Planning (GPMP) [10]
baseline, which initializes with a Gaussian process prior, assuming constant velocity for a
smooth trajectory connecting the start and goal positions. The trajectory is represented as
40 particles, and 24 different initializations are optimized for 10000 steps. The computed
solution is tracked using the same RMP as the baseline, with continuous updates to the
goal position to follow the computed trajectory at the maximum possible speed.

To highlight GPMP’s sensitivity to the initial prior, we focus on the “H-shaped Box”, and
“Spiral Maze” environments. Since the baseline GPMP method lacks specific adaptations
for handling moving obstacles as in [77, 78], we focus this comparison on static scenes.
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5.4. Goal Region Motion Generation

The transition from following the Probabilistic Roadmap to reaching the goal presents
different challenges depending on the environment. In the 2D environment, adding the
goal position to the PRM is straightforward, because the configuration and task spaces are
simple translations of the same space. However, the inverse kinematic problem becomes
more complex in the Franka robot environment due to the redundancy in its degrees of
freedom, among other reasons.

To address this challenge in the robot environment, we compared several approaches:

Lookahead The reward of the edge from each node to itself is dependent on the future
distance between the end-effector position and the goal, after following the target
tracking policy, as discussed in Section 4.3. For this approach, we used the same
ODE integration method as in the position control of the Franka robot with the
Horizon Tr = 0.1 s.

Direct We also evaluated using the straight-line distance from the node to the goal without
ODE integration, referred to as Tr = 0 s in our experiments.

Inverse Kinematics We generated multiple goal nodes and added them to the graph by
solving the inverse kinematics problem at every time-step. This was accomplished
by optimizing the sum of the log likelihood of collision and the distance between
the end-effector and the goal, using a stochastic optimizer. We then selected the top
k = 15 results. While not computationally efficient, this approach is straightforward
to implement and serves our experimental purposes.

In Section 7.2, we briefly discuss how these approaches could be extended to still view
the goal as part of the graph and better scale the task tracking policy’s metric.

Additionally, we evaluate a sampling prior in the Panda environment, where the scenes only
have a single goal. It is based on a Boltzmann/Gibbs distribution p(xj) ∝ exp ∥xj − xgoal∥
to increase node density around the goal region. This results in a linear attraction towards
the goal to all nodes of the PRM during the Stein Variational Gradient Descent.
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5.5. Hierarchical Planning Frequency Analysis

To evaluate the computational efficiency of our method and the relation of different
update frequencies, we measured execution times for the various components of our
system using the IO host callback of JAX. It is important to note that these measurements
exclude delays associated with receiving sensor data and sending control commands
to the actuator. And due to XLA optimization potentially reordering and intertwining
different code sections, the times may only provide a hint to the real times. To mitigate
this, we enforced blocking between each step during measurement, which slows execution
by preventing some compute graph optimizations. Our current implementation is also
not fully optimized, containing duplicate executions and data structures. Consequently,
an optimized implementation would likely achieve higher frequencies. All measurements
were conducted on an NVIDIA RTX 3080 GPU.

To evaluate the impact of planning frequency on system performance, we simulated
different update rates for the collision checking of the PRM edges by only updating every
{1, 5, 10, 25, 50, 100, 200, 300} steps. During these experiments, the other modules, Value
Iteration, and local advantage function calculation, continued to run at every environment
step. We also vary the update frequency for the SVGD to demonstrate its ability to preserve
the accuracy of the nodes’ value function between edge collision updates.

These experiments were conducted in the two dimensional “Maze” scene with 25 obstacles
moving at a reduced maximum speed of 1ms−1 on 50 different random seeds. This
environment was chosen because the paths to the goal are narrow, frequently blocked
and warped and therefore require continuous consideration of different homotopies.
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6. Results

This chapter presents a comprehensive analysis of the experimental results obtained from
testing our hierarchical reactive motion generation method. We assess the performance of
our approach in comparison to established baselines in both static and dynamic settings.

We examine success rates, path length and time-to-goal metrics, evaluate strategies for
near-goal behavior in the Franka robot environment. Additionally we investigate collision-
checking frequencies, highlighting SVGD’s effectiveness in mitigating the negative effects
of reduced rates.

6.1. Performance Comparison with Established Approaches

To assess the effectiveness of our approach, we compared it against three baseline meth-
ods: local reactive motion generation with RMP [5, 24], HiPBI [67], and GPMP [10].
Descriptions of these approaches are provided in Chapter 2.

6.1.1. Static Planar Environments

The results in Figure 6.1 demonstrate that the RMP baseline, which relies solely on local
reactive control, exhibits limited success in navigating complex environments. Even in
static scenarios, the local reactive properties of RMPs frequently cause the agent to become
trapped in local minima. While the RMP achieves some success in the “Maze” scene, it
consistently fails in scenarios with deliberate local minima. For instance, in the “Open
Box” and “Open Box Multi-Goal” scenes, where the agent begins surrounded by obstacles,
the method cannot escape the local minimum created by these barriers.

The MPC method, HiPBI, demonstrates an improved ability to avoid local minima and
reach goals compared to the purely reactive approach. This improvement stems from
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Figure 6.1.: Performance comparison in static planar environments. Success rates (blue)
and collision rates (red) for our method versus three baselines: reactive
RMP, model-predictive HiPBI, and optimization-based GPMP. Our approach
consistently achieves higher success rates across diverse environments with
local minima and narrow passages.
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its capacity to evaluate multiple potential future trajectories. However, HiPBI still does
not match the performance of our method or GPMP in most scenarios. Notably, in the
“Gate” environment, GPMP more effectively navigates through narrow passages due to
the gradients leading the path towards the gap, while HiPBI must rely on exploration to
discover these passages.

It is worth noting that the higher collision rate HiPBI exhibits, compared to other methods,
could be attributed to the reduced importance assigned to obstacle avoidance policies
during the blending process. It is possible to constraint the blending to not impact the
influence of these policies. A comparison with these constraints would be an interesting
direction for future work.

GPMP is effective in most static environments but struggles in the “H-shaped Box” scene.
The initializations, shooting through the middle section of the shape, fails to escape
local minimums caused by a balance between collision avoidance and smoothness costs.
The non-convex obstacle shape leads to an increased smoothness costs without reducing
collision costs in the direction from the current trajectory candidate to a global minimum.
In the “Open Box” scenes, GPMP generates successful navigation trajectories, while the
“Spiral-Maze” environment challenges all methods with its long, narrow passages.

Our method consistently outperforms the baselines across most environments. This success
rate demonstrates the effectiveness of combining local reactive control with sampling-
based motion planning. In contrast to the other methods our method has a broader
awareness of the free space, and can utilize the connectivity information more effectively
in these purposefully difficult scenes.

6.1.2. Adaptation to Dynamic Obstacle Movements

In dynamic environments, see Figure 6.2, the RMP baseline achieves higher success rates
in the “Maze” scene compared to static environments. This improvement occurs because
moving obstacles may temporarily clear previously blocked paths. However, in the “Open
Box” scenarios, the local minimum continuously traps the RMP agent.

The GPMP baseline performs worse in dynamic environments, as the implementation
is not optimized for dynamic obstacle handling. As standard GPMP relies solely on full
replanning for recovery of path deviations caused by unexpected obstacle movements, we
reinitialize trajectories during execution. Since we tuned the initialization parameters
based on a few distinct goal distances, their adaptability to other distances is limited and
might lower success rates further. By employing a roadmap that spans the entire free
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Figure 6.2.: Performance comparison in planar environments with moving obstacles.
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baselines: reactive RMP, model-predictive HiPBI, and optimization-based
GPMP. Results highlight our method’s adaptability to changing environments
while demonstrating the increased collision risk faced by all approaches
under dynamic conditions.
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space and using Value Iteration to compute optimal paths from each node, our method
inherently includes a built-in recovery mechanism.

Our method maintains the highest success rate across dynamic environments, however,
we can not infer from these results how competitive our method is against specialized
approaches for dynamic environments. The comparatively low success rate of HiPBI
opposed to RMP in the “Maze” scene is unexpected and suggests a suboptimal parameter
choice for the MPCmethod. Nonetheless, we have demonstrated that our method possesses
a robust capability to handle changing conditions while effectively avoiding local minima.

All methods show increased collision rates in dynamic environments, partially attributed
to parameter settings and situations where obstacles completely surround the agent. Since
we only select subgoals that can be reached without collision, attraction and obstacle
avoidance policies are less frequently in conflict. This contributes to the increased safety
of our approach. The “H-shaped Box” scene presents an interesting case where the RMP
baseline exhibits the lowest collision rate because it never leaves the starting area. To
successfully reach the goal, agents must navigate through constrained spaces where they
risk being trapped between the moving obstacle and the boundaries.

6.2. Trajectory Quality Assessment

Figure 6.3 presents path length and time-to-goal metrics aggregated across all static and
dynamic scenes. More detailed results for individual scenes can be found in the appendix
in Chapter A.

HiPBI generally produces longer paths and trajectory durations, due to its curling poli-
cies. This exploration tendency, while beneficial for avoiding local minima, reduces path
efficiency. With better parameter tuning, HiPBI’s performance in these metrics could
potentially improve.

Similarly, GPMP’s longer time-to-goal in many scenarios can be attributed to the trajectory
following implementation rather than the algorithm itself. The trajectory generation may
be efficient, but the execution through the RMP introduces additional detours and delays.

Our method demonstrates shorter paths and faster goal achievement in most scenarios.
However, this advantage should be interpreted cautiously, as more extensive hyperparame-
ter optimization could significantly alter the relative performance. For instance, extending
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Figure 6.3.: Path length (left) and time-to-goal (right)metrics for differentmotion planning
approaches, averaged across all planar scenes. Our method demonstrates
efficient navigation while maintaining high success rates shown in previous
figures.

the time horizon for HiPBI or implementing more fine-grained GPMP initializations might
yield different comparative results.

Further investigations into the smoothness, which can be an issue for sampling-based
approaches, is deferred until after tuning the advantage calculation parameters. Preventing
oscillations due to sub-optimal low-level policy gains is also essential. But for our efforts
we can conclude that the path lengths and trajectory durations are within the same scales
as established methods, suggesting our method achieves both reliable goal achievement
and efficient paths.
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6.3. Exit Nodes in Higher-Dimensional Configuration Spaces

In the Franka robot environment, the RMP baseline achieves reasonable success in the
“Maze” scene, see Figure 6.4, but occasionally encounters local minima where target-
reaching and obstacle-avoidance policies counteract each other. This results in oscillatory
behavior with the robot moving in small circles without making progress. The “Window”
scene presents a more challenging scenario where the end-effector begins close to the goal
but is separated by the window structure, causing the purely reactive approach to fail.

We compare different strategies for selecting exit nodes within our method. Incorporating
goal nodes found through inverse kinematics substantially improves performance. When
inverse kinematics solutions are not added to the PRM, using a time horizon to check if the
goal is reachable from a current configuration proves more effective than simply evaluating
the Euclidean distance between nodes and the goal. This is negatively impacted by two
primary factors: starting configurations might be too distant for the goal-tracking policy
to be switched on, and the composition of parameters across all policies leads to numerical
instability during Ordinary Differential Equation (ODE) integration. This causes failures
even when viable paths exist.

The collision rate was consistently 0% across all experiments in the Franka environment,
suggesting that unsuccessful runs result from inadequate space connectivity representation.
The impact of the goal prior further supports this hypothesis. Currently the parameters of
the prior cause a higher impact in the “Window” scene, where without it the PRM’s ability
to connect to the goal are obstructed more by the present narrow passage.

The goal prior based on the Gibbs distribution effectively implements a single step of
the optimization problem used for the inverse kinematics solutions, so the PRM should
eventually converge to a very similar state as with inserting the nodes after optimization.
This indicates the success rate of our method, using the time horizon approach, could
potentially surpass the RMP baseline even in the “Maze” setting.
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Figure 6.4.: Success rates of the RMP baseline and different exit node selection strate-
gies in the Franka robot environments. Our method with inverse kinematics
solutions (w/ Goal Node) consistently outperforms other variants, especially
in the challenging “Window” scenario. Time-horizon evaluation (T = 0.1 s)
proves more effective than direct distance measurement (T = 0 s) when
goal nodes are not added, but fails to find solutions when the SVGD does
not bias the nodes towards the goal (w/o Goal Prior). The RMP baseline
demonstrates decent performance in “Maze” scenarios but struggles with
the “Window” environment’s local minimum.
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Task 2D Wall Time (ms) Panda Wall Time (ms)

SDF Update 0.575 ± 0.008 4.690 ± 0.031

SVGD Step 2.043 ± 0.164 2.994 ± 0.024

PRM Update 6.152 ± 0.077 45.098 ± 85.489

Value Iteration 0.490 ± 0.009 2.263 ± 38.138

Advantage 0.432 ± 0.006 1.025 ± 0.037

RMP 1.801 ± 0.029 1.669 ± 0.040

Table 6.1.: Computational performance of modules in milliseconds (mean± std). Re-
sults highlight the significant difference between edge collision checking and
other operations. Measurements are from an NVIDIA RTX 3080 GPU execution
with potential for further optimization through reduced redundant calculations
and improved numerical conditioning of the RMPs.

6.4. Hierarchical Planning Frequency Assessment

Table 6.1 presents the computational times for system components. As expected, edge
collision checking requires the most resources, while other modules operate at 0.5-2 kHz
in the 2D environment and slightly slower in the Panda environment. Whether these
measurements reflect achievable frequencies in real-world robotic systems remains an
open question, due to the inaccuracy of the measurement method, though the results
align with our intuition on relative complexities.

The parameters of the RMP policies lead to numerical stiffness in certain regions, par-
ticularly when the end-effector approaches the goal. This stiffness necessitates smaller
timesteps during ODE integration, which could explain the high variance observed in the
PRM Step timing for the robot environment.

Value Iteration runs to convergence in our implementation, so higher variance in its
execution time is expected. Interestingly, this variance is not present in the 2D environment,
possibly due to the higher node density and increased edge redundancy, which could
make the values more stable over time.

To test the effectiveness of SVGD as a smoothing operation between collision checks,
Figure 6.5 presents success rates at different update rates of both modules. In this
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Figure 6.5.: Success rates of PRM edge collision check frequency in relation to SVGD in
dynamic, crowded environments. The x-axis and y-axis represent RMP steps
between edge updates and SVGD steps, respectively. Results show global
planning requires fewer updates than reactive control, with SVGDmaintaining
accuracy between checks.

particularly crowded scene the overall success rate is relatively low, as sometimes no
feasible path exists, and the agent may become surrounded without an escape route.

The results demonstrate that the PRM edges do not require updating at the same frequency
as the RMP. Success rates only decline when edges are updated significantly less frequently.
This effect would likely be even less pronounced in less crowded scenes.

We can infer from the data that SVGD helps preserve value accuracy between collision
checks, as the success rate drops with decreasing SVGD frequency. Figure 6.6 provides a
visual illustration of this effect, showing how the value function (color gradient) maintains
accuracy for a period between edge updates (at t = 20 s and t = 30 s) before gradually
losing precision in certain regions.

This analysis confirms that using SVGD as a smoothing operation between collision checks
effectively maintains planning accuracy while reducing computational requirements,
enabling effective planning in dynamic environments.
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t = 20s t = 27.5s

t = 22.5s t = 29.9s

t = 25s t = 30s

Figure 6.6.: SVGD as smoothing in-between collision checking. The rewards for the edges
of the PRM are updated at t = {20, 30}s. During these times the position
of the nodes is updated using SVGD. The colour gradient shows the value
function, which keeps it’s accuracy for a while, but over time parts of the
graph loose their accuracy.

56



7. Conclusions

This chapter concludes the thesis by examining the limitations of the proposed approach,
suggesting directions for future research, and summarizing the key contributions. The
integration of global planning with reactive motion generation with Stein Variational
Gradient Descent bridging between the two demonstrates significant potential for robot
navigation in dynamic environments, as our experimental results have shown. However,
several constraints and challenges remain to be addressed.

7.1. Limitations

Despite the promising results, our approach exhibits several limitations that warrant
consideration. These limitations span from theoretical assumptions to practical implemen-
tation challenges and provide important context for interpreting our findings.

A fundamental limitation of our method is the assumption of full observability. In real-
world robotic applications, sensors provide incomplete and noisy information about the
environment, creating discrepancies between the robot’s internal model and the actual
state of the world. We do not explicitly model uncertainty in either the local reactive
control or the global planning components, which limits the robustness of our solution in
uncertain environments.

Our approach also presents theoretical limitations in representation. Since we do not
consider the configuration-time space explicitly, certain solution trajectories cannot be
found by the roadmap. For example, in scenarios with periodically opening and closing
gaps (such as doors on opposite sides of a corridor), the method may fail to find viable
paths or get stuck alternating between following two opposing solutions. Moreover, the
robot might navigate to states that appear collision-free in the current time step but will
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result in collisions in the future without possibility of escape, a problem known in the
literature as inevitable collision states [98].

As discussed in Section 5.2, our method assumes the availability of differentiable cost
maps. While learned approximations such as those presented in [3, 91] could serve
as alternatives, using such approximations impact the applicability of theoretical safety
guarantees that depend on the accuracy of obstacle representations.

The proposed approach also has limitations in handling kino-dynamic constraints. While
these constraints are enforced through the parameters of the low-level policies, they are
not fully considered during the planning phase. Consequently, the Value Iteration on the
PRM may produce trajectories that are not optimal for the robot’s actual dynamics. This
discrepancy between planning and execution could lead to suboptimal performance in
scenarios where dynamic constraints significantly impact feasible motions.

From a practical perspective, the tuning of parameters presents a significant challenge.
The different components, SVPRM, RMP, and Value Iteration, each have their own set of
parameters, and these parameters interact in complex ways that affect the overall perfor-
mance of the combined method. This interdependence makes parameter optimization a
tedious process that currently requires extensive trial and error, but could potentially be
automated to a certain degree.

Additional practical limitations concern the theoretical stability guarantees of our approach.
The current implementation omits correction terms that depend on the time derivative of
the Jacobian J̇ and does not explicitly consider the change of weights as mentioned in
[29]. The absence of these terms means that the stability guarantees of the original RMP
framework might not fully apply to our implementation. Furthermore, since we operate in
environments with moving obstacles, the stability of our system could be compromised if
the obstacle movements themselves result from unstable systems, effectively transferring
their instability to our reactive control.

The proposed method also has limitations in handling specific types of dynamic environ-
ments. In scenarios where obstacles move in an adversarial manner, more sophisticated
motion policies and planners would be required. Likewise, if all obstacles move in a similar
direction, they could push all roadmap nodes toward the same region, resulting in high
node density in some areas and insufficient coverage in others. This uneven distribution
would compromise the roadmap’s ability to represent the connectivity of the free space.

Narrow regions of free space present another challenge, as they might not be traversable
due to suboptimal node positions. The SVGD component of our method can adapt to
continuously moving obstacles, but it may struggle with abruptly appearing obstacles.
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This limitation is particularly relevant for mobile manipulators operating with incomplete
map information, where obstacle data only becomes available once detected by sensors. In
such cases, the disturbance to the roadmap might be too severe for continuous adaptation
to preserve the accuracy of the value function.

Finally, our current approach is not suitable for planning with contact forces. Simply re-
placing attraction and collision avoidance controllers with impedance controllers would be
insufficient, as the edge collision measure would need substantial revision to accommodate
controlled contact with obstacles rather than enforcing minimum distances.

7.2. Outlook

Building upon the identified limitations, this section outlines promising directions for
future research that could enhance the capabilities and applicability of our approach.

A natural extension of our method would be to refine the representation of the probabilistic
roadmap. Currently, the roadmap consists only of configuration space poses, with an
attraction policy defined in the same space to guide the agent. An interesting direction
would be to conceptualize the goal tracking RMP as a unidirectional edge to a goal node
defined in task space. This representation could replace the current self-connecting edges
that are weighted based on the success of a rollout of the RMP. Such a modification would
allow changing the metric of the target tracking policy according to the local advantage
function, providing greater accuracy than the current distance-based metric.

Further enhancements could involve incorporating more complex motion policies as nodes
in the graph. For example, gait control and locomotion tasks or pouring motions could be
represented as specialized nodes. However, defining edges between these complex motion
policies and simple attraction policies presents challenges, particularly in developing
recovery policies for transitioning away from the influential region of a complex node.

Transitioning the approach to real-life experiments represents an important future direc-
tion. This practical implementation would require careful parameter selection to avoid
numerical stiffness, robust handling of sensor noise and latencies, and thoughtful bal-
ancing of communication overhead when decoupling methods across different frequency
domains. The practical benefits of executing certain components at higher frequencies
must be weighed against the computational and communication costs. Measuring the
effect of Stein Variational Gradient Descent on Value Iteration convergence in terms of
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iteration count could provide insights into the computational efficiency improvements
gained by warm-starting the process.

Several technical improvements could enhance the method’s performance and theoretical
foundations. Implementing RMPfusion as described in [29] could mitigate the effects
of changing weights, while using geometric fabrics [30] as underlying reactive motion
policies might provide better adaptation to robot and obstacle dynamics.

Adding arrival time estimation and safe intervals to the global planner, similar to the
approach in [71], could improve safety in dynamic environments. To further improve
safety, future work could incorporate certainty metrics in the reward function to help
avoid inevitable collision states. The current edge weight computation could also be
enhanced by utilizing Riemannian distances of the low-level root RMP, which should
encode collision information in a way similar to [20].

Another valuable comparison would be between SVGD and using RMP controllers to move
the PRM nodes. While RMPs perform extensive calculations to ensure stability, which may
not be strictly necessary for the roadmap, and require more parameter tuning than SVGD,
understanding the relative advantages of each approach could lead to beneficial hybrid
solutions. Additionally, analyzing whether XLA automatically optimizes the current RMP
formulation could reveal opportunities to avoid explicit computation and storage of the
Jacobian, which is computationally and spatially expensive as noted in [24].

From a theoretical perspective, studying our approach through the lens of composable
energy policies [6] could be fruitful. Particularly since these policies also use the notion
of an advantage function to formulate probabilistic policies, albeit typically with only a
one-step lookahead.

Our experimental results suggest that the impact of the goal prior is stronger in environ-
ments like the “Window” scene, where the goal is positioned inside a narrow passage.
Developing a prior that increases node density around both the agent and the goal, e.g.
based on a mixture of Gaussians, would likely improve success rates, particularly where the
agent begins in narrow passages. Increasing the density around critical regions, identified
for example by approaches like LEGO [39], could potentially increase the success rate in
a broader set of scenarios.

Several algorithmic improvements could enhance the method’s efficiency and robustness.
Developing a better, possibly learned estimator for determining edge collision-free status
could reduce computational costs. Reusing collision information and its gradients, available
through automatic differentiation, could enable updating edge feasibility without explicit
checking, or serve as a prioritization measure similar to lazy PRM [38] approaches.
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From a theoretical standpoint, establishing proofs that the method is guaranteed to
converge to the goal in a stable manner would strengthen its theoretical foundations.
Studying the relationship between success rate, computational complexity, PRM node
density, and obstacle density would provide valuable insights for parameter selection in
different environments.

Finally, an intriguing direction would be to inform the higher-level planner, the Value
Iteration, based on the current trajectory, either by replacing the Value Iteration completely
or by changing the edge weights. This approach would lead to a form of Generalized
Policy Iteration [89], effectively incorporating reinforcement learning principles.

7.3. Summary

This thesis has presented an approach to robot motion planning that integrates local
reactive control with global planning to address challenges in dynamic environments. By
combining Riemannian Motion Policies (RMPs) for reactive control with Stein Variational
Probabilistic Roadmaps (SVPRMs) for adaptive global planning, we have demonstrated a
method that maintains safety guarantees while efficiently navigating complex, changing
environments. Value Iteration on this roadmap generates policies that guide the robot
toward the goal while avoiding local minima, and the advantage function weights different
attraction policies to effectively blend local control with global planning.

Results in both 2D environments and simulated 7-DOF robot scenarios demonstrate that
our method outperforms purely reactive approaches in environments with local minima.
It also shows higher success rates and fewer collisions in dynamic environments than
comparison methods that do not employ concepts specialized for these scenarios.

A key concept of our approach is how Stein Variational Gradient Descent bridges different
operational timescales, a critical challenge in dynamic environments. Robot motion control
requires high-frequency reactivity for safety, while global planning is computationally
intensive and traditionally operates at much lower frequencies. This adaptation preserves
the accuracy of the value function, allowing the system to operate effectively even when
edge collision checking occurs at substantially reduced rates.

Our experimental results validated this multi-timescale approach. We demonstrated that
edge collision checking can be performed up to 25 times less frequently than reactive con-
trol without significant performance degradation when SVGD continuously updates node
positions. This represents a substantial computational efficiency gain while maintaining
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high success rates, as the advantage function derived from the Value Iteration continues
to provide effective guidance despite the reduced update frequency of the global roadmap.
The visual evidence of the value function preservation between updates, shown in our
results, offers intuition for the effectiveness of SVGD as a bridging mechanism between
the different timescales of global planning and local motion generation.

The limitations identified in this chapter highlight important areas for future work, par-
ticularly in closing the sim-to-real gap and providing formal guarantees. The outlined
research directions suggest avenues for extending the method’s capabilities and addressing
its current limitations.

In conclusion, the integration of reactive motion generation with probabilistic dynamic
graphs presents an approach to robot motion planning in dynamic environments. The
ability to handle different operational timescales through SVGD contributes to efficient
planning while maintaining safety considerations. While challenges remain, the method’s
performance in complex scenarios suggests potential for applications where navigation
amidst moving obstacles is required, e.g. in human-robot interaction tasks.
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A. Comprehensive Results

To provide more details about the results that were visualized in Chapter 6, we present
more comprehensive experimental data in the following tables. We report success rates
and collision rates as percentages of trials that succeeded or ended in collision respectively,
as well as path lengths and time to goal with their respective Standard Deviations (SDs).

Table A.1 and Table A.3 show the results for the experiments with static obstacles, for the
toy example and the robot environment. Table A.2 and Table A.4 equivalently show the
results in the dynamic environments.

The complementary data for the comparison of update rates is shown in Table A.5. Higher
rates indicate more environment steps being taken in between each update.
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Scene Method Success Rate (%) Collision Rate (%) Path Length First Goal (steps)

HShapedBox2D

RMP Baseline 0.00 0.00 N/A N/A

HIPBI Baseline 0.00 0.00 N/A N/A

GPMP Baseline 0.00 0.00 N/A N/A

Ours (w/ Goal Node w/o Goal Prior) 100.00 0.00 73.47 ± 1.49 191.04 ± 17.87

Ours (w/o Goal Node w/o Goal Prior Tr = 1 s) 100.00 0.00 77.12 ± 3.87 230.74 ± 67.30

Maze2D

RMP Baseline 26.00 0.00 52.62 ± 11.34 352.96 ± 90.34

HIPBI Baseline 74.00 14.00 116.45 ± 44.74 310.12 ± 115.17

GPMP Baseline 82.00 3.00 56.77 ± 18.95 325.20 ± 148.17

Ours (w/ Goal Node w/o Goal Prior) 97.00 0.00 47.12 ± 5.45 96.47 ± 23.73

Ours (w/o Goal Node w/o Goal Prior Tr = 1 s) 97.00 0.00 50.29 ± 6.87 139.97 ± 54.44

MultiGoal2D

RMP Baseline 16.00 0.00 38.07 ± 6.35 302.62 ± 125.95

HIPBI Baseline 44.00 15.00 143.15 ± 78.11 463.30 ± 267.27

GPMP Baseline 87.00 4.00 51.12 ± 16.81 301.05 ± 123.11

Ours (w/ Goal Node w/o Goal Prior) 96.00 1.00 38.16 ± 7.56 82.77 ± 35.05

Ours (w/o Goal Node w/o Goal Prior Tr = 1 s) 97.00 0.00 43.45 ± 13.66 106.51 ± 66.97

OpenBox2D

RMP Baseline 6.00 0.00 21.14 ± 4.02 135.17 ± 30.76

HIPBI Baseline 100.00 0.00 98.88 ± 40.81 257.46 ± 106.60

GPMP Baseline 100.00 0.00 41.61 ± 13.19 239.39 ± 74.35

Ours (w/ Goal Node w/o Goal Prior) 100.00 0.00 32.12 ± 8.39 71.66 ± 17.90

Ours (w/o Goal Node w/o Goal Prior Tr = 1 s) 100.00 0.00 39.05 ± 12.21 210.35 ± 168.43

MultiGate2D

RMP Baseline 1.00 5.00 76.96 ± 0.00 367.00 ± 0.00

HIPBI Baseline 32.00 5.00 190.15 ± 54.58 663.09 ± 187.85

GPMP Baseline 78.00 6.00 72.38 ± 13.54 452.27 ± 118.04

Ours (w/ Goal Node w/o Goal Prior) 92.00 5.00 62.00 ± 7.23 164.43 ± 41.91

Ours (w/o Goal Node w/o Goal Prior Tr = 1 s) 84.00 5.00 67.51 ± 11.15 264.83 ± 152.54

OpenBox2DMultigoal

RMP Baseline 0.00 0.00 N/A N/A

HIPBI Baseline 31.00 0.00 138.12 ± 41.79 438.87 ± 148.79

GPMP Baseline 85.00 0.00 69.48 ± 18.93 409.80 ± 127.62

Ours (w/ Goal Node w/o Goal Prior) 99.00 0.00 50.62 ± 8.32 115.92 ± 44.66

Ours (w/o Goal Node w/o Goal Prior Tr = 1 s) 95.00 0.00 53.90 ± 8.52 163.34 ± 127.12

SpiralMaze2D

RMP Baseline 0.00 0.00 N/A N/A

HIPBI Baseline 0.00 20.83 N/A N/A

GPMP Baseline 0.00 6.25 N/A N/A

Ours (w/ Goal Node w/o Goal Prior) 21.00 2.00 143.60 ± 16.93 560.43 ± 142.93

Ours (w/o Goal Node w/o Goal Prior Tr = 1 s) 12.00 1.00 145.80 ± 14.31 610.50 ± 167.13

Table A.1.: Performance comparison of motion planning methods in 2D static obsta-
cle environments, showing success rate (%), collision rate (%), path length
(mean± SD meters), and time-to-goal (mean± SD steps). Our method is eval-
uated with and without explicit goal nodes. Bold indicates best performance
per metric within each environment (N = 100 trials per Scene).
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Scene Method Success Rate (%) Collision Rate (%) Path Length First Goal (steps)

Maze

RMP Baseline 90.00 0.00 1.14 ± 0.15 598.63 ± 161.25

Ours (w/ Goal Node w/ Goal Prior 96.67 0.00 1.39 ± 0.24 141.76 ± 64.92

Ours (w/ Goal Node w/o Goal Prior 100.00 0.00 1.41 ± 0.24 159.14 ± 87.40

Ours (w/o Goal Node w/ Goal Prior Tr = 0 s) 80.00 0.00 1.25 ± 0.20 704.58 ± 126.45

Ours (w/o Goal Node w/ Goal Prior Tr = 0.1 s) 73.33 0.00 1.91 ± 0.47 538.45 ± 202.68

Ours (w/o Goal Node w/o Goal Prior Tr = 0.1 s) 13.33 0.00 2.23 ± 0.53 429.00 ± 65.64

Window

RMP Baseline 0.00 0.00 N/A N/A

Ours (w/ Goal Node w/ Goal Prior 63.33 0.00 1.19 ± 0.11 513.95 ± 154.93

Ours (w/ Goal Node w/o Goal Prior 46.67 0.00 1.24 ± 0.16 410.14 ± 138.61

Ours (w/o Goal Node w/ Goal Prior Tr = 0 s) 43.33 0.00 1.70 ± 0.31 581.92 ± 205.76

Ours (w/o Goal Node w/ Goal Prior Tr = 0.1 s) 80.00 0.00 1.43 ± 0.35 736.46 ± 175.17

Ours (w/o Goal Node w/o Goal Prior Tr = 0.1 s) 3.33 0.00 1.72 ± 0.00 842.00 ± 0.00

Table A.2.: Ablation study of our motion planning method and comparison with RMP
baseline for the Franka robot in static obstacle environments. Results com-
pare variations of our approachwith different configurations: with andwithout
goal nodes added to the roadmap, with and without goal-biased sampling
prior, and with different time horizons (Tr) for evaluating node-to-goal con-
nectivity. Performance metrics include success rates (%), collision rates (%),
path lengths (radians, mean ± SD), and time to goal (steps, mean ± SD) across
Maze and Window environments (N = 30 trials per configuration).
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Scene Method Success Rate (%) Collision Rate (%) Path Length First Goal (steps)

HShapedBox2D

RMP Baseline 0.00 0.00 N/A N/A

HIPBI Baseline 0.00 24.00 N/A N/A

GPMP Baseline 2.00 20.00 182.66 ± 3.48 856.00 ± 53.00

Ours (w/ Goal Node) 75.00 20.00 122.78 ± 56.75 306.81 ± 167.29

Ours (w/o Goal Node w/o Goal Prior Tr = 1s) 79.00 18.00 122.40 ± 36.73 389.91 ± 174.30

Maze2D

RMP Baseline 68.00 32.00 70.34 ± 18.81 362.96 ± 98.88

HIPBI Baseline 61.00 39.00 130.97 ± 34.82 336.46 ± 84.29

GPMP Baseline 39.00 53.00 127.97 ± 37.34 637.95 ± 179.27

Ours (w/ Goal Node) 89.00 11.00 54.96 ± 10.28 119.27 ± 35.80

Ours (w/o Goal Node w/o Goal Prior Tr = 1s) 89.00 11.00 60.38 ± 14.31 166.96 ± 83.46

MultiGoal2D

RMP Baseline 64.00 34.00 69.43 ± 28.19 406.02 ± 188.14

HIPBI Baseline 49.00 39.00 148.22 ± 57.39 467.22 ± 203.05

GPMP Baseline 51.00 43.00 122.84 ± 36.37 619.59 ± 177.78

Ours (w/ Goal Node) 86.00 14.00 44.05 ± 10.53 95.27 ± 31.28

Ours (w/o Goal Node w/o Goal Prior Tr = 1s) 86.00 14.00 49.00 ± 13.70 129.31 ± 71.09

OpenBox2D

RMP Baseline 4.00 1.00 33.91 ± 13.12 212.00 ± 56.44

HIPBI Baseline 91.00 5.00 152.96 ± 76.99 392.67 ± 191.13

GPMP Baseline 48.00 5.00 88.39 ± 37.82 500.02 ± 208.40

Ours (w/ Goal Node) 100.00 0.00 48.07 ± 15.33 137.48 ± 66.36

Ours (w/o Goal Node w/o Goal Prior Tr = 1s) 98.00 0.00 56.81 ± 21.29 231.11 ± 133.37

MultiGate2D

RMP Baseline 11.00 22.00 111.20 ± 22.57 638.18 ± 175.01

HIPBI Baseline 31.00 15.00 174.10 ± 44.62 659.26 ± 189.10

GPMP Baseline 51.00 24.00 102.73 ± 22.03 592.16 ± 140.05

Ours (w/ Goal Node) 93.00 5.00 63.57 ± 12.70 154.92 ± 93.51

Ours (w/o Goal Node w/o Goal Prior Tr = 1s) 85.00 7.00 70.38 ± 14.94 251.91 ± 172.33

OpenBox2DMultigoal

RMP Baseline 0.00 15.00 N/A N/A

HIPBI Baseline 31.00 27.00 185.65 ± 41.80 587.16 ± 169.14

GPMP Baseline 31.00 59.00 111.51 ± 32.66 600.94 ± 168.51

Ours (w/ Goal Node) 94.00 2.00 70.99 ± 26.99 168.53 ± 83.10

Ours (w/o Goal Node w/o Goal Prior Tr = 1s) 91.00 5.00 71.72 ± 24.33 209.05 ± 151.51

SpiralMaze2D

RMP Baseline 0.00 56.25 N/A N/A

HIPBI Baseline 0.00 68.75 N/A N/A

GPMP Baseline 0.00 77.08 N/A N/A

Ours (w/ Goal Node) 53.00 39.00 163.00 ± 25.19 650.18 ± 139.67

Ours (w/o Goal Node w/o Goal Prior Tr = 1s) 35.00 33.00 169.93 ± 20.43 754.91 ± 150.50

Table A.3.: Performance comparison of motion planning methods in 2D moving obsta-
cle environments, showing success rate (%), collision rate (%), path length
(mean ± SD meters), and time-to-goal (mean ± SD steps). Our method is
evaluated with and without explicit goal nodes. Bold indicates best perfor-
mance per metric within each environment (N = 100 trials per Scene).
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Scene Method Success Rate (%) Collision Rate (%) Path Length First Goal (steps)

Maze

RMP Baseline 73.33 16.67 1.15 ± 0.18 573.50 ± 150.83

Ours (w/ Goal Node w/ Goal Prior) 100.00 0.00 1.40 ± 0.24 132.57 ± 48.32

Ours (w/ Goal Node w/o Goal Prior) 100.00 0.00 1.41 ± 0.26 154.40 ± 111.60

Ours (w/o Goal Node w/ Goal Prior Tr = 0s) 30.00 36.67 1.81 ± 0.60 516.67 ± 220.18

Ours (w/o Goal Node w/ Goal Prior Tr = 0.1s) 40.00 23.33 1.82 ± 0.48 473.42 ± 228.43

Ours (w/o Goal Node w/o Goal Prior Tr = 0.1s) 10.00 0.00 2.30 ± 0.49 486.33 ± 113.54

Window

RMP Baseline 0.00 0.00 N/A N/A

Ours (w/ Goal Node w/ Goal Prior) 90.00 0.00 1.85 ± 0.46 502.33 ± 154.95

Ours (w/ Goal Node w/o Goal Prior) 80.00 6.67 1.94 ± 0.55 511.67 ± 171.47

Ours (w/o Goal Node w/ Goal Prior Tr = 0s) 60.00 0.00 2.12 ± 0.46 793.11 ± 158.35

Ours (w/o Goal Node w/ Goal Prior Tr = 0.1s) 70.00 0.00 2.15 ± 0.31 774.57 ± 100.66

Ours (w/o Goal Node w/o Goal Prior Tr = 0.1s) 0.00 3.33 N/A N/A

Table A.4.: Ablation study of our motion planning method and comparison with RMP
baseline for the Franka robot in moving obstacle environments. Results
compare variations of our approach with different configurations: with and
without goal nodes added to the roadmap, with and without goal-biased
sampling prior, and with different time horizons (Tr) for evaluating node-to-
goal connectivity. Performance metrics include success rates (%), collision
rates (%), path lengths (radians, mean ± SD), and time to goal (steps, mean ±
SD) across Maze andWindow environments (N = 30 trials per configuration).
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PRM Update Rate Stein Update Rate Success Rate (%) Collision Rate (%) Path Length First Goal (steps)

1 1 44.00 4.00 97.87 ± 33.06 505.05 ± 246.04

5
1 44.00 8.00 98.16 ± 35.59 478.91 ± 234.87

5 28.00 6.00 86.72 ± 30.70 379.57 ± 217.17

10

1 48.00 6.00 105.75 ± 36.03 534.25 ± 236.93

5 32.00 2.00 95.05 ± 36.01 415.44 ± 214.87

10 26.00 4.00 91.36 ± 31.23 426.85 ± 208.68

25

1 42.00 6.00 100.40 ± 37.77 520.67 ± 235.59

5 34.00 2.00 100.82 ± 31.79 518.06 ± 249.47

10 28.00 2.00 91.43 ± 29.81 467.00 ± 222.45

25 32.00 2.00 100.31 ± 36.19 521.69 ± 232.31

50

1 38.00 12.00 99.81 ± 39.84 545.11 ± 271.02

5 34.00 4.00 88.99 ± 32.02 484.06 ± 280.64

10 30.00 4.00 91.65 ± 29.38 505.33 ± 239.96

25 30.00 8.00 93.82 ± 28.55 546.13 ± 249.93

50 26.00 2.00 85.99 ± 30.29 492.38 ± 234.50

100

1 36.00 4.00 93.09 ± 27.46 539.50 ± 224.63

5 32.00 10.00 86.99 ± 32.23 534.75 ± 293.04

10 24.00 6.00 87.20 ± 25.52 470.42 ± 167.76

25 28.00 6.00 82.66 ± 23.41 484.64 ± 237.71

50 28.00 4.00 89.94 ± 34.16 528.64 ± 279.24

100 24.00 4.00 92.41 ± 28.35 535.92 ± 241.11

200

1 32.00 4.00 94.12 ± 27.50 567.56 ± 253.15

5 34.00 4.00 90.01 ± 25.91 580.76 ± 272.56

10 24.00 8.00 83.88 ± 27.39 446.67 ± 235.97

25 24.00 14.00 87.41 ± 23.17 570.92 ± 252.82

50 24.00 2.00 88.86 ± 21.09 556.75 ± 235.31

100 26.00 2.00 96.17 ± 28.22 577.85 ± 198.70

200 24.00 4.00 97.53 ± 32.84 560.58 ± 188.76

300

1 28.00 6.00 93.14 ± 37.14 556.79 ± 261.28

5 34.00 2.00 88.32 ± 27.95 592.65 ± 266.85

10 24.00 2.00 86.63 ± 33.80 498.42 ± 253.28

25 20.00 6.00 90.88 ± 27.22 551.70 ± 242.17

50 20.00 2.00 83.59 ± 18.77 543.70 ± 253.71

100 20.00 4.00 91.42 ± 20.83 585.40 ± 224.03

200 18.00 0.00 96.16 ± 31.65 565.22 ± 246.18

300 14.00 2.00 96.25 ± 33.18 495.86 ± 254.79

Table A.5.: Comparison of update rates. Dynamic Obstacles (N = 50)
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B. Policies

Table B.1 presents the key parameters governing the Riemannian Motion Policies. We
supplemented the policies described in Section 3.1 with a configuration space dampening
policy defined as f(x, ẋ) = −η ẋ, M = I.

While dampening is essential to mitigate overshooting, implementing it solely within
the target attraction policy induced substantial curling behaviour. Redistributing some
dampening to the multi-dimensional configuration space policy effectively reduced this
curling effect. Furthermore, we implemented the attraction policies in multi-dimensional
spaces rather than using scalar distance measures, as the latter approach generated
undesirable oscillations perpendicular to the goal-directed vector.
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Policy Type Parameter
Panda Robot 2D Environment

Reaching Target PRM Policy Reaching Target PRM Policy

Attraction Policies

k 25.0 25.0 3.0 1.0

η 50.0 0.63 2.0 0.63

σ 0.05 0.2 4.0 10.0

α 64.0 64.0 1.0 1.0

wu 5.0 3.0 30.0 30.0

wl 0.0 2.0 0.0 15.0

Panda Robot 2D Environment

Obstacle Avoidance Self-Collision and Joint-Limits Obstacle Avoidance

Repulsion Policies

safety margin 0.01 0.03 1.2

kp 1500 500 25

ℓp 0.05 0.05 20

vd 0.25 0.25 1.0

kd 1.0 1.0 25

ϵd 5.0 5.0 1.0

ℓd 0.01 0.01 0.25

µ 7000 5000 100

ϵm 100 100 0.001

ℓm 0.005 0.005 0.1

r 0.02 0.05 2.5

Dampening η 1.0 5.0

Table B.1.: Comparison of key policy parameters between the Panda robot and 2D en-
vironments. See Section 3.1 for their role in the specific policies. The gain
parameter k is an additional scaling of the gradient for the attraction policies
and safety margin refers to a constant shift in the space of the repulsion
policies, so the distance x is always a certain amount smaller. The dampening
policy is simply f(x, ẋ) = −η ẋ, M = I in the configuration space C.
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