
Kinematics Correspondence As Inexact Graph Matching

An T. Le1, Kay Pompetzki1, Jan Peters1,2,3,4, and Armin Biess5

I. INTRODUCTION

Fig. 1: The optimal correspondence X∗ solving Eq. (1) represents the
identified correspondences (yellow lines) between Panda & UR10e, and
Skeleton & Unitree H1. More details can be found at https://sites.
google.com/view/igmcor.

Imitation learning [1] has led to remarkable accomplish-
ments, spanning from intricate helicopter acrobatics [2] and
rapid arm dexterity [3] to the finesse of haptic control [4],
[5], expressive gestures [6], precise manipulation [7]–[9], and
even the complexity of legged locomotion [9], [10]. Imitation
learning algorithms have been extensively studied and were
recently summarised in a comprehensive overview [11].
Interestingly, despite the impressive advancements in devel-
oping novel robotic motor skills, fundamental challenges and
open problems within imitation learning have persisted for
decades. At the heart of these core inquiries lies the intricate
correspondence problem: How can an agent (i.e., the learner)
replicate a behavior observed in another agent (referred to
as the expert)? This challenge gains complexity due to the
disparate kinematic and dynamic constraints adhered to by
the two agents. These constraints include body morphol-
ogy, degrees of freedom (DOFs), potential self-collisions,
joints, actuators, and torque limitations. In essence, the two
embodiments exist within distinct state and action spaces
[12], presenting a morphology correspondence that remains
unresolved.

In this work, we investigate the correspondence problem
in detail by representing the embodiment as a structured
graph and deriving a similarity measure on these graphs
based on some isometry heuristics. In particular, we propose
a representation of embodiment as a geometrics graph with
feature functions for graph comparison. Then, we formulate
the correspondence as an inexact graph-matching problem
to solve the correspondence assignments between dissimi-
lar embodiments, forming a similarity divergence between
embodiments. In the first set of experiments, we derive
a correspondence Riemannian Motion Policy (RMP) for
reactive imitation within the RMPflow [13], thus additionally
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incorporating robot-specific objectives, such as self-collision
avoidance, joint-limit, or obstacle avoidance. In the inverse
RL setting, we calibrate correspondence between the human
skeleton and Unitree H1 as motion retargeting for walking
tasks trained with Proximal Policy Optimization (PPO) [14].

II. CORRESPONDENCE AS INEXACT GRAPH MATCHING

Here, we present the correspondence problem as an inexact
graph matching problem [15], whose solution is the corre-
spondence assignments between considered embodiments.

A. Embodiment Representation As Geometric Graph
Our choice of embodiment representation is motivated by

imposing the following requirements on the model descrip-
tions: (i) generic - the model can be applied to a variety
of physical embodiments; (ii) kinematics- it can represent
the shape and motion of the embodiment; (iii) extrinsic -
embodiment features such as links or joint poses can be
measured w.r.t. to an extrinsic reference frame; (iv) metric-
compatible - it allows the introduction of a distance measure
across dissimilar embodiments with different DoFs. These
requirements are naturally satisfied by defining the embod-
iment graph G = (V, E , dv, ds, de), where the robot joint
poses represent the node set V = {Ti}ni=1, T ∈ SE(3), the
robot physical links represent edge set E = {ek = (i, j)|0 <
i, j ≤ n}mk=1, and the geometric functions. The global node
feature function dv : SE(3) × SE(3) → R is simply the
distance metric defined on SE(3) manifold [16], representing
node similarity as joint pose comparison w.r.t. a world frame.
The local node feature function ds : V → N defines local
node heuristics measuring the physical embodiment topology
such as the number of robot links connected to the ith-
joint ds(i) = deg(i) (i.e., the node degree). The specific
edge feature function de : E → R computes physical
link length, representing edge similarity as an embodiment
structure comparison.

We construct the embodiment graph G by representing
a node to each joint of the robot body. The edges are
instantiated where there exists a physical link between the
joints. For an embodiment with M -DoFs and generalized
joint configuration q ∈ RM , the joint poses w.r.t. a world
frame V(q) is computed by a forward kinematic (FK)
function mapping. Note that the initial joint poses can be
freely chosen by the user or follow the robot description
files. Embodiment graph equality, G1 = G2, follows if
|V1| = |V2|, dv(T i

1 ,T
i
2) = 0, ds1(i) = ds2(i)∀i ∈ {1, . . . , n}

and E1 = E2, de1(k) = de2(k), ∀k ∈ {1, . . . ,m}.

B. The Embodiment Correspondence As Graph Matching
We define the correspondence between two embodiment

graphs G1,G2 as an injective function c : V1 → V2, which



maps corresponding nodes between embodiment graphs. We
hypothesize that the correspondence problem in imitation
learning can be formulated as an inexact Graph Matching
(GM) problem [15], where a bijective map between embod-
iment nodes usually does not exist (e.g., different number of
nodes between graphs n1 ̸= n2). The inexact GM tries to
find correspondence concerning minimum rather than zero-
distortion, or, on the other hand, maximizing affinity between
graphs.

First, the correspondence map c can be reformulated as
the binary assignment matrix X ∈ {0, 1}n1×n2 , and the
graph topology of G can be represented by the node-edge
incident matrix G ∈ {0, 1}n×m, where Gi,k = Gj,k = 1
if the ith and jth-nodes are connected by the kth-edge. The
correspondence problem between G1,G2 can be formulated
as Lawler’s Quadratic Assignment Problem (QAP)

max
X

vec(X)⊺Kvec(X) (1)

with K ∈ Rn1n2×n1n2 as the second-order affinity matrix,
the constraints X ∈ {0, 1}n1×n2 , X1n2

= 1n1
, X⊺1n1

≤
1n2

, and vec(·) operator vectorizes matrices. The constraints
enforce one-to-one node mapping between graphs, where a
node in G1 can match at most one node in G2. Following [17],
K can be factorized into

K = (H2 ⊗H1)diag(vec(L))(H2 ⊗H1)
⊺,

s.t. H1 = [G1, In1
] ∈ {0, 1}n1×(m1+n1),

H2 = [G2, In2 ] ∈ {0, 1}n2×(m2+n2),

L =

[
Ke −KeG2

⊺

−G1K
e G1K

eG2
⊺ +Kv

]
∈ R(m1+n1)×(m2+n2).

(2)

The embodiment graph features can be introduced in the
factorized problem Eq. (2) via the edge-affinity and node-
affinity matrices Ke ∈ Rm1×m2 ,Kv ∈ Rn1×n2 with
elements as Gaussian affinity score computed from the
feature functions for i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}, k ∈
{1, . . . ,m1}, l ∈ {1, . . . ,m2}

Kv
i,j = exp

(
−ws(d

s
1(i)− ds2(j))

2 + wvd
v(T i

1 ,T
j
2 )

2

σv

)
,

Ke
i,j = exp

(
− (de1(k)− de2(l))

2

σe

)
, k ∈ {1, . . . ,m1},

(3)

where σe, σv > 0 are hyperparameters for node/edge affinity
contributions, and wv, ws > 0 are hyperparameters for
global/local node feature contributions.

There are several solvers for the objective Eq. (2) in
the graph-matching literature [15], [18]. However, the in-
exact GM problems investigated in this paper are relatively
small in size (e.g., graphs with less than 30 nodes). Hence,
we choose a simple but effective classical solver–Integer
Projected Fixed Point (IPFP) method [19] to solve Eq. (2).
Briefly, IPFP solves a sequence of linear assignment prob-
lems using Taylor expansion around the current solution, then
optimizes the original quadratic function along the ascent
direction from the linear step, projecting back to feasible

space if needed. In practice, IPFP converges after 5-10
iterations.

Let G2 be the imitating embodiment (learner) having the
configuration q with associated forward kinematics map to
compute V2(q). We write G2(q) to reflect that the node set
depends on q. The target embodiment G1 (expert) can be
constructed from a controlled robot or uncontrolled human
embodiment estimated by some human skeleton models [20].
We assume that n2 ≤ n1 such that every node in G2

corresponds to one node in G1. Given the optimal corre-
spondence X∗ solution of the inexact GM problem Eq. (1),
the embodiment divergence is defined as the sum of cor-
responding global feature distances, i.e., the distance sum
of corresponded joint poses between embodiments ∀i ∈
{1, . . . , n1}, ∀j ∈ {1, . . . , n2}

dC(G1,G2(q)) = tr(X∗D⊺) s.t. Di,j = dv(T i
1 ,T

j
2 ) (4)

Note that dC(G1,G2) is a divergence on the space of all
geometric embodiment graphs G, given the node sets as
empirical distributions. To see this, consider any G1,G2 ∈
G, Eq. (4) can be written as a sum of distances between em-
bodiment nodes dC(G1,G2) =

∑
i,j X

∗
i,jd

v(T i
1 ,T

j
2 ). Thus,

dC satisfies non-negativity due to the metric dv . Moreover,
by construction, dC(G1,G2) = 0 if and only if G1 = G2,
hence satisfying positivity property.

III. APPLICATIONS

We calibrate and fix the correspondence X∗ by solv-
ing Eq. (1) at the initial embodiment configurations, e.g.,
rest joints of manipulators or default keyframe configuration
of robot descriptions.

Riemannian Motion Policy. Provided that the optimal
correspondence X∗ is solved as described in previous sec-
tions, we propose a simple formulation describing reactive
correspondence policy as a RMP between the leader Panda
and the follower UR10 arms f(q, q̇) = −Kp∇qdC −
Kvq̇, M(q) = (a ∥∇qdC∥ + ϵ)I, where a > 0 and
∇qdC(G1,G2(q)) is the correspondence gradient. f is a PD
controller with Kp,Kv ≻ 0 gains. The Riemannian matrix
is designed to be less relevant as the target q∗ is approached
(i.e., the decreasing gradient magnitude). Other RMPs such
as self-collision avoidance, obstacle avoidance, and joint-
limit avoidance specific to the controlling robot embodiment
are designed similarly to [13]. The control rate of UR10
combined policy achieves approximately 100Hz, implying
teleoperation applications.

Motion Retargeting for Inverse RL. We use human
motion capture datasets and descriptions from [21] and
perform motion retargeting to Unitree H1 for the walking
task. We match the expert trajectory frequency with Unitree
H1 control frequency and the episodic reward is formulated
as the exponential of correspondence divergence summed
over episode horizon

∑T
t=0 exp(−dC(Gt

1,G2(qt))/σ) with
reward parameter σ > 0. The Unitree H1 PPO policy
achieves approximately 10 seconds of walking. Note that the
reward is purely correspondence divergence for matching the
gait, and not specifically designed for locomotion.
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