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Abstract— Motion optimization is an effective framework for
generating smooth and safe trajectories for robotic manipula-
tion tasks. However, it suffers from local optima that hinder its
applicability, especially for multi-objective tasks. In this paper,
we study this problem in light of the integration of Energy-
Based Models (EBM) as guiding priors in motion optimization.
EBMs are probabilistic models with unnormalized energy func-
tions that represent expressive multimodal distributions. Due to
their implicit nature, EBMs can easily be integrated as data-
driven factors or initial sampling distributions in the motion
optimization problem. This work presents a set of necessary
modeling and algorithmic choices to effectively learn and
integrate EBMs into motion optimization. We present a set of
EBM architectures for learning generalizable distributions over
trajectories that are important for the subsequent deployment
of EBMs. Moreover, we investigate the benefit of including
smoothness regularization in the learning process to improve
motion optimization. In addition to gradient-based solvers, we
also propose a stochastic method for trajectory optimization
with learned EBMs. We provide extensive empirical results
in a set of representative tasks against competitive baselines
that demonstrate the superiority of EBMs as priors in motion
optimization scaling up to 7-dof robot pouring that can be
easily transferred to the real robotic system. Videos and
additional details are available at https://sites.google.
com/view/implicit-priors.

I. INTRODUCTION

Motion planning is a fundamental property for au-
tonomous robots to achieve task-specific goals. In the context
of autonomous robot manipulation, the trajectories that the
robot should execute should satisfy several constraints, e.g.,
approaching the goal while avoiding collisions with itself
and the world and joint limits. Naturally, a complex motion
plan can be viewed as a multi-objective optimization problem
along a specific time horizon. In this work, we study motion
planning in light of motion optimization methods, when mul-
tiple objectives need to be satisfied for accomplishing an end
task. In contrast with sampling-based motion planning meth-
ods [1], [2], motion optimization methods cast the motion
planning problem into a trajectory optimization one [3]–[6],
which optimize an initial trajectory or trajectory distribution
iteratively by gradient descent or stochastic optimization until
convergence.

Motion optimization is an inherently local optimization
method that relies on the initialization, iteratively making
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(a) EBM for trajectories (b) Pouring Task

Fig. 1: Implicit trajectory distributions are learned from demonstrations us-
ing EBMs. These guide motion optimization to produce feasible trajectories
for new problems. (a) An obstacle avoidance energy function, with generated
optimal trajectories towards different goal locations. (b) A robot manipulator
using learned EBMs to pour a cup within a cluttered scene.

local updates at every optimization step. Hence, due to the
possible non-convexity of the cost function, these optimiza-
tion methods suffer from local minima. Additionally, if the
cost function is sparse, it might be hard to get the proper
information for reaching low-cost regions, and therefore, the
initial proposal may barely improve.

A way to avoid the local minima traps in trajectory opti-
mization is to include a set of informative priors in the tra-
jectory optimization. Classical motion optimization methods
usually employ a set of handcrafted initialization proposals
to warm-start the optimization. In Covariant Hamiltonian
Optimization for Motion Planning (CHOMP) [3], the initial
trajectory is a straight line that moves from the initial to
the goal configuration. Stochastic Trajectory Optimization
for Motion Planning (STOMP) [4], on the other hand, con-
siders a normal initial sampling distribution with a structured
covariance matrix modeled to increase entropy in the center
of the state-based trajectory, with minimum variance at the
start- and end-points. Alternatively, engineered costs might
help guide or regularize the optimization. However, these
handcrafted heuristics can be difficult to tune correctly in
practice, and can do little to alleviate multimodality of
complex manipulation tasks.

In a different vein, to capture the inherent multimodality
of multi-objective motion planning tasks, a line of work
proposes to learn trajectory distributions from datato guide
the optimization process away from local minima. Explicitly,
these methods fit a density model to a set of provided
demonstrated trajectories [7] and then use these models as
the guiding priors for motion optimization [8], [9]. However,
these approaches often struggle in capturing multi-modality
in high-dimensional spaces, leading to sub-optimal solutions.

In this work, we study the modeling of priors for motion
optimization as implicit models [10]. Namely, we propose
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to use Energy Based Models (EBM) [11] as our density
models, a class of implicit functions, that can represent un-
normalized density functions that can easily capture multi-
modalities in data. EBMs can be represented in arbitrary
latent spaces and then, transform the distribution to a higher
dimensional space [12]. This property allows us to represent
configuration space trajectory distributions given an EBM in
a lower-dimensional task space. Additionally, due to their
exponential nature, EBMs can be easily combined, allowing
the composition of multiple priors, representing sub-tasks of
the manipulation task, into a single structured prior.

We propose a motion optimization framework using as
priors implicit functions that are modular, learnable, differ-
entiable, and composable. Using our learned EBMs as priors,
we can integrate multimodal information that can bias and
guide the optimization process towards finding a feasible and
smooth solution in complex tasks. Concretely, in this paper,
we a) show how training with smoothness regularization
and task-specific EBM design choices such as object-centric
or phase conditioning can benefit motion optimization, b)
explain how EBMs can naturally be integrated as structured
priors in a motion optimization problem, c) propose a novel
stochastic trajectory optimization method using Gaussian
Process (GP) priors, and, d) demonstrate the applicability and
effectiveness of our motion optimization framework using
EBMs as structured priors to guide the optimization problem
both in simulation and real-world robotic tasks.

II. RELATED WORK

Motion optimization. While sampling-based motion plan-
ning algorithms have gained significant traction [1], [2],
they are typically computationally expensive, hindering their
application in real-world problems. Moreover, these methods
cannot guarantee smoothness in the trajectory execution,
resulting in jerky robot motions that must be post-processed
before applying them on a high degree-of-freedom (DoF)
robot. Contrarily to sampling-based motion planners, tra-
jectory optimization methods can integrate collisions and
motion smoothness constraints, optimizing over an initially
proposed trajectory based on a set of cost functions. CHOMP
and its variants [13]–[15] optimize a cost function using co-
variant gradient descent over an initial suboptimal trajectory
that connects the starting and goal configuration. STOMP
proposed to optimize over non-differentiable constraints by
drawing stochastic samples from a set of noisy trajectories,
making STOMP increasingly dependent on the parameters
of the noisy distribution. Due to their assumptions, these
methods may not find an optimal solution or even fail to con-
verge. TrajOpt [5] addresses the computational complexity
of CHOMP and STOMP, that require a fine discretization of
the trajectory for collision checking, proposing a sequential
quadratic program with continuous collision-time collision
checking. In Gaussian Process Motion Planning (GPMP) [6],
motion optimization is cast as a probabilistic inference
problem. A trajectory is parameterized as a function of
continuous-time that maps to robot states, while a GP is used
as a prior distribution to encourage trajectory smoothness,

while a likelihood function encodes feasibility. The trajectory
is calculated via maximum a-posteriori (MAP) estimation
from the posterior distribution of trajectories from the GP
prior and the likelihood function.
Learning for motion generation. Learning-based methods
for robot motion generation hold the promise of generalizing
robot skills [16]. Reinforcement learning provides reactive
policies that usually overfit a single task [17], while imitation
learning aims to provide policies learned through demonstra-
tions [18]. For the latter, behavioral cloning (BC) methods
try to explicitly replicate the demonstrated trajectory [19],
[20], but the acquired policies do not extrapolate outside
the data distribution, are usually unimodal, and tend to fail
when task conditions change. However, these explicit models
have been integrated into motion optimization frameworks
as a way to guide the optimization process, to tackle issues
of computational complexity and trapping to local minima
[8], [9]. Recently, various works explored the integration of
learned priors for motion planning [21]–[25]. Unfortunately,
the explicit models representing the data distribution are
prone to collapse into single modes and do not adequately
capture the multimodality of complex manipulation tasks;
therefore, their contribution is limited to simple use-cases
of robot motion generation. Hence, implicit models seem a
more viable option [20], [26].

Highly connected to our work are the fields of Inverse
Optimal Control (IOC) [27], [28] and Inverse Reinforcement
Learning (IRL) [29]–[31] methods. In IOC and IRL, given
a set of demonstrations, we aim to learn the cost function
that these demonstrations are trying to maximize. In partic-
ular, Maximum Entropy IRL (MaxEntIRL) [31] models the
demonstrations as Gibbs distribution, whose energy is given
by the unknown cost function, i.e., it approximates an EBM.
Although our work draws connections with MaxEntIRL, and
investigates the learning of implicit models for robotic ma-
nipulations tasks, our contributions are distinctive. Crucially,
we study EBMs as priors for motion optimization, proposing
targeted ways for learning and integrating EBMs in robot
motion optimization.

III. BACKGROUND

Energy based models are probabilistic models that represent
a probability density function pθ up to an unknown normal-
izing constant,

pθ(x) =
1

Zθ
exp(−Eθ(x)), (1)

with x ∈ X the input variable, Eθ : X −→ R the energy
function and Zθ =

∫
X exp(−Eθ(x))dx the normalization

constant. In an EBM, the energy function Eθ is usually
modelled by an arbitrary neural network parameterized by
θ. Due to the arbitrary shape of the energy function Eθ, the
computation of Zθ is usually intractable.
Training of EBMs. Even if EBMs have been widely applied
in a different set of applications, one of the most common
applications is to use them as generative models. Given
a dataset D : {xd}0:N , we aim to fit our parameterized



density model to a dataset. There exist several algorithms for
learning [32]. In our work, we use Contrastive Divergence
(CD) [33]. In CD, the Maximum Likelihood Estimation
(MLE) objective is re-written to maximize the probability of
the samples from the data compared to randomly sampled
negative data points,

LCD = EpD(x) [Eθ(x)]− Eq(x) [Eθ(x)] , (2)

with pD being the distribution of the data and q the
distribution of the negative samples. Optimally, the nega-
tive samples’ distribution should match the EBM, q(x) ∝
exp(−Eθ(x)). Nevertheless, in practice multiple different
approaches are considered to sample the negative samples,
such as uniform sampling, Langevin Markov Chain Monte
Carlo (MCMC) [34] over the EBM [10], or learning an
approximated sampler [35], [36]. It is a good practice to
adapt the negative sampling distribution to the problem
domain.
Sampling from the EBM. In contrast with most generative
models [37], [38], given the implicit nature of EBMs,
sampling from an EBM cannot be done explicitly. Instead,
there exist multiple algorithms to generate samples from the
learned energy function; from Rejection Sampling [39] to
MCMC [40] with the most popular being sampling with
Langevin Dynamics.
Trajectory optimization. Denoting the system state at time
t to be xt ∈ Rd, we can define a discrete-time trajectory
as the sequence τ ≜ (x0,x1, ...,xT−1,xT ) over a planning
horizon T . For a given start-state x0, trajectory optimization
aims to find the optimal trajectory τ ∗ which minimizes an
objective function c(τ ,x0). This function might include a
cost cg on distance to a desired goal-state, xg , along with
a cost cobs on collisions to promote obstacle avoidance. An
additional term is often incorporated to penalize non-smooth
trajectories, which we denote as csm. The overall objective
can then be expressed as the sum of these individual terms

τ ∗ = argmin
τ

c(τ ,x0,xg) (3)

= argmin
τ

cobs(τ ) + cg(τ ,xg) + csm(τ ,x0). (4)

Summarizing the context parameters of the planning problem
as E = [x0,xg, ...]

⊤, the objective function can also be
written more generally to include any number of cost terms:
c(τ , E) =

∑
i ci(τ , E).

Gradient-based strategies for trajectory optimization typ-
ically resort to second-order iterative methods similar to
Gauss-Newton [6], [41], or use pre-conditioned gradient-
descent [3] to find a locally optimal solution to the objective.
However, this requires that the cost function be once- or
twice-differentiable, leading to carefully handcrafted cost
terms such as truncated signed-distance fields (t-SDF), which
must be pre-computed for a given environment.

On the other hand, sampling-based approaches resort
to stochastics generation of candidate trajectories using a
proposal distribution. These samples are then evaluated
on the objective and weighted according to their relative
performance [4], [42]. Such gradient-free optimization can

operate on discontinuous costs (which may arise from con-
tact between surfaces, for example). However, the inherent
stochasticity may lead to undesirable oscillatory behavior and
require additional heuristics to achieve satisfactory perfor-
mance [43].
Planning as inference. The duality between probabilistic
inference and optimization for planning and control has been
widely explored [6], [44], [45]. With open-loop trajectory
optimization, in particular, we view the trajectory τ as a
random variable and first consider the target distribution

p(τ ; E) = 1

Z

∏
i

pi(τ ; E), (5)

where each pi term consists of an individual probability
factor (which can also be a prior term on τ ). Optimization
can then be formulated as a maximum a posteriori (MAP)
problem, where we seek to find τ ∗ = argmaxτ p(τ ; E).
This can be done by minimizing the negative-log of the
distribution

τ ∗ = τMAP = argmin
τ
− log

∏
i

pi(τ ; E). (6)

Assuming that these probability densities belong to the
exponential family, we can relate them to the previous cost
terms: pi(τ ; E) ∝ exp(−ci(τ ; E)). Substituting these into
Eq. (6) recovers Eq. (3). This perspective is important, as it
justifies the use of optimization methods for inference, and
permits the natural integration of trajectory distributions in
the optimization problem.

IV. LEARNING EBMS FOR MOTION OPTIMIZATION

Given a new context E , performing inference over the
posterior distribution in Eq. (5) and Eq. (6) requires that we
define a prior distribution of trajectories, p(τ ; E). Given a
dataset D = {τj , Ej}j=1:N , we propose to model and learn
such prior trajectory distributions from collected data. We
define this distribution as an EBM,

pθ(τ |D; E) =
1

Z
exp(−Eθ(τ , E)). (7)

with model parameters θ. In practice, E represents the
planning contexts, e.g., goal targets, obstacles positions,
trajectory phase, etc. The dataset D may consist of a col-
lection of expert demonstrations on different environments,
and we aim to fit a density function representing the data
distribution with CD Eq. (2). While the learned prior dis-
tribution is based on a set of demonstrations, we desire to
adapt to novel scenarios beyond the demonstrated examples.
The learned distribution is expected to provide informative
samples beyond the demonstrated cases. Notably, instead of
learning a monolithic EBM-based prior, we can factor this
prior distribution depending on various aspects of the problem

pθ(τ |D; E) ∝
∏
i

exp(−Eθi(τ , Ei)). (8)

Such a factored distribution allows us to leverage com-
posability, learn modular EBM factors independently, and
combine them as needed for novel scenarios and planning



Fig. 2: Learned EBM (blue) and its gradient (orange) in a 1D dataset.
(Left) EBM trained with vanilla CD. (Right) EBM trained with CD loss +
denoising regularizer (9).

problems [12]. Furthermore, to properly learn EBMs for
motion optimization, we need to make multiple algorithmic
and modeling choices. In the following, we introduce a
set of proposed choices to properly learn and represent
high-dimensional, long-horizon multimodal trajectory distri-
butions via EBMs that can be beneficial for their deployment
in motion optimization.
Smoothing EBMs for gradient-based optimization. To
deploy EBMs in motion optimization, we need a smooth
energy landscape. However, the CD objective of Eq. (2)
generates an energy landscape with multiple plateaus, with
high energy values in regions where there are no data and
a plateau of low-energy in the regions of the data points.
While the energy landscape may capture well the distribution
of the demonstrations, it might not be helpful for gradient-
based sampling or optimization, with gradients close to zero
in the plateau and high gradients in the cliffs (Fig. 2).
We propose adding a denoising score matching loss [46],
[47] as regularization to smoothen the energy landscape and
improve gradient information. Denoising score matching first
generates a noisy sample given a data sample x̃ ∼ p(x̃|x) =
N (x̃|x,σ2I), as x̃ = x+σϵ, with ϵ ∼ N (0, I), and, then,
matches the score function, ∇xEθ to denoise the sample x̃
back to x

LDSM = EpD(x,E)Ep(x̃|x)
[
||ϵ−∇xEθ(x̃, E)||22

]
. (9)

The loss (9) encourages the gradient of the EBM to point
towards the data distribution contrarily to the CD loss.
Task-specific EBMs for Motion Optimization Here, we
introduce a set of model choices to represent EBMs for
motion optimization, as making proper choices on the EBM
architecture improves the data representation capacity and
the generalization of the learned models.
Object-centric EBMs. Learning task-conditioned motion
models is a vital tool for representing task-adaptive motion
behaviors. In our work, we propose to learn object-centric
EBM that are useful for representing desired movements
in manipulation tasks that involve objects, conditioning the
learned EBM on the objects’ poses.
Phase-conditioned EBM. Learning density models directly
on the trajectory level requires modeling in a T ×D dimen-
sional space, with T temporal horizon and D-dimensional
state-space. Learning phase-conditioned density models is
particularly challenging, as with long-horizon trajectories,
the dimension of the input space increases, and the learning
of an EBM in that space might be challenging. Additionally,
T forces the temporal horizon to be discretized with a
specific frequency, and it might be hard to use it for different
discretization frequencies or even to represent continuous-
time distributions. The usability of phase-conditioned priors
for motion optimization is necessary for long-horizon tasks.

Therefore, we need to learn phase-conditioned EBMs

p(x|α) ∝ exp(−Eθ(x, α)), (10)

with x the state and α being the phase. The phase represents
a continuous variable moving from 0 to 1, encoding the
temporal evolution of the manipulation task. The phase-
conditioned EBM represents the state-occupancy distribution
for different instances of the manipulation task. Nevertheless,
the phase-conditioned EBM lacks any temporal relation
between temporally adjacent points, generating non-smooth
trajectories. To confront this effect, we propose combining
phase-conditioned EBMs with trajectory smoothing costs to
represent smooth trajectory distributions

p(τ ) ∝ exp

(
−
∑
k

Eθ(xk, αk) + (xk − xk+1)
2

)
. (11)

V. COMBINING EBMS AND MOTION OPTIMIZATION

Although we may be able to learn data-driven prior distri-
butions, as described in the previous section, we still require
reliable inference and optimization methods to derive optimal
trajectories τ ∗ given a new planning problem expressed by E .
In the following section, we focus on methods for evaluation
and inference on learned EBMs for trajectory distributions.
This includes techniques for sampling and optimization
which account for the compose-ability of our EBM functions,
as well as a stochastic trajectory optimization method suited
for the planning tasks considered here.
Structured Planning Priors. Since we cannot sample from
EBMs directly, we need to initialize samples by first drawing
from an initial distribution, and then perform sequential
updates to approximate the relevant modes. Further, learning
task-specific EBM model-components is useful for portions
of the objective function which are hard to define. However,
we may insist on biasing our sampling given the structure of
the planning problem, and incorporate known, well-defined
requirements such as goal-seeking behavior and smoothness.
This can be addressed by incorporating relevant distributions
which are known a-priori, to the contextual-prior in Eq. (7)

pθ(τ |D; E) ∝ p0(τ ; E)
∏
i

exp(−Eθi(τ , Ei)), (12)

where p0(τ ; E) is a general trajectory-based prior. Similarly
to [6], [48], we can directly integrate goal-reaching and
smoothness into this distribution, which can then be directly
sampled to initialize optimization. This distribution is com-
posed using a state-based start prior ps(x) = N (µs,Σs),
goal-directed prior pg(x) = N (µg,Σg), where µs, µg

are the expected start and goal configurations, respectively.
Smoothness is defined using a time-correlated Gaussian-
Process prior pgp derived from a linear time varying motion
model (see Appendix A in [49] for details). These terms can
then be composed

p0(τ ; E) = ps(x0) pg(xT )

T−1∏
t=0

pgpt (xt,xt+1) (13)

∝ exp
(
− 1

2

∣∣∣∣τ − µτ

∣∣∣∣2
K

)
(14)



where E = {µs,µg}, K is a block-diagonal covariance ma-
trix, and µτ the straight-line trajectory defined in configura-
tion space. This results in a closed-form, explicit distribution
with low entropy near start and goal regions, and high-
entropy towards the middle of a trajectory, which is ideal for
goal-centric planning tasks. In contrast to [4], the integrated
dynamics includes higher-order terms, such that velocities
and accelerations can also be sampled in a principled manner.
In practice, we can efficiently generate large quantities of
these time-correlated trajectories due to our parallelized GPU
implementation. Note, however, it is intractable to incorpo-
rate explicit priors on behaviors such as obstacle avoidance,
e.g. configuration space obstacle avoidance prior. Hence, in
practice we must resort to a combination of implicit and
explicit priors to generate feasible trajectories from Eq. (12).
Stochastic Trajectory Optimization with GP-Priors. We
can iteratively update the time-correlated sampling prior,
described in the previous section, to fit the modes of a
learned EBM and allow us to sample optimal trajectories
in a new planning context. The optimizer, which we call
Stochastic Gaussian Process Motion Planning (StochGPMP),
is closely related to the importance sampling scheme used
by CEM and MPPI but uses goal-directed GP distributions.
We refer the reader to the Appendix on the project site for
details on the derivation and specific update procedure. When
used in our experiments, we select to update the mean of
each component GP in the distribution. This can be easily
performed in configuration space, although it requires an
initial goal configuration to be approximated using Inverse-
Kinematics.

VI. EXPERIMENTAL EVALUATION

Experiment I: Simulated Planar Navigation. We begin
by testing our framework on a simple planar navigation
problem, where a holonomic robot must reach a goal location
while avoiding obstacles. We assume that the start, goal, and
obstacle locations are known for a given planning problem,
but the obstacle geometries (ex. size, shape) are unknown.
We want to learn an implicit distribution that captures the
collision-free trajectories which lead to a particular goal.
Here, we investigate two possible sources of empirical data:
(1) sparsely populated point-distributions in free-space and
(2) a set of expert trajectory distributions. The former can
be seen as a stand-in for free-space measurements taken
from a depth sensor, e.g., a lidar. In practice, we generate
these points by sampling uniformly throughout the 2-D plane
and rejecting points in collision. The expert trajectories are
generated by running the StochGPMP planner at a high
covariance for many (e.g., 500) iterations, producing a sparse
set of trajectories for different goal locations and obstacle
placements. We collect data for 512 different environments
and produce trajectories from 15 random goal locations per
environment, with 5 trajectories per goal. Both sources are
depicted in Fig. 3. Here, the learned EBM can be expressed
as Eθ(x, {xi

obs}Ni=1), where x is a particular 2D-state, and
xobs the position of an obstacle (here, N = 3).

Fig. 3: Examples of positive sampling distributions for a single obstacle
environment. (Left) Uniform point-based sampling with rejection. (Right)
Expert trajectory distributions for randomly sampled goal locations along
the top and right side, with start location in the bottom-left corner.

Examples of the learned EBM for both cases are
shown in Fig. 4. The resulting energy functions, in either
case, manage to effectively capture the demonstration
distributions, conditioned on new obstacle locations. With
Section V in mind, we can generate trajectories near
the modes of the full target distribution, accounting for
smoothness and distance-to-goal, by first sampling from
a structured prior and optimizing on the EBM to capture
key modes of the distribution. We compare this method
of implicit trajectory generation to a standard Behavioral
Cloning (BC) baseline, where the learned policy outputs the
current velocity, q̇ = f(q;Xo,xg) which is conditioned on
the set of obstacle poses Xo = {xo} and the goal location
xg . The trajectories generated from this baseline can be
seen in Fig. 5, obstacle avoidance is minimal. We perform
a quantitative analysis on the EBM methods by measuring
the success rate on the validation set as a function of
optimization iterations needed by the planner (with the BC
baseline fixed). This is shown in Table I.

Opt. iters. 0 5 10 25 50
EBM-Free-space 0.556 0.470 0.643 0.747 0.852

EBM-Expert Traj. 0.556 0.690 0.791 0.847 0.877
Behavioral cloning 0.04 – – – –

TABLE I: Planar navigation: Average success rate per environment, as
a function of optimization iterations. A planning trajectory is deemed
successful if it ends within a radius of 1.5 from the goal, without hitting
the underlying obstacles.
Experiment II: Simulated Planar Manipulator. This ex-
periment studies the performance improvement in robotics
manipulation tasks when introducing our expressive im-
plicit priors in trajectory optimization. First, this experiment
demonstrates how well the EBMs provide an informative
prior landscape that biases the trajectory optimizer towards
better solution regions than standard Gaussian priors. Sec-
ond, it shows how the learned implicit priors on the task
space result in superior performance when warm-starting the
trajectory optimization, compared against explicit priors in
configuration space, commonly done in literature [8].
We create a simulated planar robot-arm with 3 dofs operated
on a plane containing fixed red obstacles. The planner has to
find an optimal low-jerk trajectory that guides the planar arm
to grasp the cubic object and inserts the object into a 2-walled
cubby without colliding with the cubby or the red obstacles

https://sites.google.com/view/implicit-priors


Fig. 4: Learned obstacle-EBMs conditioned on novel obstacle locations.
(Left) free-space point sampling and (right) expert trajectory distributions,
with multi-goal planning solutions depicted by blue trajectories. Discontinu-
ities and implicit obstacle surfaces are well captured using sparse free-space
point-samples during training, whereas distributions of trajectory-based
demonstrations can be captured neatly by the EBMs. The latter provides a
convenient “guiding” energy function for a new context, improving samples
derived from multi-modal stochastic trajectory optimization.

Fig. 5: Examples of trajectory traces using the behavioral cloning baseline
on the planar navigation problem. Although rolled-out sample trajectories
are generally well-behaved, they fail to avoid obstacles.

(Fig. 6). Our learned EBMs represent the distribution of
possible grasps and insertions that are used to generate
trajectories that will bias the trajectory optimization problem
towards the optimal solution. The learned energy distribution
landscape is displayed in Fig. 7, where the centers are the
projected 2D-origin of the object-centric frame. We train
both EBMs using standard training methods as described
in Section IV. When combining both implicit priors, the
intuition is that the optimizer will plan the configuration
trajectory that biases the end-effector toward the low-energy
regions associated jointly with the most natural grasp and
insert postures, given the current environmental setting. In
all experiments, the grasp and insertion objectives are super-
positioned with other standard costs such as smoothness,
obstacle avoidance, and joint limits to completely define the
trajectory optimization problem as in (3).
We compare our method against the two baselines, where
the first employs Gaussian distributions as priors to define
the object’s grasp and insertion potentials in the task space
(see Table II) as commonly done in [3], [4]. For the second
baseline, we first learn a behavioral cloning model q̇ =
f(q;xo,xg) where xo,xg represents the object’s grasp pose
and cubby pose, while the demonstrated configuration-space
trajectories are generated for simplicity from a planner. Next,
we warm start the optimizer with the trajectories sampled
from the behavioral cloning model, where each trajectory is
rolled out by integrating the model velocity output from the
initial robot configuration. We expect that the second baseline
is a stronger baseline due to the integration of an explicit

Fig. 6: Simulated planar arm executing the grasp & insert tasks.
Cost terms Mathematical expression
Joint limit max(q − qmax, 0) + max(qmin − q, 0)

Sphere Obstacle Avoidance
∑K

o=1 ∥max(xo + ϵ− x(q), 0)∥2, K is object number
Pose potential 1

2 ∥x(q)− xp∥2

TABLE II: Elementary cost terms

Fig. 7: The energy landscape of grasp & insert learned models. (Left)
Learned energy for grasping points. (Right) Learned energy for placing
in the cubby. Both energies are learned in the object-centric frame of the
graspable object and the placing cubby. We generate the training data by
motion planning. To cover all the possible placing trajectories, we run the
motion planner given several initial end-effector poses.

50 100 150 200
Optimization steps

0

20

40

60

80 Gaussian
Explicit+Gaussian
Implicit (Ours)

Fig. 8: Success rate (%) of grasp & insert task over optimization steps.
Surprisingly, even with few optimization steps of 50 & 100, our implicit
priors’ success rate is already higher comparing to the baselines. This shows
that using informative and expressive EBMs can greatly assist the planner
even with only few optimization steps. As optimization steps increase, our
informative implicit priors still consistently outperforms previous methods.

prior. Note that for the two baselines, we randomly sample a
desired grasp pose on the object’s surface for setting up the
grasp potential cost, and we keep fixed the target placement
pose at the center of the cubby.
To show the strength of our implicit priors in trajectory
optimization, we measure the success rate of successful
grasping and insertions without collisions with obstacles
or the target cubby. The success rates are reported over
an increasing number of optimization steps in Fig. 8 to
emphasize the benefit of our implicit priors in the multiple
stages of the optimization, from a few steps till convergence.
We run experiments with each method four times. Due to the
stochasticity of the planner, we run 10 planning instances
for each experiment and method, where at each instance we
randomly sample a pair of a reachable cubic object pose and
a target pose on the cubby. For all instances, the trajectory is



fixed to 80 time-steps and the robot arm always starts from
the same initial configuration.
We notice that most fail cases of the baselines are usually due
to the collision with the cubby wall. It is because radial priors
such as Gaussians do not encode the insertion dynamics, and
the planner has to balance between the collision avoidance
and the target pose objectives in a narrow placement target.
We also observe that while warm starting with explicit priors
does help the planner find a better solution than the Gaussian
prior, sometimes the rollout trajectory of the behavioral
cloning model suffers from covariate shift, that worsens the
performance of the planner leading to fail cases.
Experiment III: Robot pouring amid obstacles. This
experiment studies the performance gains of introducing
learned implicit priors for a more complex manipulation task
in a higher-dimensional space. Namely, we investigate the
integration of EBMs in trajectory optimization for a pouring
task in the presence of obstacles with a 7dof LWR-Kuka
robot arm. This experiment investigates (i) the benefit of
including smoothness regularization in the EBM training, (ii)
the advantages of phase-conditioned EBM w.r.t. learning the
EBM in trajectory space, and (iii) the generalization of our
EBMs in the context of the pouring task regarding arbitrary
pouring places, and in the presence of obstacles. Instances
of our method’s performance are available in Fig. 9 for the
simulated task, and Fig. 1 for our zero-transfer to the actual
robotic setup. We add additional details on the problem setup
in the Appendix on the project site.
To learn the pouring EBM, we recorded 500 trajectory
demonstrations of the pouring task. The demonstrations were
generated using a set of handcrafted policies. The demonstra-
tions were initialized in arbitrary initial configurations and
performed the pouring from different positions, generating
a multimodal distribution of demonstrated trajectories. The
demonstrations have been directly recorded for the glass pose
and centered in the frame of the pouring pot. To properly
encode the temporal information in the data, we learn a
time conditioned EBM, Eθ(x|α). In our problem, x is a 6-
dimensional state, representing the 3D position of the bottom
and tip of the glass w.r.t. the pouring pot frame. Centering
the EBM to the pouring pot’s frame allows us to generalize
the EBM to arbitrary pot poses. Additionally, we include the
denoising regularization and compare its performance and
compare to a baseline without the proposed regularization.
We compare against three baselines. First, a solver without
any prior, to appropriately evaluate the benefits of adding
guiding priors. Second, a phase-conditioned EBM with-
out smoothness regularization combined with the optimizer.
Third, an EBM that is directly learned in the trajectory
space to investigate the benefit of phase-conditioned EBMs
in trajectory optimization. Given the learned pouring prior,
we optimize the task trajectory by gradient descent. The
objective function is defined by the composition of a set of
cost functions–fixed initial configuration, fixed target con-
figuration, trajectory smoothness, obstacle avoidance, keep
the glass pointing up to avoid spilling and pour inside the
pot (Table II). The learned EBM is added as an additional

Fig. 9: A visualization of the pouring in cluttered task. The robot should
avoid the obstacles, pour in the pot over the table and come back to the
initial position.

Fig. 10: Success rate (%) for the pouring task. (Left): Experiment without
collision obstacles. The success rate of the motion optimization without any
learned EBM is almost the maximum. We observe that the phase EBM with
regularization can improve the performance slightly. (Right): Experiment
with obstacles in the environment. We observe a clear benefit of using phase-
based EBM in contrast with trajectory-based EBM. Training the EBM in
high dimensional space requires too many samples, and it is difficult to
get smooth EBMs representing the demonstrations. The EBM trained with
regularization improves the obtained results with respect to non-regularized
EBM. For any initial position of the trajectory particles, the regularized
EBM provides an informative gradient towards the demonstrations, while
in the case of non-regularized EBM, we found the gradient was informative
only in the close vicinity of the demonstrations.

factor in the optimization problem. We optimize using a
tempering scheme, giving more importance to the prior at
the beginning and reducing its influence at the end of the
optimization process.
To evaluate the pouring EBM, we measure the success rate
of the motion optimization to perform the pouring task
successfully. We consider an episode to be successful if it
satisfies three conditions: (i) there are no collisions, (ii) the
robot does not spill outside the pot, and (iii) the robot pours
inside the pot. We report performance both in obstructed
and obstacle-free environments. We run 50 episodes for
each case. we randomize the position of the pouring pot
and the obstacles on each episode. The obtained results are
presented in Fig. 10. We can clearly observe the benefit of
both integrating smoothing regularizers in the training of the
EBM and modelling the EBMs as phase-conditioned models.
The presented results are complemented with the attached
video for the simulated tasks, which additionally showcases
our successful transfer to the real robotic system. Note that
our learned priors do not suffer for sim2real mismatch, as
the only requirement is the knowledge of the object’s pose,
which in our case, we resolve through motion tracking.

VII. DISCUSSION AND CONCLUSIONS

Energy-based models (EBM) have multiple desirable prop-
erties that make them obvious candidates to be integrated
as data-driven priors in robotics. EBMs can represent highly
multimodal distributions, and due to their implicit nature,
they can naturally be composed and integrated into trajectory
optimization problems. Nevertheless, the high dimensionality
and variability of the tasks in robotics hinder the learning
of generalizable EBMs that could apply to a wide range of

https://sites.google.com/view/implicit-priors


complex manipulation tasks. In this paper, we demonstrate
that learning EBMs as implicit priors can guide motion
optimization for common robotics problems. We introduce a
set of modeling choices to represent generalizable EBMs that
could be adapted to an arbitrary set of manipulation tasks. We
propose alternative training losses to learn smoother EBMs
that could provide well-conditioned gradients into optimiza-
tion problems. Moreover, we introduce novel structured
sampling procedures to combine data-driven models with
explicit priors. Our experimental results validated the efficacy
and applicability of our proposed algorithmic choices for
motion optimization. In future works, we aim to explore
the problem of learning conditioned EBMs given higher
dimensional contexts, such as images or text.
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APPENDIX I
STOCHASTIC GAUSSIAN PROCESS MOTION PLANNING

A. Gaussian Process Trajectory Prior

We can define a prior on the space of smooth, continuous-time trajectories x(t) using a Gaussian Process [6], [50]:
x(t) ∼ GP(µ(t), K(t, t′)), with mean function µ and covariance function K. This distribution is parameterized by a discrete
set of support states τ = [x0,x1, ...,xN ]⊤, which constitutes a discrete-time trajectory defined along times t = [t0, t1, ..., tN ].
We can then consider the distribution over τ as p(τ ) = N (µ,K), with mean µ = [µ(t0), ...,µ(tN )]⊤ and covariance matrix
K = [K(tn, tm)]

∣∣
nm,0≤n,m≤N

.

As described in [50], [51], a GP prior can be constructed in a principled manner by considering the structured covariance
function created by a linear time-varying stochastic differential equation (LTV-SDE)

ẋ = A(t)x(t) + u(t) + F(t)w(t) (15)

where u(t) is the control input, A(t) and F(t) the time-varying system matrices, and w(t) is a disturbance following the
white-noise process w(t) ∼ GP(0,Qcδ(t− t′)), where Qc is the power-spectral density matrix.

Given a prior on start state ps(x) = N (µs,Σs) and end-goal position pg(x) = N (µg,Σg), the trajectory prior can be
defined as the product of unary and binary factors

pGP(τ ) ∝ exp
(
− 1

2

∣∣∣∣τ − µ
∣∣∣∣2
K

)
(16)

∝ ps(x0) pg(xN )

N−1∏
i=0

pgpi (xi,xi+1) (17)

Following [50], each factor is then defined as

pgp(xi,xi+1) ∝ exp
(
− 1

2
∥Φi,i+1(xi − µi)− (xi+1 − µi+1)∥2Qi,i+1

)
,

ps(x0) ∝ exp
(
− 1

2
∥x0 − µs∥2Σs

)
,

pg(xN ) ∝ exp
(
− 1

2
∥xN − µg∥2Σg

) (18)

where Φi,i+1 is the state transition matrix and Qi,i+1 the variance between times ti and ti+1. For a first-order LTV-SDE,
where the state consists of position and velocity terms x = [x, ẋ]⊤, x, ẋ ∈ Rd, the state transition and covariance matrices
equate to

Φi,i+1 =

[
I ∆tiI
0 I

]
, Qi,i+1 =

[
1
3
∆t3iQc

1
2
∆t2iQc

1
2
∆t2iQc ∆tiQc

]
where ∆ti = ti+1− ti. Sampling from this distribution using the time-correlated GP covariance results in trajectories which
have low variance near the start and goal positions (depending on the values of Σs and Σg), and higher variance near the
middle of the horizon length. An example of smooth, goal-directed trajectories sampled from a one-dimensional GP-prior
is depicted in Fig. 11.

B. Stochastic Optimization for Motion Planning

As described in the main text, we can express the motion-planning problem as finding the trajectory which minimizes the
negative log-likelihood of a factored probability distribution

τ ∗ = argmin
τ
− log pGP(τ )

∏
k

pk(τ ) (19)

with non-negative functions pk(τ ) ∝ exp(−Ek(τ )) encoding additional constraints, such as obstacle collision costs and
joint limit violations.

Alternatively, we can view the problem of stochastic motion planning in terms of distribution matching, where we seek to
match a proposal trajectory distribution q(τ ) to some target distribution q∗(τ ). This is perhaps most clearly described by the
information theoretic derivation of model-predictive path integral (MPPI) control in [52]. Here, we consider a system with
general discrete-time dynamics defined by X = F (x0, V ), for a state-sequence X = (x0, x1, ..., xN ), control-trajectories



Fig. 11: An example GP prior for 1D trajectories. The dashed line is the mean constant trajectory. The 32 solid lines are sampled trajectories from the GP
prior.

V = (v0, v1, ..., vN ), and start-state x0. The target distribution over control-trajectories V = (v0, v1, ..., vN ) is then maximum-
entropy Gibbs distribution

q∗(V ) =
1

η
exp

(
− 1

λ
S(V )

)
p(V ) (20)

where p(V ) = N (0,Σ), a zero-mean centered normal distribution, S(·) the cost function, λ a scaling term, and η a
normalizing factor. Note that q∗(V ) can be interpreted as a posterior distribution, with a likelihood function provided by
exp

(
− 1

λS(V )
)

and prior p(V ). Given the open-loop characterization of the system, we can consider distributions directly
over V , leaving the state-dynamics F (·, ·) as part of the cost-evaluation function S = E ◦ F (x0, V ), for some function E.

For a kinematic system, the control sequence can be defined as a time-derivative of state, ex. V = (ẋ0, ẋ1, ..., ẋN ),
and we can instead consider the joint distribution over both state-trajectories and their derivatives: τ = (X,V ) =
(x0, ẋ0, x1, ẋ1, ..., xN , ẋN ). As such, we can similarly define the optimal distribution to be

q∗(τ ) =
1

η
exp

(
− 1

λ
E(τ )

)
pF (τ ) (21)

where the dynamics F are now integrated into the prior distribution pF (τ ), describing the un-controlled stochastic dynamics.
Fortunately, we have already derived an example of such a distribution in Eq. (16), using the dynamics in Eq. (15). Leveraging
the time-correlated prior covariance K, we can define the nominal dynamics distribution as pF (τ ) = N (0,K).

Using the proposal distribution q(τ ;θ) = N (µ,K) with parameters θ = (µ,K), we can then minimize the KL-divergence
with the target distribution

θ∗ = argmin
θ

KL (q∗(τ ) ∥ q(τ ;θ)) (22)

Introducing the nominal trajectory distribution pF (τ ) into the equation

θ∗ = argmin
θ

∫
q∗(τ ) log

q∗(τ )

q(τ ;θ)

pF (τ )

pF (τ )
dτ (23)

= argmin
θ
−
∫

q∗(τ ) log
q(τ ;θ)

pF (τ )
dτ (24)

where the cross-entropy objective in the last line results from independence of the entropy
∫
q∗(τ ) log q∗(τ )

pF (τ )dτ from θ.
In order to derive a practical algorithm for solving this objective, we can simplify the problem by optimizing for only the

mean trajectory θ = µ, keeping K as a fixed covariance. Sampling trajectories from q∗(τ ) directly is typically intractable.
Following the derivation in [52], we can instead apply importance sampling such that the proposal distribution q(τ ;θ) can



be used for evaluating the expectation in Eq. (23). We then arrive at the update rule to the proposal distribution parameter

µnew = µ+
Eτ∼q(τ ;µ)

[
exp

(
− 1

λE(τ ) + α(τ )
)
(τ − µ)

]
Eτ∼q(τ ;µ)

[
exp

(
− 1

λE(τ ) + α(τ )
) ] (25)

where the term α(τ ) = − 1
2µK

−1τ results from the importance-sampling factor.
The expectations are approximated via Monte Carlo sampling, where K trajectories are drawn directly from the proposal

distribution: {τ k}Kk=0 ∼ q(τ ;µ). Using the notation Ẽ(τ ) = E(τ )− λα(τ ), we have

µnew = µ+

∑K
k=0 exp

(
− 1

λ Ẽ(τ k)
)
(τ k − µ)∑K

k=0 exp
(
− 1

λ Ẽ(τ k)
) (26)

= µ+

K∑
k=0

wk(τ k − µ) (27)

where wk is the softmax-weight for τ with respect to the other samples. Similarly to [53], we can also incorporate a
step-size, or smoothing parameter γ ∈ [0, 1]

µnew = µ+ γ

K∑
k=0

wk(τ k − µ) (28)

= (1− γ)µ+ γ

K∑
k=0

wkτ k. (29)

This update can be then applied in an iterative fashion until a converged trajectory distribution is reached. The resulting
posterior distribution approximation, qfinal(τ ), will be parameterized by a mean trajectory µfinal = [x0,x1, ...,xN ]⊤

(where a state xi includes position and velocity elements, xi = (xi, ẋi), for example). This trajectory provides the motion
plan in configuration-space to be used for execution on the system.

Note that, unlike MPPI, there is no need to perform roll-outs of a dynamics model to generate trajectory samples. Since
the goal-directed stochastic dynamics are integrated into the proposal distribution via the time-correlated covariance matrix
K, we can sample trajectories directly from the system to acquire sequences of positions, velocities, etc. This avoids the
linear-with-time complexity of sequential Markov sampling using single-step dynamics. Furthermore, the sampling-based
optimization scheme of StochGPMP does not require that the cost function E(·) to be differentiable. For motion planning
problems, this permits the use of hard constraints such as discontinuous occupancy functions (to be used as obstacle costs)
or joint limits, for instance.

C. GP Interpolation

A main advantage of maintaining a Gaussian Process trajectory distribution is the ability to query the posterior at any time
within the planning horizon, i.e. t0 < t′ < tN . As mentioned in [54], this can be used to densify the mean trajectory µ of the
optimized proposal distribution, smoothly interpolating motion commands between timesteps. Specifically, given an optimized
mean trajectory µfinal over times t = [t0, t1, ..., tN ], we can interpolate to a dense time series td = [t0, t

′
1, ..., t

′
M−1, t

′
M ]

where N < M and t′j+1 − t′j < ti+1 − ti ∀ i, j. This is done by conditioning the mean of the posterior [55]

µd = K(td, t)K−1µ, (30)

where the kernel matrix K(td, t) = [K(t′m, tn)]
∣∣
0≤m≤M,0≤n≤N

can be constructed as in Section I-A by considering the
Markovian dependencies between neighboring states for transition matrices Φi,j , Φj,i+1 and covariances Qi,j , Qj,i+1, where
ti ≤ t′j ≤ ti+1. The interpolation step may be desirable for execution on systems requiring higher temporal frequencies.
Also, the projection term K(td, t)K−1 can be pre-computed and stored prior to planning. As with K, this matrix is sparse
and can benefit from efficient storage and matrix-multiplication using libraries for sparse linear algebra.

In GPMP [6], [54], interpolation is applied in-the-loop to finely resolve collision costs, before projecting the evaluations
to the support states. This may warrant a similar approach in StochGPMP, where densification of the mean trajectory µ
would allow sampling of more finely resolved trajectories for evaluation (note that the softmax weights wk evaluate an
entire trajectory τ k, so projection back to support states would be unnecessary here). However, since we would still need
to sample dense trajectories from the full distribution for evaluation, this approach would not provide any significant gain
in space or runtime complexity. Therefore, the temporal resolution of the optimized mean trajectory µ is initially chosen to
adequately resolve obstacle features.



D. Algorithm

Given a start state x0 ∈ Rb and goal state xg ∈ Rb defined in configuration space having b dimensions, as well as a
cost-function E(·), we seek to find the optimal trajectory µ∗ which avoids high-cost regions and defines a motion plan
which reaches the goal.

As described in the main body of the paper, the function E(·) can be composed as the sum of different functions,
defining separate constraints and penalties i.e. E(·) =

∑
p Ep(·). For encoding task-based constraints, these cost components

typically consist of a function G : Rℓ×N → R, where ℓ is the dimension of the task space and N the trajectory length, as
well as the forward-kinematic mapping FK : Rb×N → Rℓ×N , such that the cost component function is the composition
Ep(·) = G(FK(·)). It should be emphasized that neither the function G or FK need to be differentiable for sampling-
based optimization. It is often desirable to define a goal position within task space, such as the desired end-effector pose
pg ∈ SE(3) and velocity ṗg ∈ SE(3) at the goal for a reaching task on a robot manipulator. In this, case one may simply
use inverse kinematics to initialize the goal state in configuration space: xg = IK(pg, ṗg).

We additionally need to define covariance matrices Σs ∈ Rb×b and Σg ∈ Rb×b for the start and goal states, respectively.
These may explicitly represent the actual uncertainty in these positions, or they can be viewed as inverted-weights which scale
the importance of generating samples which start at x0 and end at xg . To initialize the sampling distribution q(τ ;µ,K), we
first set the mean µ to be the straightline trajectory between x0 and xg , equidistant along the time sequence t = [t0, t1, ..., tN ]
and with constant velocity. The GP covariance matrix is initialized at the start of the optimization using the procedure in
Section I-A. Although K remains fixed in the current implementation, it is conceivable to gradually decrease the GP variance
by scaling the Qc matrix according to some schedule, thereby decreasing the entropy of the distribution for denser sampling
and improved estimation of q∗. In Algorithm 1, we describe Stochastic Gaussian-Process Motion Planning (StochGPMP),
an algorithm for single-trajectory/uni-modal trajectory optimization.

Algorithm 1: StochGPMP
Input: Start state x0, goal state xg , cost function E(·), temperature λ, start-factor cov. Σ0, goal-factor cov. Σg ,

Qc, step-size γ, time sequence t, dense time sequence td (optional)

// Initialize mean trajectory

µ← InitMean(x0,xg, t)
// Construct GP covariance

K← InitCov(Σ0,Σg,Qc, t)

while Not Converged do
Sample {τ k}Kk=1 ∼ q(τ ;µ,K)

// Batched computation

for i = 1, 2, ...,K do in parallel
// Evaluate trajectory cost

Ek = E(τ k)
end
for i = 1, 2, ...,K do in parallel

// Compute weights including important-sampling factor

wk ← exp(− 1
λ Ẽ(τk))∑K

j=0 exp(− 1
λ Ẽ(τ j))

end
// Update proposal distribution

µ← µ+ γ
∑K

k=0 w
k(τ k − µ)

end

// Optional: GP-interpolation for trajectory densification

µd ← K(td, t)K−1µ

E. Multi-goal, Multi-modal Motion Planning

Motion planning is generally a non-convex optimization problem, where different homotopy classes can be induced by
the presence of obstacles [56], [57]. Furthermore, in the case of multi-goal planning, we may have a distribution of possible
goals for a given environment or set of obstacles. Thus, most motion planning approaches will only return an approximate



Algorithm 2: Multi-StochGPMP
Input: Start state x0, goal states Xg , cost function E(·), temperature λ, start cov. matrix Σ0, goal cov. matrices

Ξg , planning GP variance matrix Qc, prior GP variance matrices Qc,0, step-size γ, time sequence t, dense
time sequence td (optional)

// Prior const-vel. mean trajectories

M0 ← InitMeans(x0,Xg, t)

// Prior GP cov. matrices

K0 ← InitCovs(Σ0,Ξg,Qc,0, t)

// Initialize mean trajectories

M ∼ N (M0,K0)

// Construct planning cov. matrices

K ← InitCovs(Σ0,Ξg,Qc, t)

for iter = 1 : itermax do
// Sample trajectories

T ∼ q(T;M ,K)

// Evaluate trajectory costs

ET ← E(T)

// Compute weights across sampling dimension

W← softmax(− 1
λET)

// Update proposal distribution

M ←M + γW ⊗ (T−M)

end

// Evaluate solutions

EM ← E(M)

// Pick best trajectory

i∗ ← argmini[Ei ∈ EM ]

µ∗ ← µi∗ ∈M

// Optional: GP-interpolation for trajectory densification

µd ← K(td, t)K−1
∗ µ∗

locally optimal solution. We would ideally like to leverage parallel computation to efficiently provide many feasible solutions
for the multi-goal and multi-modal setting.

We can implement a vectorized version of Algorithm 1 for the multi-goal, multi-modal setting using PyTorch [58]. This
permits GPU parallelization across different goals, motion plans, trajectory sample generation and evaluation. For a given
environment, we may have Ng number of goal states: Xg = [x1

g,x
2
g, ...,x

Ng
g ]⊤ ∈ RNg×b, with goal covariance matrices

Ξg = [Σ1
g,Σ

2
g, ...,Σ

Ng
g ]⊤ ∈ RNg×b×b. For each goal state, we may wish to independently optimize for multiple motion plans

of the same length, which can be represented by the the mean trajectory tensor Mng = [µ1
ng
,µ2

ng
, ...,µ

Np
ng ]

⊤ ∈ RNp×N×b,
where ng ∈ [1, 2, ..., Ng] is the goal index, and Np the number of plans-per-goal. This can yet be further expanded to include
plans across all goals: M = [M1,M2, ...,MNg ]⊤ ∈ RNg×Np×N×b. In this case, the collection of planning trajectories
M is the parameter to be optimized. We can also construct a global covariance matrix, which might contain independent
GP-covariances for each goal location (with possibly different noise levels set by Qc): K = [K1,K2, ...,KNg ]⊤. We can
then define a vectorized proposal distribution q from which we can draw trajectory samples across goals and motion plans:
T ∼ q(T;M ,K) where T ∈ RNg×Np×K×N×b for K number of samples per motion plan. These samples can then be
evaluated by the cost-function E(·), provided that this is also suited to vectorized processing (which is the case for a neural
network model in PyTorch, for instance).

To initialize the mean trajectories M , we randomly sample from a starting prior distribution: M ∼ N (M0,K0), where
M0 = [µ1

0,µ
2
0, ...,µ

Ng

0 ]⊤ ∈ RNg×N×b are the constant-velocity, straight-line trajectories from the start state to each goal
state, and K0 = [K1

0,K
2
0, ...,K

Ng

0 ]⊤ ∈ RNg×(N×b)×(N×b) the independent covariance matrices. These in turn can be



(a) 0 Iterations (b) 100 Iterations

Fig. 12: Example of multi-StochGPMP applied to the multi-goal setting for a planar navigation problem. The GP covariance matrices are constructed using
a constant-velocity stochastic transition model [50]. Three goal locations (green dots) are used to initialize the mean sampling trajectories (blue), with three
Gaussian process distributions per goal. Trajectory samples are generated in batch (red), resolving local collisions induced by the presence of obstacles
(black). Smooth mean-trajectory solutions are generated after a few planning iterations, covering different paths to the goals.

constructed from goal-specific covariances Ξg and state-transition variance matrices Qc,0 = [Q1
c,0,Q

2
c,0, ...,Q

Ng

c,0 ]
⊤. In

practice, each initial GP covariance Ki
0 is set to be higher than the respective planning covariance Ki, therefore increasing

likelihood of covering different homotopy classes (if they exist) while maintaining dense, local sampling for planning updates
(similar to having initial exploratory behavior).

For system execution, the converged plans M are evaluated, and the final trajectory can be selected as the lowest-cost
trajectory µ ∈M . In the case where the method is used to gather demonstrations (as described in the main text), this step can
be ignored, and all solutions M stored along with contextual data Xg and E(·). The full algorithm for Multi-StochGPMP
is shown in Algorithm 2.

An example of the algorithm being applied for a 2D trajectory optimization is shown in Fig. 12. Here, a simple point-particle
linear system is defined in cartesian space, with Qc = σ−2 I ∈ R2×2. The optimization is performed over position-velocity
trajectories of length N = 64, with step size γ = 0.5.

F. Related Work

The use of structured, time-correlated covariance matrices for sample-based trajectory optimization has been examined in
prior work [4], [59]–[62]. In the STOMP algorithm [4], a precision matrix with a band-diagonal structure is proposed for
generating discrete-time trajectories. In comparison, the GP covariance in Section I-A allows for sampling of system velocities
(or potentially higher derivatives) which are time-correlated with state according to a principled, system-based derivation of
the prior distribution. Given the continuous-time representation, this also provides an option to densify trajectories through
GP-interpolation. The factored form of the prior distribution (Eq. (16)) results in fine-grained, yet intuitive, control over the
construction of the K matrix, i.e. the start, goal, and transition covariances can be varied and set independently according
to the desired coverage of the sampling distribution.

GP-based sampling priors have been examined for uni-modal motion planning in [63]. Although a similar approach is
taken to Algorithm 1, we take an information-theoretic perspective in deriving the update rule in Section I-B. Here, we
draw connections to existing approaches for stochastic optimal control, which only consider proposal distributions over
the control space. Further, we motivate our approach towards the batch setting, where sampling and optimization can be
performed in parallel. Concurrently to this work, a multi-modal planning algorithm was proposed in [64] which uses a
mixture of Gaussian process distributions. Here, sampling of trajectories is performed sequentially by first drawing from the
latent variable distribution, then sampling from the resulting GP component. Given that our multi-modal, multi-goal planning
method in Algorithm 2 is intended for batch computation using vectorized representations, sampling and distribution updates
are performed simultaneously across all modes of the proposal distribution.

APPENDIX II
EXTENDED EXPERIMENTAL EVALUATION

In the following, we provide an extended description of the experiments we performed. All the three experiments are
divided in two parts: the learning of the EBM components and the trajectory optimization problem using the learned EBM



as additional implicit priors.
In the three experiments, the trajectory optimization objective function was defined by a weighted sum of a set of heuristic

costs, introduced in Table II and the learned EBM components. To find the optimal trajectory, we considered both sampling
based methods (Exp I and Exp II), presented in Section I and gradient based methods (Exp III). The experiments were
performed to validate the possibility of using EBM as costs in trajectory optimization problems and to measure the benefit
of the proposed algorithmic decisions in the performance of the obtained trajectories.

A. Experiment I: 2D point Navigation

As described in the main text, datasets for the planar navigation problem were generated by either random uniform
sampling or stochastic trajectory generation with dimensions x : [−10, 10] , y : [−10, 10] sized region. For random sampling,
1024 example points were generated in the free-space regions of obstacles for each environment (i.e. obstacle configuration).
In the case of trajectory demonstrations, for each environment, 15 random goal locations were sampled along the axis defined
by x : [−9, 9] , y = 9 and x = 9, y : [−9, 9], with start location fixed at x = −9, y = −9. Trajectories were generated using
the StochGPMP optimizer, with 5 trajectories of length 64 generated for each goal location. Each trajectory is selected to
be the mean of each optimized StochGPMP distribution. The planning parameters were set to a timestep of dt = 0.02,
temperature λ = 1, goal-factor stand-dev. σs = 1 × 10−2, start-factor stand-dev. σg = 1 × 10−2, GP-factor stand-dev.
σgp = 0.1, and obstacle-factor stand-dev. σobs = 1× 10−5. For sampling-based trajectory optimization, a sample size of 32
was used. A total of 512 environments were generated for each experiment. The EBM model consisted of a simple 2-hidden
layer MLP (hidden width=512), with 2-D obstacle locations concatenated to the 2-dimensional inputs.

B. Experiment II: Planar Manipulator

This experiment evaluates how object-centric EBM helps solving the task of grasp and insert object into a walled-cubby.
As mentioned, we consider a simulated planar manipulator where the task space is 2D. The objective is to find a smooth
trajectory in the joint space from initial joint configuration q0 to grasp the white cube and insert the white cube into the
cubby while avoiding collisions. Note that the white cube in our case is a visual mesh having no collision model.

Dataset generation
In this experiment, we consider a simple grasp mechanism, where the planar robot arm can grasp the object just by

touching (e.g. suction, magnetic pull mechanisms). For generating grasp points, we define four 2D uniform distributions
with small margin along four edges of the cube (observing from the top view). For each side edges, we samples uniformly
10000 points and hence in total the number of positive samples are 40000. For generating insert trajectories, we sample
uniformly 512 initial points in the planar task space. Then for each initial point, we optimize for GP trajectory distribution
having 32 time steps using our StochGPMP planner and sample 128 collision-free trajectories from the solution distribution.
In total, we have 512 × 128 × 32 positive samples for training insert EBM. While the effect number of positive samples
for training planar EBMs priors does not need to be large, we observe that the positive samples should have a suitable
population to cover relevant task spaces to give informative guidance for motion optimization.

EBM training
The learned EBMs represents a state distribution

p(x) ∝ exp (−Eθ(x− xframe)) . (31)

with regard to their respective object-centric frame. For both grasp and insert case, the object-centric EBMs are trained
by first transforming the dataset points into the object frame of reference in consideration, then we performance training as
described in Section V. The network architecture used for both cases are a simple fully-connected network with two hidden
layers having the width of 512.

Trajectory Optimization with learned EBM
We define the manipulation planning objective with multiple cost terms: (i) GP prior factor cost encouraging trajectory

smoothness and connecting starting and final configuration, which can be computed by taking negative logarithm of Eq. (16),
(ii) obstacle avoidance cost and (iii) joint limit cost as specified in Table II. And finally, (iv) learned grasp EBM and (v)
learned insert EBM cost as:

c(q) = Egrasp(FK(q)− xcube) + Einsert(FK(q)− xcubby) (32)

where FK(·) is forward kinematic function.



C. Experiment III: Robot Pouring amid obstacles

In this experiment, we evaluate the integration of learned EBM components for solving a pouring task amid obstacles. We
consider a 7 DoF Kuka-LWR robot manipulator. Given the robot’s initial joint configuration q0, we aim to find a trajectory
that moves the robot to pour in an arbitrarily positioned pot and recover back to the initial joint configuration.

EBM training
The learned EBM represents a distribution p(τ ) that provides high probability to the trajectories performing the pouring

task and low probability to the rest. For this experiment, we consider modelling this distribution with a phase-conditioned
EBM, introduced in Eq. (11). Representing the whole trajectory distribution with a single EBM might be hard due to the
high dimensionality. A trajectory τ is represented in a N × T dimensional space, with N the state dimension and T the
temporal dimension. Additionally, different trajectories might vary in temporal length, changing the temporal dimension T
of the input. To deal with these limitations, the phase-conditioned EBM, Eθ(x, α) represents the distribution of the state for
a particular instant of the trajectory. The temporal instant is set by an α conditioning variable that goes from 0 representing
the start of the trajectory to 1 the end of the trajectory. Then, the whole trajectory distribution is represented by

p(τ ) ∝ exp

(
−
∑
k

Eθ(xk, αk) + (xk − xk+1)
2

)
. (33)

with k representing different instants of the trajectory and (xk − xk+1)
2 a smoothness cost to guarantee coherence in the

trajectory. For our problem, we represent the spatial dimension N in a 6 dimensional Euclidean space, x ∈ R6 consisting on
the 3D position of the cup’s bottom and the 3D position of the top of the cup. The position of this two points is represented
in the pouring pot’s reference frame. This way, the learned EBM can directly adapt to arbitrary poses in the pouring pot.
Additionally, we consider as baseline an EBM trained in the whole trajectory p(τ ) ∝ exp(−Eθ(τ )). We chose this baseline
to evaluate the benefit of a structured distribution representation w.r.t. modelling the distribution with a single EBM.

We train the model with CD loss with a uniform distribution as negative sample generation. Additionally, we add a
denoising score matching loss as regularizer. As previously introduced, we expect the denoising regularizer enhance the
landscape of the EBM for motion planning. We also consider as baseline an EBM trained without the regularizer to evaluate
the benefits of adding it.

Trajectory Optimization with learned EBM
Given the learned pouring EBM, we evaluate the performance benefit from adding the EBM as additional cost function in

the objective function. To solve the pouring task, we define an objective function with multiple cost functions. A configuration
space potential cost in the initial and final configuration to encourage the initial and final configuration to be a desired pose

c(q) =
1

2

∣∣∣∣q − q∗∣∣∣∣2, (34)

with q∗ the target configuration. A table and obstacle avoidance cost, similar to the one presented in Table II. A trajectory
smoothness cost

c(q0:T ) =
1

T

T−1∑
k=0

∣∣∣∣qk − qk+1

∣∣∣∣2, (35)

that encourages neighbours states to be close to each other. A pouring avoidance cost, that encourages the orientation of
the cup to be pointing up without spilling in almost all the trajectory points. To compute the cost, we compute the angle
between the z axis vector in the cup vz glass and the z axis on the world frame vz , θ = cos−1(vz · vz glass). The cost aims
to minimize the angle

c(θ) =
∣∣∣∣θ∣∣∣∣2. (36)

Finally, a pouring cost that encourages the glass to be close to the pot and with a certain angle to pour properly. Additionally,
we add a learned EBM trained on trajectories performing the pouring task. In contrast with the previous experiments that
apply sampling based optimization methods, we find the optimal trajectory by gradient descent. To reduce the possibility
of getting a locally optimal solution, we initialize multiple particles and evolve all in batch. The evaluation is presented in
Section VI.
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